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Chapter 1
Introduction

1.1 Physical Quantities, Units, and Symbols

Thermodynamics is a quantitative subject. It allows us to derive relations between the values of numerous physical
quantities. Some physical quantities, such as mole fraction, are dimensionless; the value of one of these quantities
is a pure number. Most quantities, however, are not dimensionless and their values must include one or more units.
This chapter describes the SI system of units, which are the preferred units in science applications. The chapter then
discusses some useful mathematical manipulations of physical quantities using quantity calculus, and certain general
aspects of dimensional analysis.

1.1.1 The International System of Units

There is international agreement that the units used for physical quantities in science and technology should be those
of the International System of Units, or SI (standing for the French Système International d'Unités).

Physical quantities and units are denoted by symbols. This book will, with a few exceptions, use symbols rec-
ommended in the third edition of what is known, from the color of its cover, as the IUPAC Green Book1.1.1. 1 This
publication is a manual of recommended symbols and terminology based on the SI and produced by the International
Union of Pure and Applied Chemistry (IUPAC). The symbols for physical quantities are listed for convenient refer-
ence in Appendices C and D.

The SI includes the seven base units listed in Table 1.1.1.

Physical quantity SI unit Symbol
time second s
length metera m
mass kilogram kg
thermodynamic temperature kelvin K
amount of substance mole mol
electric current ampere A
luminous intensity candela cd

aor metre
Table 1.1.1. SI base units

1.1.1. Ref. [30]. The references are listed in the Bibliography at the back of the book.
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These base units are for seven independent physical quantities that are sufficient to describe all other physical
quantities. Definitions of the base units are given in Appendix A. (The candela, the SI unit of luminous intensity, is
usually not needed in thermodynamics and is not used in this book.)

1.1.2 Amount of substance and amount

The physical quantity formally called amount of substance is a counting quantity for specified elementary entities.
An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.
The SI base unit for amount of substance is the mole.

Before 2019, the mole was defined as the amount of substance containing as many elementary entities as the
number of atoms in exactly 12 grams of pure carbon-12 nuclide, 12C. This definition was such that one mole of H2O
molecules, for example, has a mass of 18.02 grams, where 18.02 is the relative molecular mass of H2O, and contains
6.022×1023mol−1 is NA, the Avogadro constant (values given to four significant digits). The same statement can be
made for any other substance if 18.02 is replaced by the appropriate relative atomic mass or molecular mass value
(Sec. 2.3.2).

The SI revision of 2019 (Sec. 1.1.3) redefines the mole as exactly 6.022 140 76 × 1023 elementary entities. The
mass of this number of carbon-12 atoms is 12 grams to within 5×10−9 gram,1.1.2 so the revision makes a negligible
change to calculations involving the mole.

The symbol for amount of substance is n. It is admittedly awkward to refer to n(H2O) as “the amount of substance
of water.” This book simply shortens “amount of substance” to amount, a usage condoned by the IUPAC.1.1.3 Thus,
“the amount of water in the system” refers not to the mass or volume of water, but to the number of H2O molecules
expressed in a counting unit such as the mole.

1.1.3 The SI revision of 2019

At a General Conference on Weights and Measures held in Versailles, France in November 2018, metrologists from
over fifty countries agreed on a major revision of the International System of Units. The revision became official on 20
May 2019. It redefines the base units for mass, thermodynamic temperature, amount of substance, and electric current.

The SI revision bases the definitions of the base units (Appendix A) on a set of six defining constants with values
(listed in Appendix huniniti) treated as exact, with no uncertainty.

Previously, the kilogram had been defined as the mass of a physical artifact, the international prototype of the
kilogram. The international prototype is a platinum-iridium cylinder manufactured in 1879 in England and stored
since 1889 in a vault of the International Bureau of Weights and Measures in Sèvres, near Paris, France. As it is subject
to surface contamination and other slow changes of mass, it is not entirely suitable as a standard.

The 2019 SI revision instead defines the kilogram in terms of the Planck constant h.1.1.4 As a defining constant, the
value of h was chosen to agree with the mass of the international prototype with an uncertainty of only several parts
in 108. Thus, as apractical matter, the SI revision has a negligible effect on the value of a mass.

The SI revision defines the kelvin in terms of the Boltzmann constant k, the mole in terms of the Avogadro con-
stant NA, and the ampere in terms of the elementary charge e. The values of these defining constants were chosen to
closely agree with the previous base unit definitions. Consequently, the SI revision has a negligible effect on values
of thermodynamic temperature, amount of substance, and electric current.

1.1.2. Ref [129]. Appendix 2.
1.1.3. Ref [98]. An alternative name suggested for n is “chemical amount”.
1.1.4. The manner in which this is done using a Kibble balance is described on page 29.
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Physical quantity Unit Symbol Definition of unit

force newton N 1N=1 m⋅kg
s2

pressure pascal Pa 1Pa=1 N
m2 =1

kg
m⋅s2

Celsius temperature degree Celsius ∘C t
∘C =

T
K −273.15

energy joule J 1 J=1N⋅m=1 m2⋅kg
s2

power watt W 1W=1 J
s =1

m2⋅kg
s3

frequency hertz Hz 1Hz=1 1s =1 s−1

electric charge coulomb C 1C=1A⋅s

electric potential volt V 1V=1 J
C =1

m2⋅kg
s3⋅A

electric resistance ohm Ω 1Ω=1 V
A =1

m2⋅kg
s3⋅A2

Table 1.1.2. SI derived units

1.1.4 Derived units and prefixes
Table 1.1.2 lists derived units for some physical quantities used in thermodynamics. The derived units have exact
definitions in terms of SI base units, as given int he last column of the table.

The units listed in Table 1.1.3 are sometimes used in thermodynamics but are not part of the SI. They do, however,
have exact definitions in terms of SI units and so offer no problems of numerical conversion to or from SI units.

Physical quantity Unit Symbol Definition of unit
volume litera Lb 1L=1dm3=10−3m3

pressure bar bar 1bar=105Pa
pressure atmosphere atm 1atm=101, 325Pa=1.01325bar

pressure torr Torr 1Torr=� 1760�atm=�101,325760 �Pa

energy caloriec cald 1cal=4.184 J
aor litre bor l cor thermochemical calorie dor calth

Table 1.1.3. Non-SI derived units

Fraction Prefix Symbol Multiple Prefix Symbol

10−1 deci d 10 deka da
10−2 centi c 102 hecto h
10−3 milli m 103 kilo k
10−6 micro μ 106 mega M
10−9 nano n 109 giga G
10−12 pico p 1012 tera T
10−15 femto f 1015 peta P
10−18 atto a 1018 exa E
10−21 zepto z 1021 zetta Z
10−24 yocto y 1024 yotta Y

Table 1.1.4. SI prefixes
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Any of the symbols for units listed in Tables 1.1.1–1.1.3, except kg and ∘C, may be preceded by one of the prefix
symbols of Table 1.1.4 to construct a decimal fraction or multiple of the unit. (The symbol g may be preceded by a
prefix symbol to construct a fraction or multiple of the gram.) The combination of prefix symbol and unit symbol is
taken as a new symbol that can be raised to a power without parentheses, as in the following examples:

1mg = 1×10−3g
1 cm = 1×10−2m
1 cm3 = (1×10−2m)3=1×10−6m3

1.2 Quantity Calculus
This section gives examples of how we may manipulate physical quantities by the rules of algebra. The method is
called quantity calculus, although a better term might be “quantity algebra.”

Quantity calculus is based on the concept that a physical quantity, unless it is dimensionless, has a value equal to
the product of a numerical value (a pure number) and one or more units:

(physical quantity)=(numerical value)×(units) (1.2.1)

(If the quantity is dimensionless, it is equal to a pure number without units.) The physical property may be denoted
by a symbol, but the symbol does not imply a particular choice of units. For instance, this book uses the symbol 𝜌 for
density, but 𝜌 can be expressed in any units having the dimensions of mass divided by volume.

A simple example illustrates the use of quantity calculus. We may express the density of water at 25 ∘C to four
significant digits in SI base units by the equation

𝜌=9.970×102 kg2
m3 =9.970×10

2kg⋅m−3 (1.2.2)

and in different density units by the equation

𝜌=0.9970 g
cm3 =0.9970g⋅cm−3 (1.2.3)

We may divide both sides of the last equation by 1g⋅cm−3 to obtain a new equation
𝜌

g⋅cm−3 =𝜌/g⋅cm−3=0.9970 (1.2.4)

Now the pure number 0.9970 appearing in this equation is the number of grams in one cubic centimeter of water, so
we may call the ratio 𝜌/g⋅cm−3 “the number of grams per cubic centimeter.” By the same reasoning, 𝜌/kg⋅m−3 is
the number of kilograms per cubic meter. In general, a physical quantity divided by particular units for the physical
quantity is a pure number representing the number of those units.

Just as it would be incorrect to call 𝜌 “the number of grams per cubic centimeter,” because that would
refer to a particular choice of units for 𝜌, the common practice of calling n “the number of moles” is
also strictly speaking not correct. It is actually the ratio n

mol that is the number of moles.

In a table, the ratio 𝜌/g⋅cm−3makes a convenient heading for a column of density values because the column can
then show pure numbers. Likewise, it is convenient to use 𝜌/g⋅cm−3 as the label of a graph axis and to show pure
numbers at the grid marks of the axis. You will see many examples of this usage in the tables and figures of this book.

A major advantage of using SI base units and SI derived units is that they are coherent. That is, values of a physical
quantity expressed in different combinations of these units have the same numerical value.

For example, suppose we wish to evaluate the pressure of a gas according to the ideal gas equation1.2.1

p= nRT
V

(1.2.5)
(ideal gas)

1.2.1. This is the first equation in this book that, like many others to follow, shows conditions of validity in parentheses immediately below
the equation number ont he right. Thus, Eq. 1.2.5 is valid for an ideal gas.
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In this equation, p, n, T , and V are the symbols for the physical quantities pressure, amount (amount of substance),
thermodynamic temperature, and volume, respectively, and R is the gas constant.

The calculation of p for 5.000moles of an ideal gas at a temperature of 298.15 kelvins, in a volume of 4.000 cubic
meters, is

p=
(5.000mol) ⋅ �8.3145 J

K⋅mol� ⋅ (298.15K)
4.000m3 =3.099×103 J

m3 (1.2.6)

The mole and kelvin units cancel, and we are left with units of J
m3 , a combination of an SI derived unit (the joule) and

an SI base unit (the meter). The units J
m3 must have dimensions of pressure, but are not commonly used to express

pressure.
To convert J

m3 to the SI derived unit of pressure, the pascal (Pa), we can use the following relations from Table
1.1.2:

1 J = 1N⋅m (1.2.7)
1Pa = 1 N

m2 (1.2.8)

When we divide both sides of the first relation by 1 J and divide both sides of the second relation by 1 N
m2 , we obtain

two new relations

1 = �1 N⋅m
J � (1.2.9)

((((((((((((((((((
(1Pa

N
m2 )))))))))))))
)))))
) = 1 (1.2.10)

The ratios in the parentheses are conversion factors. When a physical quantity is multiplied by a conversion factor that,
like these, is equal to the pure number 1, the physical quantity changes its units but not its value. When we multiply
Eq. 1.2.6 by both of these conversion factors, all units cancel except Pa:

p = �3.099×103 J
m3� ⋅�1

N⋅m
J � ⋅((((((((((((((((((
(1Pa

N
m2 )))))))))))))
)))))
)

= 3.099Pa (1.2.11)

This example illustrates the fact that to calculate a physical quantity, we can simply enter into a calculator numer-
ical values expressed in SI units, and the result is the numerical value of the calculated quantity expressed in SI units.
In other words, as long as we use only SI base units and SI derived units (without prefixes), all conversion factors are
unity.

Of course we do not have to limit the calculation to SI units. Suppose we wish to express the calculated pressure
in torrs, a non-SI unit. In this case, using a conversion factor obtained from the definition of the torr in Table 1.1.3,
the calculation becomes

p = (3.099×103Pa)×� 760Torr
101,325Pa�

= 23.24Torr (1.2.12)

1.3 Dimensional Analysis
Sometimes you can catch an error in the form of an equation or expression, or in the dimensions of a quantity used for
a calculation, by checking for dimensional consistency. Here are some rules that must be satisfied:

• both sides of an equation have the same dimensions

• all terms of a sum or difference have the same dimensions

• logarithms and exponentials, and arguments of logarithms and exponentials, are dimensionless
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• a quantity used as a power is dimensionless

In this book the differential of a function, such as d f , refers to an infinitesimal quantity. If one side of an equation
is an infinitesimal quantity, the other side must also be. Thus, the equation d f =adx+bdy (where ax and by have the
same dimensions as f ) makes mathematical sense, but d f =ax+bdy does not.

Derivatives, partial derivatives, and integrals have dimensions that we must take into account when determining
the overall dimensions of an expression that includes them. For instance:

• the derivative dp
dT and the partial derivative �∂ p

∂T�V have the same dimeinsions as p
T

• the partial second derivative � ∂
2 p
∂T 2�V

has the same dimensions as p
T 2

• the integral ∫T dT has the same dimensions as T 2

Some examples of applying these principles are given here using symbols described in Sec. 1.2.

Example 1.3.1.
Since the gas constant R may be expressed in units of J

K⋅mol , it has dimensions of energy divided by thermodynamic
temperature and amount. Thus, RT has dimensions of energy divided by amount, and nRT has dimensions of energy.
The products RT and nRT appear frequently in thermodynamic expressions.

Example 1.3.2.
What are the dimensions of the quantity n R T ln� p

p∘� and of p∘ in this expression? The quantity has the same
dimensions as nRT (or energy) because the logarithm is dimensionless. Furthermore, p∘ in this expression has dimen-
sions of pressure in order to make the argument of the logarithm, p

p∘ , dimensionless.

Example 1.3.3.
Find the dimensions of the constants a and b in the van der Waals equation

p= nRT
V −nb − n2a

V 2

Dimensional analysis tells us that, because nb is subtracted from V , nb has dimensions of volume and therefore b has
dimensions of (volume)

(amount) . Furthermore, since the right side of the equation is a difference of two terms, these terms have
the same dimensions as th eleft side, which is pressure. Therefore, the second term n2a

V 2 has dimensions of pressure,
and a has dimensions of (pressure)× (volume)2×(amount)−2.

Example 1.3.4.
Consider an equation of the form

�∂ ln (x)
∂T �

p
= y

R

What are the SI units of y? lnx is dimensionless, so the left side of the equation has the dimensions 1T , and its SI units
are K−1. The SI units of the right side are therefore also K−1. Since R has the units J

K⋅mol , the SI units of y are J
K2⋅mol .

Problem 1.3.1. Consider the following equations for the pressure of a real gas. For each equation, find the dimensions of the constants a and
b and express these dimensions in SI units.

a) The Dieterici equation:

p= RTe−� an
VRT�

�V
n�−b

b) The Redlich–Kwong equation:

p= RT
�V

n �− b
− an2

T /1 2 ⋅V ⋅ (V +nb)
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Chapter 2
Systems and Their Properties

This chapter begins by explaining some basic terminology of thermodynamics. It discusses macroscopic properties
of matter in general and properties distinguishing different physical states of matter in particular. Virial equations
of state of a pure gas are introduced. The chapter goes on to discuss some basic macroscopic properties and their
measurement. Finally, several important concepts needed in later chapters are described: thermodynamic states and
state functions, independent and dependent variables, processes, and internal energy.

2.1 The System, Surroundings, and Boundary

Chemists are interested in systems containing matter—that which has mass and occupies physical space. Classical
thermodynamics looks at macroscopic aspects of matter. It deals with the properties of aggregates of vast numbers of
microscopic particles (molecules, atoms, and ions). The macroscopic viewpoint, in fact, treats matter as a continuous
material medium rather than as the collection of discrete microscopic particles we know are actually present. Although
this book is an exposition of classical thermodynamics, at times it will point out connections between macroscopic
properties and molecular structure and behavior.

A thermodynamic system is any three-dimensional region of physical space on which we wish to focus our atten-
tion. Usually we consider only one system at a time and call it simply “the system.” The rest of the physical universe
constitutes the surroundings of the system.

The boundary is the closed three-dimensional surface that encloses the system and separates it from the surround-
ings. The boundary may (and usually does) coincide with real physical surfaces: the interface between two phases, the
inner or outer surface of the wall of a flask or other vessel, and so on. Alternatively, part or all of the boundary may
be an imagined intangible surface in space, unrelated to any physical structure. The size and shape of the system, as
defined by its boundary, may change in time. In short, our choice of the three-dimensional region that constitutes the
system is arbitrary—but it is essential that we know exactly what this choice is.

We usually think of the system as a part of the physical universe that we are able to influence only indirectly
through its interaction with the surroundings, and the surroundings as the part of the universe that we are able to
directly manipulate with various physical devices under our control. That is, we (the experimenters) are part of the
surroundings, not the system.

For some purposes we may wish to treat the system as being divided into subsystems, or to treat the combination
of two or more systems as a supersystem.

If over the course of time matter is transferred in either direction across the boundary, the system is open; other-
wise it is closed. If the system is open, matter may pass through a stationary boundary, or the boundary may move
through matter that is fixed in space.

If the boundary allows heat transfer between the system and surroundings, the boundary is diathermal. An adi-
abatic2.1.1 boundary, on the other hand, is a boundary that does not allow heat transfer. We can, in principle, ensure
that the boundary is adiabatic by surrounding the system with an adiabatic wall—one with perfect thermal insulation
and a perfect radiation shield.

2.1.1. Greek: impassable
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Symbol Physical quantity SI unit
E energy J
m mass kg
n amount of substance mol
p pressure Pa
T thermodynamic temperature K
V volume m3

U internal energy J

𝜌 density kg
m3

Table 2.1.1. Symbols and SI units for some common properties

An isolated system is one that exchanges no matter, heat, or work with the surroundings, so that the system's mass
and total energy remain constant over time.2.1.2 A closed system with an adiabatic boundary, constrained to do no work
and to have no work done on it, is an isolated system.

The constraints required to prevent work usually involve forces between the system and surroundings.
In that sense a system may interact with the surroundings even though it is isolated. For instance, a
gas contained within rigid, thermally-insulated walls is an isolated system; the gas exerts a force on
each wall, and the wall exerts an equal and opposite force on the gas. An isolated system may also
experience a constant external field, such as a gravitational field.

The term body usually implies a system, or part of a system, whose mass and chemical composition are constant
over time.

2.1.1 Extensive and intensive properties

A quantitative property of a system describes some macroscopic feature that, although it may vary with time, has a
particular value at any given instant of time.

Table 2.1.1 lists the symbols of some of the properties discussed in this chapter and the SI units in which they may
be expressed. A much more complete table is found in Appendix C.

Most of the properties studied by thermodynamics may be classified as either extensive or intensive. We can
distinguish these two types of properties by the following considerations.

If we imagine the system to be divided by an imaginary surface into two parts, any property of the system that is
the sum of the property for the two parts is an extensive property. That is, an additive property is extensive. Examples
are mass, volume, amount, energy, and the surface area of a solid.

Sometimes a more restricted definition of an extensive property is used: The property must be not only
additive, but also proportional to the mass or the amount when intensive properties remain constant.
According to this definition, mass, volume, amount, and energy are extensive, but surface area is not.

If we imagine a homogeneous region of space to be divided into two or more parts of arbitrary size, any property
that has the same value in each part and the whole is an intensive property; for example density, concentration,
pressure (in a fluid), and temperature. The value of an intensive property is the same everywhere in a homogeneous
region, but may vary from point to point in a heterogeneous region—it is a local property.

2.1.2. The energy in this definition of an isolated system is measured in a local reference frame, as will be explained in Sec. 2.6.2.
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Since classical thermodynamics treats matter as a continuous medium, whereas matter actually contains discrete
microscopic particles, the value of an intensive property at a point is a statistical average of the behavior of many
particles. For instance, the density of a gas at one point in space is the average mass of a small volume element at that
point, large enough to contain many molecules, divided by the volume of that element.

Some properties are defined as the ratio of two extensive quantities. If both extensive quantities refer to a homoge-
neous region of the system or to a small volume element, the ratio is an intensive property. For example concentration,
defined as the ratio amount/volume, is intensive. A mathematical derivative of one such extensive quantity with
respect to another is also intensive.

A special case is an extensive quantity divided by the mass, giving an intensive specific quantity; for example

(Specific volume)= V
m =
1
𝜌 (2.1.1)

If the symbol for the extensive quantity is a capital letter, it is customary to use the corresponding lower-case letter as
the symbol for the specific quantity. Thus the symbol for specific volume is v.

Another special case encountered frequently in this book is an extensive property for a pure, homogeneous sub-
stance divided by the amount n. The resulting intensive property is called, in general, a molar quantity or molar
property. To symbolize a molar quantity, this book follows the recommendation of the IUPAC: The symbol of the
extensive quantity is followed by subscript m, and optionally the identity of the substance is indicated either by a
subscript or a formula in parentheses. Examples are

(Molar volume) = V
n =Vm (2.1.2)

(Molar volume of substance i) = V
ni
=Vm,i (2.1.3)

(Molar volume of H2O) = Vm (H2O) (2.1.4)

In the past, especially in the United States, molar quantities were commonly denoted with an overbar (e.g., V̄i).

2.2 Phases and Physical States of Matter

A phase is a region of the system in which each intensive property (such as temperature and pressure) has at each
instant either the same value throughout (a uniform or homogeneous phase), or else a value that varies continuously
from one point to another. Whenever this book mentions a phase, it is a uniform phase unless otherwise stated. Two
different phases meet at an interface surface, where intensive properties have a discontinuity or change value over a
small distance.

Some intensive properties (e.g., refractive index and polarizability) can have directional characteristics. A uniform
phase may be either isotropic, exhibiting the same values of these properties in all directions, or anisotropic, as in the
case of some solids and liquid crystals. A vacuum is a uniform phase of zero density.

Suppose we have to deal with a nonuniform region in which intensive properties vary continuously in space
along one or more directions—for example, a tall column of gas in a gravitational field whose density decreases with
increasing altitude. There are two ways we may treat such a nonuniform, continuous region: either as a single nonuni-
form phase, or else as an infinite number of uniform phases, each of infinitesimal size in one or more dimensions.

2.2.1 Physical states of matter

We are used to labeling phases by physical state, or state of aggregation. It is common to say that a phase is a solid if
it is relatively rigid, a liquid if it is easily deformed and relatively incompressible, and a gas if it is easily deformed and
easily compressed. Since these descriptions of responses to external forces differ only in degree, they are inadequate
to classify intermediate cases.
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Figure 2.2.1. Experimental procedure for producing shear stress in a phase (shaded). Blocks at the upper and lower surfaces of the phase
are pushed in opposite directions, dragging the adjacent portions of the phase with them.

A more rigorous approach is to make a primary distinction between a solid and a fluid, based on the phase's
response to an applied shear stress, and then use additional criteria to classify a fluid as a liquid, gas, or supercritical
fluid. Shear stress is a tangential force per unit area that is exerted on matter on one side of an interior plane by the
matter on the other side. We can produce shear stress in a phase by applying tangential forces to parallel surfaces of
the phase as shown in Fig. 2.2.1.

• A solid responds to shear stress by undergoing momentary relative motion of its parts, resulting in deforma-
tion—a change of shape. If the applied shear stress is constant and small (not large enough to cause creep or
fracture), the solid quickly reaches a certain degree of deformation that depends on the magnitude of the stress
and maintains this deformation without further change as long as the shear stress continues to be applied. On
the microscopic level, deformation requires relative movement of adjacent layers of particles (atoms, mole-
cules, or ions). The shape of an unstressed solid is determined by the attractive and repulsive forces between
the particles; these forces make it difficult for adjacent layers to slide past one another, so that the solid resists
deformation.

• A fluid responds to shear stress differently, by undergoing continuous relative motion (flow) of its parts. The
flow continues as long as there is any shear stress, no matter how small, and stops only when the shear stress
is removed.

Thus, a constant applied shear stress causes a fixed deformation in a solid and continuous flow in a fluid. We say that
a phase under constant shear stress is a solid if, after the initial deformation, we are unable to detect a further change
in shape during the period we observe the phase.

Usually this criterion allows us to unambiguously classify a phase as either a solid or a fluid. Over a sufficiently
long time period, however, detectable flow is likely to occur in any material under shear stress of any magnitude.
Thus, the distinction between solid and fluid actually depends on the time scale of observation. This fact is obvious
when we observe the behavior of certain materials (such as Silly Putty, or a paste of water and cornstarch) that exhibit
solid-like behavior over a short time period and fluid-like behavior over a longer period. Such materials, that resist
deformation by a suddenly-applied shear stress but undergo flow over a longer time period, are called viscoelastic
solids.

2.2.2 Phase coexistence and phase transitions
This section considers some general characteristics of systems containing more than one phase.

Suppose we bring two uniform phases containing the same constituents into physical contact at an interface sur-
face. If we find that the phases have no tendency to change over time while both have the same temperature and the
same pressure, but differ in other intensive properties such as density and composition, we say that they coexist in
equilibrium with one another. The conditions for such phase coexistence are the subject of later sections in this book,
but they tend to be quite restricted. For instance, the liquid and gas phases of pure H2O at a pressure of 1bar can coexist
at only one temperature, 99.61 ∘C.

A phase transition of a pure substance is a change over time in which there is a continuous transfer of the
substance from one phase to another. Eventually one phase can completely disappear, and the substance has been
completely transferred to the other phase. If both phases coexist in equilibrium with one another, and the temper-
ature and pressure of both phases remain equal and constant during the phase transition, the change is an equilibrium
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Figure 2.2.2. Pressure–temperature phase diagram of a pure substance (schematic). Point cp is the critical point, and point tp is the triple
point. Each area is labeled with the physical state that is stable under the pressure-temperature conditions that fall within the area. A
solid curve (coexistence curve) separating two areas is the locus of pressure-temperature conditions that allow the phases of these areas
to coexist at equilibrium. Path ABCD illustrates continuity of states.

phase transition. For example, H2O at 99.61 ∘C and 1 bar can undergo an equilibrium phase transition from liquid
to gas (vaporization) or from gas to liquid (condensation). During an equilibrium phase transition, there is a transfer
of energy between the system and its surroundings by means of heat or work.

2.2.3 Fluids

It is usual to classify a fluid as either a liquid or a gas. The distinction is important for a pure substance because the
choice determines the treatment of the phase's standard state (see Sec. 7.7). To complicate matters, a fluid at high
pressure may be a supercritical fluid. Sometimes a plasma (a highly ionized, electrically conducting medium) is
considered a separate kind of fluid state; it is the state found in the earth's ionosphere and in stars.

In general, and provided the pressure is not high enough for supercritical phenomena to exist—usually true of
pressures below 25bar except in the case of He or H2—we can make the distinction between liquid and gas simply on
the basis of density. A liquid has a relatively high density that is insensitive to changes in temperature and pressure.
A gas, on the other hand, has a relatively low density that is sensitive to temperature and pressure and that approaches
zero as pressure is reduced at constant temperature.

This simple distinction between liquids and gases fails at high pressures, where liquid and gas phases may have
similar densities at the same temperature. Figure 2.2.2 shows how we can classify stable fluid states of a pure substance
in relation to a liquid–gas coexistence curve and a critical point. If raising the temperature of a fluid at constant
pressure causes a phase transition to a second fluid phase, the original fluid was a liquid and the transition occurs at
the liquid–gas coexistence curve. This curve ends at a critical point, at which all intensive properties of the coexisting
liquid and gas phases become identical. The fluid state of a pure substance at a temperature greater than the critical
temperature and a pressure greater than the critical pressure is called a supercritical fluid.

The term vapor is sometimes used for a gas that can be condensed to a liquid by increasing the pressure at constant
temperature. By this definition, the vapor state of a substance exists only at temperatures below the critical tempera-
ture.

The designation of a supercritical fluid state of a substance is used more for convenience than because of any
unique properties compared to a liquid or gas. If we vary the temperature or pressure in such a way that the substance
changes from what we call a liquid to what we call a supercritical fluid, we observe only a continuous density change
of a single phase, and no phase transition with two coexisting phases. The same is true for a change from a supercritical
fluid to a gas. Thus, by making the changes described by the path ABCD shown in Fig. 2.2.2, we can transform a pure
substance from a liquid at a certain pressure to a gas at the same pressure without ever observing an interface between
two coexisting phases! This curious phenomenon is called continuity of states.
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Chapter 6 will take up the discussion of further aspects of the physical states of pure substances.

If we are dealing with a fluid mixture (instead of a pure substance) at a high pressure, it may be difficult to classify
the phase as either liquid or gas. The complexity of classification at high pressure is illustrated by the barotropic effect,
observed in some mixtures, in which a small change of temperature or pressure causes what was initially the more
dense of two coexisting fluid phases to become the less dense phase. In a gravitational field, the two phases switch
positions.

2.2.4 The equation of state of a fluid

Suppose we prepare a uniform fluid phase containing a known amount ni of each constituent substance i, and adjust
the temperature T and pressure p to definite known values. We expect this phase to have a definite, fixed volume V .
If we change any one of the properties T , p, or ni, there is usually a change in V . The value of V is dependent on the
other properties and cannot be varied independently of them. Thus, for a given substance or mixture of substances in a
uniform fluid phase, V is a unique function of T , p, and {ni}, where {ni} stands for the set of amounts of all substances
in the phase. We may be able to express this relation in an explicit equation: V = f (T , p, {ni}). This equation (or a
rearranged form) that gives a relation among V , T , p, and {ni} is the equation of state of the fluid.

We may solve the equation of state, implicitly or explicitly, for any one of the quantities V , T , p, ni in terms of the
other quantities. Thus, of the 3+ s quantities (where s is the number of substances), only 2+ s are independent.

The ideal gas equation, p= nRT
V (Eq. 1.2.5 on page 18), is an equation of state. It is found experimentally that the

behavior of any gas in the limit of low pressure, as temperature is held constant, approaches this equation of state. This
limiting behavior is also predicted by kinetic-molecular theory.

If the fluid has only one constituent (i.e., is a pure substance rather than a mixture), then at a fixed T and p the
volume is proportional to the amount. In this case, the equation of state may be expressed as a relation among T , p,
and the molar volume Vm=

V
n . The equation of state for a pure ideal gas may be written p= RT

Vm
.

The Redlich–Kwong equation is a two-parameter equation of state frequently used to describe, to good accuracy,
the behavior of a pure gas at a pressure where the ideal gas equation fails:

p= RT
Vm −b − a

Vm ⋅ (Vm+b) ⋅T /1 2
(2.2.1)

In this equation, a and b are constants that are independent of temperature and depend on the substance.

The next section describes features of virial equations, an important class of equations of state for real (nonideal)
gases.

2.2.5 Virial equations of state for pure gases

In later chapters of this book there will be occasion to apply thermodynamic derivations to virial equations of state of
a pure gas or gas mixture. These formulas accurately describe the gas at low and moderate pressures using empirically
determined, temperature-dependent parameters. The equations may be derived from statistical mechanics, so they
have a theoretical as well as empirical foundation.

There are two forms of virial equations for a pure gas: one a series in powers of 1Vm
:

p ⋅Vm=R ⋅T ⋅((((((((((1+ B
Vm
+ C

Vm
2 + ⋅ ⋅ ⋅)))))))))) (2.2.2)
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and the other a series in powers of p:

p ⋅Vm=R ⋅T ⋅ (1+Bp p+Cp p2+ ⋅ ⋅ ⋅) (2.2.3)

The parameters B,C, . . . are called the second, third, . . . virial coefficients, and the parameters Bp,Cp, . . . are a set
of pressure virial coefficients. Their values depend on the substance and are functions of temperature. (The first
virial coefficient in both power series is 1, because pVm must approach R T as 1

Vm
or p approach zero at constant T .)

Coefficients beyond the third virial coefficient are small and rarely evaluated.
The values of the virial coefficients for a gas at a given temperature can be determined from the dependence of p

on Vm at this temperature. The value of the second virial coefficient B depends on pairwise interactions between the
atoms or molecules of the gas, and in some cases can be calculated to good accuracy from statistical mechanics theory
and a realistic intermolecular potential function.

To find the relation between the virial coefficients of Eq. 2.2.2 and the parameters Bp,Cp,... in Eq. 2.2.3, we solve
Eq. 2.2.2 for p in terms of Vm

p=R ⋅T ⋅(((((((((( 1Vm
+ B

Vm
2 + ⋅ ⋅ ⋅)))))))))) (2.2.4)

and substitute in the right side of Eq. 2.2.3:

p ⋅Vm=R ⋅T ⋅[[[[[[[[[[1+Bp ⋅R ⋅T ⋅(((((((((( 1Vm
+ B

Vm
2 + ⋅ ⋅ ⋅))))))))))+Cp ⋅ (R ⋅T)2 ⋅(((((((((( 1Vm

+ B
Vm
2 + ⋅ ⋅ ⋅))))))))))

2
+ ⋅ ⋅ ⋅]]]]]]]]]] (2.2.5)

Then we equate coefficients of equal powers of 1Vm
in Eqs. 2.2.2 and 2.2.5 (since both equations must yield the same

value of p ⋅Vm for any value of 1Vm
):

B=R ⋅T ⋅Bp (2.2.6)

C=Bp ⋅R ⋅T ⋅B+Cp ⋅ (R ⋅T)2=(R ⋅T)2 ⋅ (Bp
2+Cp) (2.2.7)

In the last equation, we have substituted B from Eq. 2.2.6.
At pressures up to at least one bar, the terms beyond Bp ⋅ p in the pressure power series of Eq. 2.2.3 are negligible;

then p ⋅Vm may be approximated by R ⋅ T ⋅ (1+Bp ⋅ p), giving, with the help of Eq. 2.2.6, the simple approximate
equation of state2.2.1

Vm≈
R ⋅T

p +B (2.2.8)
(pure gas, p≤1bar)

The compression factor (or compressibility factor) Z of a gas is defined by

Z =
def p ⋅V

n ⋅R ⋅T =
p ⋅Vm
R ⋅T

(2.2.9)
(gas)

When a gas is at a particular temperature and pressure satisfies the ideal gas equation, the value of Z is 1. The virial
equations rewritten using Z are

Z=1+ B
Vm
+ C

Vm
2 + ⋅ ⋅ ⋅ (2.2.10)

Z=1+Bp ⋅ p+Cp ⋅ p2+ ⋅ ⋅ ⋅ (2.2.11)

These equations show that the second virial coefficient B is the initial slope of the curve of a plot of Z versus 1
Vm

at
constant T , and Bp is the initial slope of Z versus p at constant T .

The way in which Z varies with p at different temperatures is shown for the case of carbon dioxide in Fig. 2.2.3(a).

2.2.1. Guggenheim (Ref [61]) calls a gas with this equation of state a slightly imperfect gas.
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Figure 2.2.3.

a) Compression factor of CO2 as a function of pressure at three temperatures. At 700K, the Boyle temperature, the initial slope is
zero.

b) Second virial coefficient of CO2 as a function of temperature.

A temperature at which the initial slope is zero is called the Boyle temperature, which for CO2 is 700K. Both B
and Bp must be zero at the Boyle temperature. At lower temperatures B and Bp are negative, and at higher temperatures
they are positive—see Fig. 2.2.3(b). This kind of temperature dependence is typical for other gases. Experimentally,
and also according to statistical mechanical theory, B and Bp for a gas can be zero only at a single Boyle temperature.

The fact that at any temperature other than the Boyle temperature B is nonzero is significant since it
means that in the limit as p approaches zero at constant T and the gas approaches ideal-gas behavior, the
difference between the actual molar volume Vm and the ideal-gas molar volume R ⋅T

p does not approach
zero. Instead, Vm − R ⋅T

p approaches the nonzero value B (see Eq. 2.2.8). However, the ratio of the
actual and ideal molar volumes, Vm

�R ⋅T
p �

, approaches unity in this limit.

Virial equations of gas mixtures will be discussed in Sec. 9.3.4.

2.2.6 Solids

A solid phase responds to a small applied stress by undergoing a small elastic deformation. When the stress is removed,
the solid returns to its initial shape and the properties return to those of the unstressed solid. Under these conditions
of small stress, the solid has an equation of state just as a fluid does, in which p is the pressure of a fluid surrounding
the solid (the hydrostatic pressure) as explained in Sec. 2.3.5. The stress is an additional independent variable. For
example, the length of a metal spring that is elastically deformed is a unique function of the temperature, the pres-
sure of the surrounding air, and the stretching force.

If, however, the stress applied to the solid exceeds its elastic limit, the response is plastic deformation. This
deformation persists when the stress is removed, and the unstressed solid no longer has its original properties. Plastic
deformation is a kind of hysteresis, and is caused by such microscopic behavior as the slipping of crystal planes past
one another in a crystal subjected to shear stress, and conformational rearrangements about single bonds in a stretched
macromolecular fiber. Properties of a solid under plastic deformation depend on its past history and are not unique
functions of a set of independent variables; an equation of state does not exist.

28 SYSTEMS AND THEIR PROPERTIES

28



2.3 Some Basic Properties and Their Measurement
This section discusses aspects of the macroscopic properties mass, amount of substance, volume, density, pressure,
and temperature, with examples of how these properties can be measured.

2.3.1 Mass
The SI unit of mass is the kilogram. The practical measurement of the mass of a body is with a balance utilizing the
downward force exerted on the body by the earth's gravitational field. The classic balance has a beam and knife-edge
arrangement to compare the gravitational force on the body with the gravitational force on a weight of known mass.
A modern balance (strictly speaking a scale) incorporates a strain gauge or comparable device to directly measure
the gravitational force on the unknown mass; this type must be calibrated with known masses. The most accurate
measurements take into account the effect of the buoyancy of the body and the calibration masses in air.

The accuracy of the calibration masses should be traceable to a national standard kilogram (which in the United
States is maintained at NIST, the National Institute of Standards and Technology, in Gaithersburg, Maryland) and
ultimately to the international prototype (page 16).

The 2019 revision of the SI replaces the international prototype with a new definition of the kilogram
(Appendix A). The present method of choice for applying this definition to the precise measurement of
a mass, with an uncertainty of several parts in 10 8 , uses an elaborate apparatus called a watt balance
or Kibble balance.2.3.1 By this method, the mass of the international prototype is found to be 1 kg to
within 1×10−8kg.2.3.2

The NIST-4 Kibble balance2.3.3 at NIST has a balance wheel, from one side of which is suspended a coil
of wire placed in a magnetic field, and from the other side a tare weight. In use, the balance position
of the wheel is established. The test weight of unknown mass m is added to the coil side and a current
passed through the coil, generating an upward force on this side due to the magnetic field. The current I
is adjusted to reestablish the balance position. The balance condition is that the downward gravitational
force on the test weight be equal in magnitude to the upward electromagnetic force: m ⋅g=B ⋅ l ⋅ I , where
g is the acceleration of free fall, B is the magnetic flux density, l is the wire length of the coil, and I is
the current carried by the wire.
B and I can't be measured precisely, so in a second calibration step the test weight is removed, the
current is turned off, and the coil is moved vertically through the magnetic field at a constant precisely-
measured speed v. This motion induces an electric potential difference between the two ends of the coil
wire given by Δ𝜙=B ⋅ l ⋅ v.
By eliminating the product B ⋅ l from between the two preceding equations, the mass of the test weight
can be calculated from m= I ⋅Δ𝜙

g ⋅ v . For this calculation, I and Δ𝜙 are measured to a very high degree of
precision during the balance operations by instrumental methods (Josephson and quantum Hall effects)
requiring the defined value of the Planck constant h; the value of g at the location of the apparatus is
measured with a gravimeter.

2.3.2 Amount of substance
The SI unit of amount of substance (called simply the amount in this book) is the mole (Sec. 1.1.2). Chemists are
familiar with the fact that, although the mole is a counting unit, an amount in moles is measured not by counting but
by weighing. The SI revision of 2019 makes a negligible change to calculations involving the mole (page 16), so the
previous definition of the mole remains valid for most purposes: twelve grams of carbon-12, the most abundant isotope
of carbon, contains one mole of atoms.

2.3.1. Ref [24].
2.3.2. Ref [129], Appendix 2
2.3.3. Ref [63].
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Physical quantity Method Typical value Approximate uncertainty
Mass analytical balance 100g 0.1mg

microbalance 20mg 0.1μg
Volume pipet, Class A 10mL 0.02mL

volumetric flask, Class A 1L 0.3mL
Density pycnometer, 25-mL capacity 1 g

mL 2 mg
mL

magnetic float densimeter 1 g
mL 0.1 mg

mL

vibrating-tube densimeter 1 g
mL 0.01 mg

mL

Pressure mercury manometer or barometer 760Torr 0.001Torr
diaphragm gauge 100Torr 1Torr

Temperature constant-volume gas thermometer 10K 0.001K
mercury-in-glass thermometer 300K 0.01K
platinum resistance thermometer 300K 0.0001K
monochromatic optical pyrometer 1300K 0.03K

Table 2.3.1. Representative measurement methods

The relative atomic mass or atomic weight Ar of an atom is a dimensionless quantity equal to the atomic mass
relative to Ar= 12 for carbon-12. The relative molecular mass or molecular weight Mr of a molecular substance,
also dimensionless, is the molecular mass relative to carbon-12. Thus the amount n of a substance of mass m can be
calculated from

n= m
Ar g⋅mol−1 or m

Mr g⋅mol−1 (2.3.1)

A related quantity is the molar mass M of a substance, defined as the mass divided by the amount:

M=def m
n (2.3.2)

(The symbol M for molar mass is an exception to the rule given on page 23 that a subscript m is used to indicate a
molar quantity.) The numerical value of the molar mass expressed in units of g⋅mol−1 is equal to the relative atomic
or molecular mass:

M
g⋅mol−1 = Ar or M

g⋅mol−1 =Mr (2.3.3)

2.3.3 Volume
Liquid volumes are commonly measured with precision volumetric glassware such as burets, pipets, and volumetric
flasks. The National Institute of Standards and Technology in the United States has established specifications for
“Class A” glassware; two examples are listed in Table 2.3.1. The volume of a vessel at one temperature may be accu-
rately determined from the mass of a liquid of known density, such as water, that fills the vessel at this temperature.

The SI unit of volume is the cubic meter, but chemists commonly express volumes in units of liters and milliliters.
The liter is defined as one cubic decimeter (Table 1.1.3). One cubic meter is the same as 103 liters and 106 milliliters.
The milliliter is identical to the cubic centimeter.

Before 1964, the liter had a different definition: it was the volume of 1 kilogram of water at 3.98 ∘C,
the temperature of maximum density. This definition made one liter equal to 1.000028dm3. Thus, a
numerical value of volume (or density) reported before 1964 and based on the liter as then defined may
need a small correction in order to be consistent with the present definition of the liter.
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Figure 2.3.1. Three methods for measuring liquid density by comparison with samples of known density. The liquid is indicated by gray
shading.

a) Glass pycnometer vessel with capillary stopper. The filled pycnometer is brought to the desired temperature in a thermostat bath,
dried, and weighed.

b) Magnetic float densimeter.2.3.4 Buoy B, containing a magnet, is pulled down and kept in position with solenoid S by means of
position detector D and servo control system C . The solenoid current required depends on the liquid density.

c) Vibrating-tube densimeter. The ends of a liquid-filled metal U-tube are clamped to a stationary block. An oscillating magnetic
field at the tip of the tube is used to make it vibrate in the direction perpendicular to the page. The measured resonance frequency
is a function of the mass of the liquid in the tube.

2.3.4. Ref. [59]

2.3.4 Density
Density, an intensive property, is defined as the ratio of the two extensive properties mass and volume:

𝜌=def m
V (2.3.4)

The molar volume Vm of a homogeneous pure substance is inversely proportional to its density. From Eqs. 2.1.2, 2.3.2,
and 2.3.4, we obtain the relation

Vm=
M
𝜌 (2.3.5)

Various methods are available for determining the density of a phase, many of them based on the measurement of
the mass of a fixed volume or on a buoyancy technique. Three examples are shown in Fig. 2.3.1. Similar apparatus
may be used for gases. The density of a solid may be determined from the volume of a nonreacting liquid (e.g.,
mercury) displaced by a known mass of the solid, or from the loss of weight due to buoyancy when the solid is
suspended by a thread in a liquid of known density.

2.3.5 Pressure
Pressure is a force per unit area. Specifically, it is the normal component of stress exerted by an isotropic fluid on
a surface element.2.3.5 The surface can be an interface surface between the fluid and another phase, or an imaginary
dividing plane within the fluid.

Pressure is usually a positive quantity. Because cohesive forces exist in a liquid, it may be possible to place the
liquid under tension and create a negative pressure. For instance, the pressure is negative at the top of a column of
liquid mercury suspended below the closed end of a capillary tube that has no vapor bubble. Negative pressure in a
liquid is an unstable condition that can result in spontaneous vaporization.

2.3.5. A liquid crystal and a polar liquid in a electric field are examples of fluids that are not isotropic, because they have different macroscopic
properties in different directions.
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The SI unit of pressure is the pascal. Its symbol is Pa. One pascal is a force of one newton per square meter (Table
1.1.2).

Chemists are accustomed to using the non-SI units of millimeters of mercury, torr, and atmosphere. One mil-
limeter of mercury (symbol mmHg) is the pressure exerted by a column exactly 1mm high of a fluid of density equal to
exactly 13.5951g⋅cm−3 (the density of mercury at 0 ∘C) in a place where the acceleration of free fall, g, has its standard
value gn (see Appendix B). One atmosphere is defined as exactly 1.01325×105Pa (Table 1.1.3). The torr is defined
by letting one atmosphere equal exactly 760Torr. One atmosphere is approximately 760mmHg. In other words, the
millimeter of mercury and the torr are practically identical; they differ from one another by less than 2×10−7Torr.

Another non-SI pressure unit is the bar, equal to exactly 105 Pa. A pressure of one bar is approximately one
percent smaller than one atmosphere. This book often refers to a standard pressure, p∘. In the past, the value of p∘

was usually taken to be 1atm, but since 1982 the IUPAC has recommended the value p∘=1bar.
A variety of manometers and other devices is available to measure the pressure of a fluid, each type useful in a

particular pressure range. Some devices measure the pressure of the fluid directly. Others measure the differential
pressure between the fluid and the atmosphere; the fluid pressure is obtained by combining this measurement with the
atmospheric pressure measured with a barometer.

Within a solid, pressure cannot be defined simply as a force per unit area. Macroscopic forces at a point within a
solid are described by the nine components of a stress tensor. The statement that a solid has or is at a certain pressure
means that this is the hydrostatic pressure exerted on the solid's exterior surface. Thus, a solid immersed in a uniform
isotropic fluid of pressure p is at pressure p; if the fluid pressure is constant over time, the solid is at constant pressure.

2.3.6 Temperature
Temperature and thermometry are of fundamental importance in thermodynamics. Unlike the other physical quanti-
ties discussed in this chapter, temperature does not have a single unique definition. The chosen definition, whatever
it may be, requires a temperature scale described by an operational method of measuring temperature values. For the
scale to be useful, the values should increase monotonically with the increase of what we experience physiologically as
the degree of “hotness.” We can define a satisfactory scale with any measuring method that satisfies this requirement.
The values on a particular temperature scale correspond to a particular physical quantity and a particular temperature
unit.

For example, suppose you construct a simple liquid-in-glass thermometer with equally spaced marks along the
stem and number the marks consecutively. To define a temperature scale and a temperature unit, you could place
the thermometer in thermal contact with a body whose temperature is to be measured, wait until the indicating liquid
reaches a stable position, and read the meniscus position by linear interpolation between two marks. Of course, placing
the thermometer and body in thermal contact may affect the body's temperature. The measured temperature is that of
the body after thermal equilibrium is achieved.

Thermometry is based on the principle that the temperatures of different bodies may be compared with a ther-
mometer. For example, if you find by separate measurements with your thermometer that two bodies give the same
reading, you know that within experimental error both have the same temperature. The significance of two bodies
having the same temperature (on any scale) is that if they are placed in thermal contact with one another, they will
prove to be in thermal equilibrium with one another as evidenced by the absence of any changes in their properties.
This principle is sometimes called the zeroth law of thermodynamics, and was first stated as follows by J. C. Maxwell
(1872): “Bodies whose temperatures are equal to that of the same body have themselves equal temperatures.”

2.3.6.1 Equilibrium systems for fixed temperatures

The ice point is the temperature at which ice and air-saturated water coexist in equilibrium at a pressure of one atmos-
phere. The steam point is the temperature at which liquid and gaseous H2O coexist in equilibrium at one atmosphere.
Neither of these temperatures has sufficient reproducibility for high-precision work. The temperature of the ice-water-
air system used to define the ice point is affected by air bubbles in the ice and by varying concentrations of air in the
water around each piece of ice. The steam point is uncertain because the temperature of coexisting liquid and gas is a
sensitive function of the experimental pressure.
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Figure 2.3.2. Cross-section of a water triple-point cell. The cell has cylindrical symmetry about a vertical axis. Pure water of the same
isotopic composition as H2O in ocean water is distilled into the cell. The air is pumped out and the cell is sealed. A freezing mixture is
placed in the inner well to cause a thin layer of ice to form next to the inner wall. The freezing mixture is removed, and some of the ice is
allowed to melt to a film of very pure water between the ice and inner wall. The thermometer bulb is placed in the inner well as shown,
together with ice water (not shown) for good thermal contact.

The melting point of the solid phase of a pure substance is a more reproducible temperature. When the solid and
liquid phases of a pure substance coexist at a controlled, constant pressure, the temperature has a definite fixed value.

Triple points of pure substances provide the most reproducible temperatures. Both temperature and pressure have
definite fixed values in a system containing coexisting solid, liquid, and gas phases of a pure substance.

Figure 2.3.2 illustrates a triple-point cell for water whose temperature is capable of a reproducibility within 10−4K.
When ice, liquid water, and water vapor are in equilibrium in this cell, the cell is at the triple point of water.

2.3.6.2 Temperature scales

Six different temperature scales are described below: the ideal-gas temperature scale, the thermodynamic temperature
scale, the obsolete centigrade scale, the Celsius scale, the International Temperature Scale of 1990, and the Provisional
Low Temperature Scale of 2000.

The ideal-gas temperature scale is defined by gas thermometry measurements, as described on page 35. The
thermodynamic temperature scale is defined by the behavior of a theoretical Carnot engine, as explained in Sec.
4.3.4. These temperature scales correspond to the physical quantities called ideal-gas temperature and thermodynamic
temperature, respectively. Although the two scales have different definitions, the two temperatures turn out (Sec.
4.3.4) to be proportional to one another. Their values become identical when the same unit of temperature is used for
both.

Prior to the 2019 SI revision, the kelvin was defined by specifying that a system containing the solid, liquid, and
gaseous phases of H2O coexisting at equilibrium with one another (the triple point of water) has a thermodynamic
temperature of exactly 273.16 kelvins. (This value was chosen to make the steam point approximately one hundred
kelvins greater than the ice point.) The ideal-gas temperature of this system was set equal to the same value, 273.16
kelvins, making temperatures measured on the two scales identical.

The 2019 SI revision treats the triple point temperature of water as a value to be determined experimentally by
primary thermometry (page 35). The result is 273.16 kelvins to within 1 × 10−7K.2.3.6 Thus there is no practical
difference between the old and new definitions of the kelvin.

Formally, the symbol T refers to thermodynamic temperature. Strictly speaking, a different symbol should be used
for ideal-gas temperature. Since the two kinds of temperatures have identical values, this book will use the symbol T
for both and refer to both physical quantities simply as “temperature” except when it is necessary to make a distinction.

2.3.6. Ref. [129], Appendix 2.
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T90/K Equilibrium system
13.8033 H2 triple point
24.5561 Ne triple point
54.3584 O2 triple point
83.8058 Ar triple point

234.3156 Hg triple point
273.16 H2O triple point
302.9146 Ga melting point at 1 atm
429.7485 In melting point at 1 atm
505.078 Sn melting point at 1 atm
692.677 Zn melting point at 1 atm
933.473 Al melting point at 1 atm

1234.93 Ag melting point at 1 atm
1337.33 Au melting point at 1 atm
1357.77 Cu melting point at 1 atm

Table 2.3.2. Fixed temperatures of the International Temperature Scale of 1990

The obsolete centigrade scale was defined to give a value of exactly 0 degrees centigrade at the ice point and a
value of exactly 100 degrees centigrade at the steam point, and to be a linear function of an ideal-gas temperature scale.

The centigrade scale has been replaced by the Celsius scale, the thermodynamic (or ideal-gas) temperature scale
shifted by exactly 273.15 kelvins. The temperature unit is the degree Celsius (∘C), identical in size to the kelvin. Thus,
Celsius temperature t is related to thermodynamic temperature T by

t
∘C
= T

K −273.15 (2.3.6)

On the Celsius scale, the triple point of water is exactly 0.01 ∘C. The ice point is 0 ∘C to within 0.0001 ∘C, and the
steam point is 99.97 ∘C.

The International Temperature Scale of 1990 (abbreviated ITS-90) defines the physical quantity called international
temperature, with symbol T90.2.3.7 Each value of T90 is intended to be very close to the corresponding thermody-
namic temperature T .

The ITS-90 scale is defined over a very wide temperature range, from 0.65K up to at least 1358K. There is a
specified procedure for each measurement of T90, depending on the range in which T falls: vapor-pressure thermom-
etry (0.65 – 5.0K), gas thermometry (3.0 – 24.5561K), platinum-resistance thermometry (13.8033 – 1234.93K), or
optical pyrometry (above 1234.93K). For vapor-pressure thermometry, the ITS-90 scale provides formulas for T90 in
terms of the vapor pressure of the helium isotopes 3He and 4He. For the other methods, it assigns values of fourteen
fixed calibration temperatures achieved with the reproducible equilibrium systems listed in Table 2.3.2, and provides
interpolating functions for intermediate temperatures.

The Provisional Low Temperature Scale of 2000 (PLST-2000) is for temperatures between 0.0009K and 1K. This
scale is based on the melting temperature of solid 3He as a function of pressure. For 3He at these temperatures, the
required pressures are in the range 30 – 40bar.2.3.8

The temperatures defined by the ITS-90 and PLST-2000 temperature scales are exact with respect to the respective
scale—their values remain unchanged during the life of the scale.2.3.9

2.3.7. Refs. [96] and [115].
2.3.8. Ref. [122].
2.3.9. Ref. [46].
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Figure 2.3.3. Simple version of a constant-volume gas thermometer. The leveling bulb is raised or lowered to place the left-hand meniscus
at the level indicator. The gas pressure is then determined from Δh and the density of the mercury: p= patm+𝜌 ⋅g ⋅Δh.

2.3.6.3 Primary thermometry

Primary thermometry is the measurement of temperature based on fundamental physical principles. Until about 1960,
primary measurements of T involved gas thermometry. Other more accurate methods are now being used; they require
elaborate equipment and are not convenient for routine measurements of T .

The methods of primary thermometry require the value of the Boltzmann constant k or the gas constant R=NA ⋅k,
where NA is the Avogadro constant. k and NA are defining constants of the 2019 revision of the SI. Using these fixed
values (Appendix B) in the calculations results in values of T consistent with the definition of the kelvin according to
the 2019 revision.

Gas thermometry is based on the ideal gas equation T = pV
nR . It is most commonly carried out with a constant-

volume gas thermometer. This device consists of a bulb or vessel containing a thermometric gas and a means of
measuring the pressure of this gas. The thermometric gas is usually helium, because it has minimal deviations from
ideal-gas behavior.

The simple constant-volume gas thermometer depicted in Fig. 2.3.3 uses a mercury manometer to measure the
pressure. More sophisticated versions have a diaphragm pressure transducer between the gas bulb and the pressure
measurement system.

One procedure for determining the value of an unknown temperature involves a pair of pressure measurements.
The gas is brought successively into thermal equilibrium with two different systems: a reference system of known tem-
perature T1 (such as one of the systems listed in Table 2.3.2), and the system whose temperature T2 is to be measured.
The pressures p1 and p2 are measured at these temperatures. In the two equilibrations the amount of gas is the same
and the gas volume is the same except for a small change due to effects of T and p on the gas bulb dimensions.

If the gas exactly obeyed the ideal gas equation in both measurements, we would have n ⋅ R= p1 ⋅V1
T1
= p2 ⋅V2

T2
or

T2=T1 ⋅ �
p2 ⋅V2
p1 ⋅V1
�. Since, however, the gas approaches ideal behavior only in the limit of low pressure, it is necessary to

make a series of the paired measurements, changing the amount of gas in the bulb before each new pair so as to change
the measured pressures in discrete steps. Thus, the operational equation for evaluating the unknown temperature is

T2=T1 lim
p1→0

p2 ⋅V2
p1 ⋅V1

(2.3.7)
(gas)

(The ratio V2
V1

differs from unity only because of any change in the gas bulb volume when T and p change.) The limiting
value of p2 ⋅V2

p1 ⋅V1
can be obtained by plotting this quantity against p1,

1
Vm

, or another appropriate extrapolating function.
Note that values of n and R are not needed.
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Another method is possible if the value of the second virial coefficient at the reference temperature T1 is known.
This value can be used in the virial equation (Eq. 2.2.2) together with the values of T1 and p1 to evaluate the molar
volume Vm. Then, assuming Vm is the same in both equilibrations of a measurement pair, it is possible to evaluate p2 ⋅Vm

R
at temperature T2, and T2 can be found from

T2= lim
p2→0

p2 ⋅Vm
R

(2.3.8)
(gas)

Constant-volume gas thermometry can be used to evaluate the second virial coefficient of the gas at temperature T2 if
the value at T1 is known (Prob. 2.3(!!!!)).

The principles of measurements with a gas thermometer are simple, but in practice great care is needed to obtain
adequate precision and accuracy. Corrections or precautions are required for such sources of error as thermal expansion
of the gas bulb, “dead volume” between the bulb and pressure measurement system, adsorption of the thermometric
gas on interior surfaces, and desorption of surface contaminants.

Since 1960 primary methods with lower uncertainty than gas thermometry have been developed and improved.
Acoustic gas thermometry is based on the speed of sound in an ideal monatomic gas (helium or argon).2.3.10 The gas
is confined in a metal cavity resonator of known internal dimensions. The thermodynamic temperature of the gas is
calculated from T =�35� ⋅

M ⋅v2
R , where M is the average molar mass of the gas and v is the measured speed of sound

in the limit of zero frequency. To evaluate T in a phase of interest, small thermometers such as platinum resistor
thermometers (page 35) are moved from thermal contact with the phase to the outside of the metal resonator shell, and
the readings compared.

Values of thermodynamic temperatures T in the range 118K to 323K obtained by acoustic gas thermometry agree
with T90 on the ITS-90 scale to within 0.006K.2.3.11 The agreement becomes better the closer T is to the water triple
point 273.16K. T and T90 are equal at 273.16K.

Other kinds of primary thermometry capable of low uncertainty include2.3.12

• Dielectric constant gas thermometry, based on the variation of the dielectric constant of an ideal gas with
temperature;

• Johnson noise thermometry, based on measurements of the mean-square noise voltage developed in a resistor;

• Doppler broadening thermometry, based on measurements of the Doppler width of the absorption line when
a laser beam passes through a gas.

2.3.6.4 Practical thermometers

Liquid-in-glass thermometers use indicating liquids whose volume change with temperature is much greater than that
of the glass. A mercury-in-glass thermometer can be used in the range 234K (the freezing point of mercury) to 600K,
and typically can be read to 0.01K. A Beckmann thermometer covers a range of only a few kelvins but can be read
to 0.001K.

A resistance thermometer is included in a circuit that measures the thermometer's electric resistance. Platinum
resistance thermometers are widely used because of their stability and high sensitivity (0.0001K). Thermistors use
metal oxides and can be made very small; they have greater sensitivity than platinum resistance thermometers but are
not as stable over time.

A thermocouple consists of wires of two dissimilar metals (e.g., constantan alloy and copper) connected in series
at soldered or welded junctions. A many-junction thermocouple is called a thermopile. When adjacent junctions are
placed in thermal contact with bodies of different temperatures, an electric potential develops that is a function of the
two temperatures.

2.3.10. Ref. [101].
2.3.11. Ref. [133].
2.3.12. Ref. [50].
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Finally, two other temperature-measuring devices are the quartz crystal thermometer, incorporating a quartz crystal
whose resonance frequency is temperature dependent, and optical pyrometers, which are useful above about 1300K
to measure the radiant intensity of a black body emitter.

The national laboratories of several countries, including the National Institute of Standards and Technology in the
United States, maintain stable secondary thermometers (e.g., platinum resistance thermometers and thermocouples)
that have been calibrated according to the ITS-90 scale. These secondary thermometers are used as working standards
to calibrate other laboratory and commercial temperature-measuring devices.

The PLTS-2000 scale from 0.9mK to 1K and the ITS-90 scale from 0.65K upwards are expected to continue to
be used for precise, reproducible and practical approximations to thermodynamic temperature. In the temperature
range 23K – 1233K, the most precise measurements will be traceable to platinum resistance thermometers calibrated
according to the ITS-90 scale.2.3.13

2.4 The State of the System

The thermodynamic state of the system is an important and subtle concept.

Do not confuse the state of the system with the kind of physical state or state of aggregation of a phase
discussed in Sec. 2.2.1. A change of state refers to a change in the state of the system, not necessarily
to a phase transition.

At each instant of time, the system is in some definite state that we may describe with values of the macroscopic
properties we consider to be relevant for our purposes. The values of these properties at any given instant define the
state at that instant. Whenever the value of any of these properties changes, the state has changed. If we subsequently
find that each of the relevant properties has the value it had at a certain previous instant, then the system has returned
to its previous state.

2.4.1 State functions and independent variables
The properties whose values at each instant depend only on the state of the system at that instant, and not on the past
or future history of the system, are called state functions (or state variables, or state parameters). There may be other
system properties that we consider to be irrelevant to the state, such as the shape of the system, and these are not state
functions.

Various conditions determine what states of a system are physically possible. If a uniform phase has an equation
of state, property values must be consistent with this equation. The system may have certain built-in or externally-
imposed conditions or constraints that keep some properties from changing with time. For instance, a closed system
has constant mass; a system with a rigid boundary has constant volume. We may know about other conditions that
affect the properties during the time the system is under observation.

We can define the state of the system with the values of a certain minimum number of state functions which we
treat as the independent variables. Once we have selected a set of independent variables, consistent with the physical
nature of the system and any conditions or constraints, we can treat all other state functions as dependent variables
whose values depend on the independent variables.

Whenever we adjust the independent variables to particular values, every other state function is a dependent vari-
able that can have only one definite, reproducible value. For example, in a single-phase system of a pure substance
with T , p, and n as the independent variables, the volume is determined by an equation of state in terms of T , p, and
n; the mass is equal to n ⋅M; the molar volume is given by Vm=

V
n ; and the density is given by 𝜌= n ⋅M

V .

2.3.13. Ref. [46].
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temperature T =293.15K
pressure p=1.01bar
amount of water nA=39.18mol
amount of sucrose nB=1.375mol
volume V =1000 cm3

mass m=1176.5g
density 𝜌=1.1765 g

cm3

mole fraction of sucrose xB=0.03390
osmotic pressure Π=58.2bar
refractive index, sodium D line nD=1.400

Table 2.4.1. Values of state functions of an aqueous sucrose solution (A = water, B = sucrose)

2.4.2 An example: state functions of a mixture
Table 2.4.1 lists the values of ten state functions of an aqueous sucrose solution in a particular state. The first four
properties (T , p, nA, nB) are ones that we can vary independently, and their values suffice to define the state for most
purposes. Experimental measurements will convince us that, whenever these four properties have these particular
values, each of the other properties has the one definite value listed—we cannot alter any of the other properties
without changing one or more of the first four variables. Thus we can take T , p, nA, and nB as the independent
variables, and the six other properties as dependent variables. The other properties include one (V ) that is determined
by an equation of state; three (m, 𝜌, and xB) that can be calculated from the independent variables and the equation of
state; a solution property (Π) treated by thermodynamics (Sec. 12.4.4); and an optical property (nD). In addition to
these six dependent variables, this system has innumerable others: energy, isothermal compressibility, heat capacity
at constant pressure, and so on.

We could make other choices of the independent variables for the aqueous sucrose system. For instance, we could
choose the set T , p, V , and xB, or the set p, V ,𝜌, and xB. If there are no imposed conditions, the number of independent
variables of this system is always four. (Note that we could not arbitrarily choose just any four variables. For instance,
there are only three independent variables in the set p, V , m, and 𝜌 because of the relation 𝜌= m

V .)
If the system has imposed conditions, there will be fewer independent variables. Suppose the sucrose solution is

in a closed system with fixed, known values of nA and nB; then there are only two independent variables and we could
describe the state by the values of just T and p.

2.4.3 More about independent variables
A closed system containing a single substance in a single phase has two independent variables, as we can see by the
fact that the state is completely defined by values of T and p or of T and V .

A closed single-phase system containing a mixture of several nonreacting substances, or a mixture of reactants and
products in reaction equilibrium, also has two independent variables. Examples are

• air, a mixture of gases in fixed proportions;

• an aqueous ammonia solution containing H2O, NH4+, H+, OH−, and probably other species, all in rapid con-
tinuous equilibrium.

The systems in these two examples contain more than one substance, but only one component. The number of com-
ponents of a system is the minimum number of substances or mixtures of fixed composition needed to form each
phase.2.4.1 A system of a single pure substance is a special case of a system of one component. In an open system, the
amount of each component can be used as an independent variable.

2.4.1. The concept of the number of components is discussed in more detail in Chap. 13.
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Consider a system with more than one uniform phase. In principle, for each phase we could independently vary the
temperature, the pressure, and the amount of each substance or component. There would then be 2+C independent
variables for each phase, where C is the number of components in the phase.

There usually are, however, various equilibria and other conditions that reduce the number of independent vari-
ables. For instance, each phase may have the same temperature and the same pressure; equilibrium may exist with
respect to chemical reaction and transfer between phases (Sec. 2.4.4); and the system may be closed. (While these
various conditions do not have to be present, the relations among T , p, V , and amounts described by an equation of
state of a phase are always present.) On the other hand, additional independent variables are required if we consider
properties such as the surface area of a liquid to be relevant.2.4.2

We must be careful to choose a set of independent variables that defines the state without ambiguity.
For a closed system of liquid water, the set p and V might be a poor choice because the molar volume
of water passes through a minimum as T is varied at constant p. Thus, the values p=1.000 bar and
V =18.016 cm3 would describe one mole of water at both 2 ∘C and 6 ∘C, so these values would not
uniquely define the state. Better choices of independent variables in this case would be either T and p,
or else T and V .

How may we describe the state of a system that has nonuniform regions? In this case we may imagine the regions
to be divided into many small volume elements or parcels, each small enough to be essentially uniform but large
enough to contain many molecules. We then describe the state by specifying values of independent variables for
each volume element. If there is internal macroscopic motion (e.g., flow), then velocity components can be included
among the independent variables. Obviously, the quantity of information needed to describe a complicated state may
be enormous.

We can imagine situations in which classical thermodynamics would be completely incapable of describing the
state. For instance, turbulent flow in a fluid or a shock wave in a gas may involve inhomogeneities all the way down
to the molecular scale. Macroscopic variables would not suffice to define the states in these cases.

Whatever our choice of independent variables, all we need to know to be sure a system is in the same state at two
different times is that the value of each independent variable is the same at both times.

2.4.4 Equilibrium states
An equilibrium state is a state that, when present in an isolated system, remains unchanged indefinitely as long
as the system remains isolated. (Recall that an isolated system is one that exchanges no matter or energy with the
surroundings.) An equilibrium state of an isolated system has no natural tendency to change over time. If changes do
occur in an isolated system, they continue until an equilibrium state is reached.

A system in an equilibrium state may have some or all of the following kinds of internal equilibria:
Thermal equilibrium: the temperature is uniform throughout.
Mechanical equilibrium: the temperature is uniform throughout
Transfer equilibrium: there is equilibrium with respect to the transfer of each species from one phase to another.
Reaction equilibrium: every possible chemical reaction is at equilibrium
A homogeneous system has a single phase of uniform temperature and pressure, and so has thermal and mechanical
equilibrium. It is in an equilibrium state if it also has reaction equilibrium.

A heterogeneous system is in an equilibrium state if each of the four kinds of internal equilibrium is present.
The meaning of internal equilibrium in the context of an equilibrium state is that no perceptible change of state

occurs during the period we keep the isolated system under observation. For instance, a system containing a homo-
geneous mixture of gaseous H2 and O2 at 25 ∘C and 1bar is in a state of reaction equilibrium on a time scale of hours
or days; but if a measurable amount of H2O forms over a longer period, the state is not an equilibrium state on this
longer time scale. This consideration of time scale is similar to the one we apply to the persistence of deformation in
distinguishing a solid from a fluid (Sec. 2.2.1).

2.4.2. The important topic of the number of independent intensive variables is treated by the Gibbs phase rule, which will be discussed in Sec.
8.1.7 for systems of a single substance and in Sec. 13.1 for systems of more than one substance.
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Even if a system is not in internal equilibrium, it can be in an equilibrium state if a change of state is prevented by
an imposed internal constraint or the influence of an external field. Here are five examples of such states:
• A system with an internal adiabatic partition separating two phases can be in an equilibrium state that is not in

thermal equilibrium. The adiabatic partition allows the two phases to remain indefinitely at different tempera-
tures. If the partition is rigid, it can also allow the two phases to have different pressures, so that the equilibrium
state lacks mechanical equilibrium.

• An experimental system used to measure osmotic pressure (Fig. 12.2(!!!!) on page 373(!!!!)) has a semiper-
meable membrane separating a liquid solution phase and a pure solvent phase. The membrane prevents the
transfer of solute from the solution to the pure solvent. In the equilibrium state of this system, the solution
has a higher pressure than the pure solvent; the system is then in neither transfer equilibrium nor mechanical
equilibrium.

• In the equilibrium state of a galvanic cell that is not part of a closed electrical circuit (Sec. 3.8.3), the separation
of the reactants and products and the open circuit are constraints that prevent the cell reaction from coming to
reaction equilibrium.

• A system containing mixed reactants of a reaction can be in an equilibrium state without reaction equilibrium
if we withhold a catalyst or initiator or introduce an inhibitor that prevents reaction. In the example above of a
mixture of H2 and O2 gases, we could consider the high activation energy barrier for the formation of H2O to be
an internal constraint. If we remove the constraint by adding a catalyst, the reaction will proceed explosively.

• An example of a system influenced by an external field is a tall column of gas in a gravitational field (Sec.
8.1.4). In order for an equilibrium state to be established in this field, the pressure must decrease continuously
with increasing elevation.

Keep in mind that regardless of the presence or absence of internal constraints and external fields, the essential feature
of an equilibrium state is this: if we isolate the system while it is in this state, the state functions do not change over
time.

Three additional comments can be made regarding the properties of equilibrium states.
1. It should be apparent that a system with thermal equilibrium has a single value of T , and one with mechanical

equilibrium has a single value of p, and this allows the state to be described by a minimal number of indepen-
dent variables. In contrast, the definition of a nonequilibrium state with nonuniform intensive properties may
require a very large number of independent variables.

2. Strictly speaking, during a time period in which the system exchanges energy with the surroundings its state
cannot be an equilibrium state. Energy transfer at a finite rate causes nonuniform temperature and pressure
within the system and prevents internal thermal and mechanical equilibrium. If, however, the rate of energy
transfer is small, then at each instant the state can closely approximate an equilibrium state. This topic will be
discussed in detail in the next chapter.

3. The concept of an equilibrium state assumes that when the system is in this state and isolated, no observable
change occurs during the period of experimental observation.

If the state does, in fact, undergo a slow change that is too small to be detected during the experi-
mental observation period Δ texp, the state is metastable—the relaxation time of the slow change is
much greater than Δ texp. There is actually no such thing as a true equilibrium state, because very
slow changes inevitably take place that we have no way of controlling. One example was mentioned
above: the slow formation of water from its elements in the absence of a catalyst. Atoms of radioactive
elements with long half-lives slowly change to other elements. More generally, all elements are pre-
sumably subject to eventual transmutation to iron-58 or nickel-62, the nuclei with the greatest binding
energy per nucleon. When we use the concept of an equilibrium state, we are in effect assuming that
rapid changes that have come to equilibrium have relaxation times much shorter thanΔ texp and that the
relaxation times of all other changes are infinite.
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Figure 2.4.1. Steady state in a metal rod (shaded) with heat conduction. The boxes at the ends represent heat reservoirs of constant
temperature.

2.4.5 Steady states
It is important not to confuse an equilibrium state with a steady state, a state that is constant during a time period
during which the system exchanges matter or energy with the surroundings.

The heat-conducting metal rod shown in Fig. 2.4.1 is a system in such a steady state. Each end of the rod is in
thermal contact with a heat reservoir (or thermal reservoir), which is a body or external system whose temperature
remains constant and uniform when there is heat transfer to or from it.2.4.3 The two heat reservoirs in the figure have
different temperatures, causing a temperature gradient to form along the length of the rod and energy to be transferred
by heat from the warmer reservoir to the rod and from the rod to the cooler reservoir. Although the properties of the
steady state of the rod remain constant, the rod is clearly not in an equilibrium state because the temperature gradient
will quickly disappear when we isolate the rod by removing it from contact with the heat reservoirs.

2.5 Processes and Paths
A process is a change in the state of the system over time, starting with a definite initial state and ending with a definite
final state. The process is defined by a path, which is the continuous sequence of consecutive states through which the
system passes, including the initial state, the intermediate states, and the final state. The process has a direction along
the path. The path could be described by a curve in an N -dimensional space in which each coordinate axis represents
one of the N independent variables.

This book takes the view that a thermodynamic process is defined by what happens within the system, in the three-
dimensional region up to and including the boundary, and by the forces exerted on the system by the surroundings
and any external field. Conditions and changes in the surroundings are not part of the process except insofar as they
affect these forces. For example, consider a process in which the system temperature decreases from 300K to 273K.
We could accomplish this temperature change by placing the system in thermal contact with either a refrigerated
thermostat bath or a mixture of ice and water. The process is the same in both cases, but the surroundings are different.

Expansion is a process in which the system volume increases; in compression, the volume decreases.
An isothermal process is one in which the temperature of the system remains uniform and constant. An isobaric

or isopiestic process refers to uniform constant pressure, and an isochoric process refers to constant volume. Paths
for these processes of an ideal gas are shown in Fig. 2.5.1.

Figure 2.5.1. Paths of three processes of a closed ideal-gas system with p and V as the independent variables. (a) Isothermal expansion.
(b) Isobaric expansion. (c) Isochoric pressure reduction.

2.4.3. A heat reservoir can be a body that is so large that its temperature changes only imperceptibly during heat transfer, or an external system
of coexisting phases of a pure substance (e.g., ice and water) at constant pressure.
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An adiabatic process is one in which there is no heat transfer across any portion of the boundary. We may ensure
that a process is adiabatic either by using an adiabatic boundary or, if the boundary is diathermal, by continuously
adjusting the external temperature to eliminate a temperature gradient at the boundary.

Recall that a state function is a property whose value at each instant depends only on the state of the system at that
instant. The finite change of a state function X in a process is written ΔX. The notation ΔX always has the meaning
X2−X1, where X1 is the value in the initial state and X2 is the value in the final state. Therefore, the value ofΔX depends
only on the values of X1 and X2. The change of a state function during a process depends only on the initial and final
states of the system, not on the path of the process.

An infinitesimal change of the state function X is written dX. The mathematical operation of summing an infinite
number of infinitesimal changes is integration, and the sum is an integral (see the brief calculus review in Appendix
E). The sum of the infinitesimal changes of X along a path is a definite integral equal to ΔX:

�
X1

X2
dX=X2−X1=ΔX (2.5.1)

If dX obeys this relation—that is, if its integral for given limits has the same value regardless of the path—it is called
an exact differential. The differential of a state function is always an exact differential.

A cyclic process is a process in which the state of the system changes and then returns to the initial state. In this
case the integral of dX is written with a cyclic integral sign: ∮dX. Since a state function X has the same initial and
final values in a cyclic process, X2 is equal to X1 and the cyclic integral of dX is zero:

� dX=0 (2.5.2)

Heat (q) and work (w) are examples of quantities that are not state functions. They are not even properties of the
system; instead they are quantities of energy transferred across the boundary over a period of time. It would therefore
be incorrect to write “Δq” or “Δw.” Instead, the values of q and w depend in general on the path and are called path
functions.

This book uses the symbol đ (lowercase letter “d” with a bar through the stem2.5.1l) for an infinitesimal quantity of a
path function. Thus, đq and đw are infinitesimal quantities of heat and work. The sum of many infinitesimal quantities
of a path function is the net quantity:

� đq=q � đw=w (2.5.3)

The infinitesimal quantities đq and đw, because the values of their integrals depend on the path, are inexact differen-
tials.2.5.2

There is a fundamental difference between a state function (such as temperature or volume) and a path function
(such as heat or work): The value of a state function refers to one instant of time; the value of a path function refers to
an interval of time.

State function and path function in thermodynamics are analogous to elevation and distance in climbing
a mountain. Suppose there are several trails of different lengths from the trailhead to the summit. The
climber at each instant is at a definite elevation, and the elevation change during the climb depends only
on the trailhead and summit elevations and not on the trail used. Thus elevation is like a state function.
The distance traveled by the climber depends on the trail, and is like a path function.

2.6 The Energy of the System
A large part of classical thermodynamics is concerned with the energy of the system. The total energy of a system is
an extensive property whose value at any one instant cannot be measured in any practical way, but whose change is
the focus of the first law of thermodynamics (Chapter 3).

2.5.1. The Unicode number for the glyph đ is U+0111 and its name is “LATIN SMALL LETTER D WITH STROKE”.
2.5.2. Chemical thermodynamicists often write these quantities as dq and dw. Mathematicians, however, frown on using the same notation

for inexact and exact differentials. Other notations sometimes used to indicate that heat and work are path functions are Dq and Dw, and also 𝛿q
and 𝛿w.
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2.6.1 Energy and reference frames
Classical thermodynamics ignores microscopic properties such as the behavior of individual atoms and molecules.
Nevertheless, a consideration of the classical mechanics of particles will help us to understand the sources of the
potential and kinetic energy of a thermodynamic system.

In classical mechanics, the energy of a collection of interacting point particles is the sum of the kinetic energy
1
2mv2 of each particle (where m is the particle's mass and v is its velocity), and of various kinds of potential energies.
The potential energies are defined in such a way that if the particles are isolated from the rest of the universe, as
the particles move and interact with one another the total energy (kinetic plus potential) is constant over time. This
principle of the conservation of energy also holds for real atoms and molecules whose electronic, vibrational, and
rotational energies, absent in point particles, are additional contributions to the total energy.

The positions and velocities of particles must be measured in a specified system of coordinates called a reference
frame. This book will use reference frames with Cartesian axes. Since the kinetic energy of a particle is a function of
velocity, the kinetic energy depends on the choice of the reference frame. A particularly important kind is an inertial
frame, one in which Newton's laws of motion are obeyed (see Sec. G.1 in Appendix G).

A reference frame whose axes are fixed relative to the earth's surface is what this book will call a lab frame. A lab
frame for all practical purposes is inertial (Sec. G.10 on page 404). It is in this kind of stationary frame that the laws
of thermodynamics have been found by experiment to be valid.

The energy E of a thermodynamic system is the sum of the energies of the particles contained in it and the potential
energies of interaction between these particles. Just as for an individual particle, the energy of the system depends on
the reference frame in which it is measured. The energy of the system may change during a process, but the principle
of the conservation of energy ensures that the sum of the energy of the system, the energy of the surroundings, and
any energy shared by both, all measured in the same reference frame, remains constant over time.

This book uses the symbol Esys for the energy of the system measured in a specified inertial frame. The system
could be located in a weightless environment in outer space, and the inertial frame could be one that is either fixed or
moving at constant velocity relative to local stars. Usually, however, the system is located in the earth's gravitational
field, and the appropriate inertial frame is then an earth-fixed lab frame.

If during a process the system as a whole undergoes motion or rotation relative to the inertial frame, then Esys

depends in part on coordinates that are not properties of the system. In such situations Esys is not a state function, and
we need the concept of internal energy.

2.6.2 Internal energy
The internal energy, U, is the energy of the system measured in a reference frame that allows U to be a state func-
tion—that is, at each instant the value of U depends only on the state of the system. This book will call a reference
frame with this property a local frame. A local frame may also be, but is not necessarily, an earth-fixed lab frame.

Here is a simple illustration of the distinction between the energy Esys of a system measured in a lab frame and the
internal energy U measured in a local frame. Let the system be a fixed amount of water of uniform temperature T and
pressure p contained in a glass beaker. (The glass material of the beaker is part of the surroundings.) The state of this
system is defined by the independent variables T and p. The most convenient local frame in which to measure U in
this case is a frame fixed with respect to the beaker.

• When the beaker is at rest on the lab bench, the local frame is a lab frame; then the energies Esys and U are
equal and depend only on T and p.

• If we place the beaker on a laboratory hot plate and use the hot plate to raise the temperature of the water, the
values of Esys and U increase equally.

• Suppose we slide the beaker horizontally along the lab bench while T and p stay constant. While the system is
in motion, its kinetic energy is greater in the lab frame than in the local frame. Now Esys is greater than when
the beaker was at rest, although the state of the system and the value of U are unchanged.
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• If we slowly lift the beaker above the bench, the potential energy of the water in the earth's gravitational field
increases, again with no change in T and p. The value of Esys has increased, but there has been no change in
the state of the system or the value of U.

Section 3.1.1 will show that the relation between changes of the system energy and the internal energy in this example
isΔEsys=ΔEk+ΔEp+ΔU, where Ek and Ep are the kinetic and potential energies of the system as a whole measured
in the lab frame.

Our choice of the local frame used to define the internal energy U of any particular system during a given process
is to some extent arbitrary. Three possible choices are as follows.

• If the system as a whole does not move or rotate in the laboratory, a lab frame is an appropriate local frame.
Then U is the same as the system energy Esys measured in the lab frame.

• If the system's center of mass moves in the lab frame during the process, we can let the local frame be a center-
of-mass frame whose origin moves with the center of mass and whose Cartesian axes are parallel to the axes
of the lab frame.

• If the system consists of the contents of a rigid container that moves or rotates in the lab, as in the illustration
above, it may be convenient to choose a local frame that has its origin and axes fixed with respect to the
container.

Is it possible to determine a numerical value for the internal energy of a system? The total energy of a body of mass m
when it is at rest is given by the Einstein relation E=mc2, where c is the speed of light in vacuum. In principle, then,
we could calculate the internal energy U of a system at rest from its mass, and we could determine ΔU for a process
from the change in mass. In practice, however, an absolute value of U calculated from a measured mass has too much
uncertainty to be of any practical use. For example, the typical uncertainty of the mass of an object measured with a
microbalance, about 0.1μg (Table 2.3.1), would introduce the enormous uncertainty in energy of about 1010 joules.
Only values of the changeΔU are useful, and these values cannot be calculated fromΔm because the change in mass
during an ordinary chemical process is much too small to be detected.
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2.7 Problems
Problem 2.7.1. Let X represent the quantity V 2 with dimensions (length)6. Give a reason that X is or is not an extensive property. Give a
reason that X is or is not an intensive property.

Problem 2.7.2. Calculate the relative uncertainty (the uncertainty divided by the value) for each of the measurement methods listed in Table
2.3.1 on page 30, using the typical values shown. For each of the five physical quantities listed, which measurement method has the smallest
relative uncertainty?

Problem 2.7.3. Table 2.7.1 lists data obtained from a constant-volume gas thermometer containing samples of varying amounts of helium
maintained at a certain fixed temperature T2 in the gas bulb.2.7.1 The molar volume Vm of each sample was evaluated from its pressure in the
bulb at a reference temperature of T1=7.1992K, corrected for gas nonideality with the known value of the second virial coefficient at that
temperature.

Use these data and Eq. 2.2.2 on page 26 to evaluate T2 and the second virial coefficient of helium at temperature T2. (You can assume the
third and higher virial coefficients are negligible.)

� 1Vm
�/�102 mol

m3 � �
p2Vm

R �/(K)
1.0225 2.7106
1.3202 2.6994
1.5829 2.6898
1.9042 2.6781
2.4572 2.6580
2.8180 2.6447
3.4160 2.6228
3.6016 2.6162
4.1375 2.5965
4.6115 2.5790
5.1717 2.5586

Table 2.7.1. Helium at a fixed temperature

Problem 2.7.4. Discuss the proposition that, to a certain degree of approximation, a living organism is a steady-state system.

Problem 2.7.5. The value ofΔU for the formation of one mole of crystalline potassium iodide from its elements at 25 ∘C and 1bar is −327.9kJ.
Calculate Δm for this process. Comment on the feasibility of measuring this mass change.

2.7.1. Ref. [13].
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Chapter 3
The First Law
In science, a law is a statement or mathematical relation that concisely describes reproducible experimental observa-
tions. Classical thermodynamics is built on a foundation of three laws, none of which can be derived from principles
that are any more fundamental. This chapter discusses theoretical aspects of the first law; gives examples of reversible
and irreversible processes and the heat and work that occur in them; and introduces the extensive state function heat
capacity.

3.1 Heat, Work, and the First Law
The box below gives two forms of the first law of thermodynamics.

In a closed system:
dU=đq+đw ΔU=q+w

where

a) U is the internal energy of the system, a state function;

b) q is heat; and

c) w is thermodynamic work.
The equation dU=đq+đw is a differential form of the first law, and ΔU=q+w is the integrated form.

The heat and work appearing in the first law are two different modes of energy transfer. They can be defined in a
general way as follows:

Heat refers to the transfer of energy across the boundary caused by a temperature gradient at the boundary.

Work refers to the transfer of energy across the boundary caused by the displacement of a macroscopic portion of the
system on which the surroundings exert a force, or because of other kinds of concerted, directed movement of entities
(e.g., electrons) on which an external force is exerted.

An infinitesimal quantity of energy transferred as heat at a surface element of the boundary is written đq, and a finite
quantity is written q (Sec. 2.5). To obtain the total finite heat for a process from q=∫đq (Eq. 2.5.3), we must integrate
over the total boundary surface and the entire path of the process.

An infinitesimal quantity of work is đw, and a finite quantity is w=∫đw. To obtain w for a process, we integrate
all kinds of work over the entire path of the process.

Any of these quantities for heat and work is positive if the effect is to increase the internal energy, and negative if
the effect is to decrease it. Thus, positive heat is energy entering the system, and negative heat is energy leaving the
system. Positive work is work done by the surroundings on the system, and negative work is work done by the system
on the surroundings.

The first-law equationΔU=q+w sets up a balance sheet for the energy of the system, measured in the local frame,
by equating its change during a process to the net quantity of energy transferred by means of heat and work. Note that
the equation applies only to a closed system. If the system is open, energy can also be brought across the boundary
by the transport of matter.
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An important part of the first law is the idea that heat and work are quantitative energy transfers. That is, when
a certain quantity of energy enters the system in the form of heat, the same quantity leaves the surroundings. When
the surroundings perform work on the system, the increase in the energy of the system is equal in magnitude to the
decrease in the energy of the surroundings. The principle of conservation of energy is obeyed: the total energy (the
sum of the energies of the system and surroundings) remains constant over time.3.1.1

Heat transfer may occur by conduction, convection, or radiation.3.1.2 We can reduce conduction with good thermal
insulation at the boundary, we can eliminate conduction and convection with a vacuum gap, and we can minimize
radiation with highly reflective surfaces at both sides of the vacuum gap. The only way to completely prevent heat
during a process is to arrange conditions in the surroundings so there is no temperature gradient at any part of the
boundary. Under these conditions the process is adiabatic, and any energy transfer in a closed system is then solely
by means of work.

3.1.1 The concept of thermodynamic work
Appendix G gives a detailed analysis of energy and work based on the behavior of a collection of interacting particles
moving according to the principles of classical mechanics. The analysis shows how we should evaluate mechanical
thermodynamic work. Suppose the displacement responsible for the work comes from linear motion of a portion of
the boundary in the +x or −x direction of the local frame. The differential and integrated forms of the work are then
given by3.1.3

đw=Fx
sur dx w=�

x1

x2
Fx

sur dx (3.1.1)

Here Fx
sur is the component in the +x direction of the force exerted by the surroundings on the system at the moving

portion of the boundary, and dx is the infinitesimal displacement of the boundary in the local frame. If the displace-
ment is in the same direction as the force, đw is positive; if the displacement is in the opposite direction, đw is negative.

The kind of force represented by Fx
sur is a short-range contact force. Appendix G shows that the force exerted by

a conservative time-independent external field, such as a gravitational force, should not be included as part of Fx
sur.

This is because the work done by this kind of force causes changes of potential and kinetic energies that are equal and
opposite in sign, with no net effect on the internal energy (see Sec. 3.6 (!!!!)).

Newton's third law of action and reaction says that a force exerted by the surroundings on the system is opposed by
a force of equal magnitude exerted in the opposite direction by the system on the surroundings. Thus the expressions
in Eq. 3.1.1 can be replaced by

đw=−Fx
sys dx w=−�

x1

x2
Fx

sys dx (3.1.2)

where Fx
sys is the component in the +x direction of the contact force exerted by the system on the surroundings at the

moving portion of the boundary.

An alternative to using the expressions in Eqs. 3.1.1 or 3.1.2 for evaluating w is to imagine that the
only effect of the work on the system's surroundings is a change in the elevation of a weight in the
surroundings. The weight must be one that is linked mechanically to the source of the force Fx

sur. Then,
provided the local frame is a stationary lab frame, the work is equal in magnitude and opposite in
sign to the change in the weight's potential energy: w=−mgΔh where m is the weight's mass, g is the
acceleration of free fall, and h is the weight's elevation in the lab frame. This interpretation of work can
be helpful for seeing whether work occurs and for deciding on its sign, but of course cannot be used to
determine its value if the actual surroundings include no such weight.

3.1.1. Strictly speaking, it is the sum of the energies of the system, the surroundings, and any potential energy shared by both that is constant.
The shared potential energy is usually negligible or essentially constant (Sec. G.5).

3.1.2. Some thermodynamicists treat radiation as a separate contribution to ΔU, in addition to q and w.
3.1.3. These equations are Eq. G.6.11 with a change of notation.
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The procedure of evaluating w from the change of an external weight's potential energy requires that
this change be the only mechanical effect of the process on the surroundings, a condition that in practice
is met only approximately. For example, Joule's paddle-wheel experiment using two weights linked to
the system by strings and pulleys, described latter in Sec. 3.7.2, required corrections for (1) the kinetic
energy gained by the weights as they sank, (2) friction in the pulley bearings, and (3) elasticity of the
strings (see Prob. 3.10 (!!!!) on page (!!!)).

In the first-law relation ΔU=q+w, the quantities ΔU, q, and w are all measured in an arbitrary local frame. We
can write an analogous relation for measurements in a stationary lab frame:

ΔEsys=qlab+wlab (3.1.3)

Suppose the chosen local frame is not a lab frame, and we find it more convenient to measure the heat qlab and the work
wlab in a lab frame than to measure q and w in the local frame. What corrections are needed to find q and w in this case?

If the Cartesian axes of the local frame do not rotate relative to the lab frame, then the heat is the same in both
frames: q=qlab.3.1.4

The expressions for đwlab and wlab are the same as those for đw and w in Eqs. 3.1.1 and 3.1.2, with dx interpreted
as the displacement in the lab frame. There is an especially simple relation between w and wlab when the local frame
is a center-of-mass frame—one whose origin moves with the system's center of mass and whose axes do not rotate
relative to the lab frame:3.1.5

w=wlab − 12 ⋅m ⋅Δ⋅ (vcm
2 )−m ⋅g ⋅Δ zcm (3.1.4)

In this equation m is the mass of the system, vcm is the velocity of its center of mass in the lab frame, g is the acceler-
ation of free fall, and zcm is the height of the center of mass above an arbitrary zero of elevation in the lab frame. In
typical thermodynamic processes the quantities vcm and zcm change to only a negligible extent, if at all, so that usually
to a good approximation w is equal to wlab.

When the local frame is a center-of-mass frame, we can combine the relations ΔU=q+w and q=qlab with Eqs.
3.1.3 and 3.1.4 to obtain

ΔEsys=ΔEk+ΔEp+ΔU (3.1.5)

where Ek=
1
2 ⋅m ⋅vcm

2 and Ep=m ⋅g ⋅ zcm are the kinetic and potential energies of the system as a whole in the lab frame.
A more general relation for w can be written for any local frame that has no rotational motion and whose origin

has negligible acceleration in the lab frame:3.1.6

w=wlab −mgΔzloc (3.1.6)

Here zloc is the elevation in the lab frame of the origin of the local frame. Δ zloc is usually small or zero, so again w is
approximately equal to wlab. The only kinds of processes for which we may need to use Eq. 3.1.4 or 3.1.6 to calculate
a non-negligible difference between w and wlab are those in which massive parts of the system undergo substantial
changes in elevation in the lab frame.

Simple relations such as these between q and qlab, and between w and wlab, do not exist if the local frame has
rotational motion relative to a lab frame.

Hereafter in this book, thermodynamic work w will be called simply work. For all practical purposes you can
assume the local frames for most of the processes to be described are stationary lab frames. The discussion above
shows that the values of heat and work measured in these frames are usually the same, or practically the same, as if
they were measured in a local frame moving with the system's center of mass. A notable exception is the local frame
needed to treat the thermodynamic properties of a liquid solution in a centrifuge cell. In this case the local frame is
fixed in the spinning rotor of the centrifuge and has rotational motion. This special case will be discussed in Sec. 9.8.2.

3.1.4. Sec. G.7.
3.1.5. Eq. G.8.12 on page 403.
3.1.6. Eq. G.7.3 on page 401.
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Figure 3.1.1. System containing an electrical resistor and a paddle wheel immersed in water. Cross-hatched area: removable thermal
insulation.

3.1.2 Work coefficients and work coordinates
If a process has only one kind of work, it can be expressed in the form

đw=Y dX or w=�
X1

X2
Y dX (3.1.7)

where Y is a generalized force called a work coefficient and X is a generalized displacement called a work coordi-
nate. The work coefficient and work coordinate are conjugate variables. They are not necessarily actual forces and
displacements. For example, we shall see in Sec. 3.4.2 that reversible expansion work is given by đw=−pdV ; in this
case, the work coefficient is −p and the work coordinate is V .

A process may have more than one kind of work, each with its own work coefficient and conjugate work coordi-
nate. In this case the work can be expressed as a sum over the different kinds labeled by the index i:

đw=�
i

Yi dXi or w=�
i
�

Xi ,1

Xi ,2
Yi dXi (3.1.8)

3.1.3 Heat and work as path functions
Consider the apparatus shown in Fig. 3.1.1 on page 50.

The system consists of the water together with the immersed parts: stirring paddles attached to a shaft (a paddle
wheel) and an electrical resistor attached to wires. In equilibrium states of this system, the paddle wheel is stationary
and the temperature and pressure are uniform. The system is open to the atmosphere, so the pressure is constrained to
be constant. We may describe the equilibrium states of this system by a single independent variable, the temperature
T . (The angular position of the shaft is irrelevant to the state and is not a state function for equilibrium states of this
system.)

Here are three experiments with different processes. Each process has the same initial state defined by T1=300.0K,
and each has the same final state.

Experiment 1. We surround the system with thermal insulation as shown in the figure and release the external
weight, which is linked mechanically to the paddle wheel. The resulting paddle-wheel rotation causes turbu-
lent churning of the water and an increase in its temperature. Assume that after the weight hits the stop and
the paddle wheel comes to rest, the final angular position of the paddle wheel is the same as at the beginning
of the experiment. We can calculate the work done on the system from the difference between the potential
energy lost by the weight and the kinetic energy gained before it reaches the stop.3.1.7 We wait until the water
comes to rest and the system comes to thermal equilibrium, then measure the final temperature. Assume the
final temperature is T2=300.10K, an increase of 0.10 kelvins.

3.1.7. This calculation is an example of the procedure mentioned on page 48 in which the change in elevation of an external weight is used to
evaluate work.
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Experiment 2. We start with the system in the same initial state as in experiment 1, and again surround it with
thermal insulation. This time, instead of releasing the weight we close the switch to complete an electrical cir-
cuit with the resistor and allow the same quantity of electrical work to be done on the system as the mechanical
work done in experiment 1. We discover the final temperature (300.10K) is exactly the same as at the end of
experiment 1. The process and path are different from those in experiment 1, but the work and the initial and
final states are the same.

Experiment 3. We return the system to its initial state, remove the thermal insulation, and place the system in
thermal contact with a heat reservoir of temperature 300.10K. Energy can now enter the system in the form of
heat, and does so because of the temperature gradient at the boundary. By a substitution of heat for mechanical
or electrical work, the system changes to the same final state as in experiments 1 and 2.

Although the paths in the three experiments are entirely different, the overall change of state is the same. In fact, a
person who observes only the initial and final states and has no knowledge of the intermediate states or the changes
in the surroundings will be ignorant of the path. Did the paddle wheel turn? Did an electric current pass through the
resistor? How much energy was transferred by work and how much by heat? The observer cannot tell from the change
of state, because heat and work are not state functions. The change of state depends on the sum of heat and work. This
sum is the change in the state function U, as expressed by the integrated form of the first law, ΔU=q+w.

It follows from this discussion that neither heat nor work are quantities possessed by the system. A system at a
given instant does not have or contain a particular quantity of heat or a particular quantity of work. Instead, heat and
work depend on the path of a process occurring over a period of time. They are path functions.

3.1.4 Heat and heating

In thermodynamics, the technical meaning of the word “heat” when used as a noun is energy transferred across the
boundary because of a temperature gradient at the boundary.

In everyday speech the noun heat is often used somewhat differently. Here are three statements with similar
meanings that could be misleading:

“Heat is transferred from a laboratory hot plate to a beaker of water.”

“Heat flows from a warmer body to a cooler body.”

“To remove heat from a hot body, place it in cold water.”

Statements such as these may give the false impression that heat is like a substance that retains its identity as it
moves from one body to another. Actually heat, like work, does not exist as an entity once a process is completed.
Nevertheless, the wording of statements such as these is embedded in our everyday language, and no harm is done
if we interpret them correctly. This book, for conciseness, often refers to “heat transfer” and “heat flow,” instead of
using the technically more correct phrase “energy transfer by means of heat.”

Another common problem is failure to distinguish between thermodynamic “heat” and the process of “heating.”
To heat a system is to cause its temperature to increase. A heated system is one that has become warmer. This process
of heating does not necessarily involve thermodynamic heat; it can also be carried out with work as illustrated by
experiments 1 and 2 of the preceding section.

The notion of heat as an indestructible substance was the essence of the caloric theory. This theory
was finally disproved by the cannon-boring experiments of Benjamin Thompson (Count Rumford)
in the late eighteenth century, and in a more quantitative way by the measurement of the mechanical
equivalent of heat by James Joule in the 1840s (see Sec. 3.7.2).
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Benjamin Thompson, Count of Rumford (1753–1814). Benjamin Thompson, whose career was remarkably varied and colorful, col-
lected experimental evidence of the falseness of the caloric theory�the concept that heat is a material substance. He was a complex man:
energetic, egotistical, domineering, and misanthropic.

Thompson was born into a farming family in Woburn, Massachusetts. He married a wealthy widow and was admitted into fashionable
society. At the time of the American Revolution he was accused of being a loyalist, and at the age of 23 fled to England, abandoning his
wife and daughter. He was an Under Secretary of State in London, returned briefly to America as a British cavalry commander, and then
spent 11 years as a colonel in the Bavarian army. In Bavaria, to reward his success in reorganizing the army and reforming the social
welfare system, he was made a Count of the Holy Roman Empire. He chose the name Rumford after the original name of Concord, New
Hampshire, his wife's home town.

While in Bavaria, Count Rumford carried out the cannon-boring experiments for which he is best known. The caloric theory held that
heat is a kind of indestructible fluid (``caloric'') that is held in the spaces between the atoms of a body. Frictional forces were supposed
to cause a rise in temperature by squeezing caloric fluid out of a body. Rumford's experiments involved boring into a horizontally-fixed
cannon barrel with a blunt steel bit turned by horse power. He reported the results in 1798:(!!!!)

Being engaged, lately in superintending the boring of cannon, in the workshops of the military arsenal at Munich, I was
struck with the very considerable degree of heat which a brass gun acquires, in a short time, in being bored; and with the
still more intense heat (much greater than that of boiling water, as I found by experiment,) of the metallic chips separated
from it by the borer...
By meditating on the results of all these experiments, we are naturally brought to that great question which has so often
been the subject of speculation among philosophers; namely,
What is Heat?�Is there any such thing as an igneous fluid?�Is there any thing that can with propriety be called caloric?...
And, in reasoning on this subject, we must not forget to consider that most remarkable circumstance, that the source of
the heat generated by friction, in these experiments, appeared evidently to be inexhaustible.
It is hardly necessary to add, that any thing which any insulated body, or system of bodies, can continue to furnish without
limitation, cannot possibly be a material substance: and it appears to me to be extremely difficult, if not quite impossible,
to form any distinct idea of any thing, capable of being excited and communicated, in the manner the heat was excited and
communicated in these experiments, except it be MOTION.

Rumford thought of heat in a solid as harmonic vibrations similar to acoustic waves, not as random motion or as a form of energy as
later developed by James Joule.

Rumford also made investigations into ballistics, nutrition, thermometry, light, and fabric properties. He invented the Rumford
fireplace and the drip coffee percolator. After living in London for fourteen years, he settled in Paris in 1804. The following year, his first
wife having died in America, he married the widow of the famous French chemist Antoine Lavoisier. The marriage was stormy and they
soon separated.

3.1.5 Heat capacity

The heat capacity of a closed system is defined as the ratio of an infinitesimal quantity of heat transferred across the
boundary under specified conditions and the resulting infinitesimal temperature change:

(heat capacity) =
def đq

dT
(3.1.9)

(closed system)

Since q is a path function, the value of the heat capacity depends on the specified conditions, usually either constant
volume or constant pressure. CV is the heat capacity at constant volume and Cp is the heat capacity at constant
pressure. These are extensive state functions that will be discussed more fully in Sec. 5.6.
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3.1.6 Thermal energy
It is sometimes useful to use the concept of thermal energy. It can be defined as the kinetic energy of random
translational motions of atoms and molecules relative to the local frame, plus the vibrational and rotational energies
of molecules. The thermal energy of a body or phase depends on its temperature, and increases when the temperature
increases. The thermal energy of a system is a contribution to the internal energy.

It is important to understand that a change of the system's thermal energy during a process is not necessarily
the same as energy transferred across the system boundary as heat. The two quantities are equal only if the system
is closed and there is no work, volume change, phase change, or chemical reaction. This is illustrated by the three
experiments described in Sec. 3.1.3: the thermal energy change is the same in each experiment, but only in experiment
3 is the work negligible and the thermal energy change equal to the heat.

3.2 Spontaneous, Reversible, and Irreversible Processes
A spontaneous process is a process that can actually occur in a finite time period under the existing conditions. Any
change over time in the state of a system that we observe experimentally is a spontaneous process.

A spontaneous process is sometimes called a natural process, feasible process, possible process, allowed process,
or real process.

3.2.1 Reversible processes
A reversible process is an important concept in thermodynamics. This concept is needed for the chain of reasoning
in the next chapter by which the existence of entropy as a state function is derived and its changes defined. The
existence of entropy then leads on to the establishment of criteria for spontaneity and for various kinds of equilibria.
Innumerable useful relations (equalities) among heat, work, and state functions such as Gibbs energy can be obtained
for processes that are carried out reversibly.

Before reversible processes can be discussed, it is necessary to explain the meaning of the reverse of a process. If
a particular process takes the system from an initial state A through a continuous sequence of intermediate states to a
final state B, then the reverse of this process is a change over time from state B to state A with the same intermediate
states occurring in the reverse time sequence. To visualize the reverse of any process, imagine making a movie film
of the events of the process. Each frame of the film is a “snapshot” picture of the state at one instant. If you run the
film backward through a movie projector, you see the reverse process: the values of system properties such as p and
V appear to change in reverse chronological order, and each velocity changes sign.

If a process is spontaneous, which implies its reverse cannot be observed experimentally, the process is irre-
versible.

The concept of a reversible process is not easy to describe or to grasp. Perhaps the most confusing aspect is that a
reversible process is not a process that ever actually occurs, but is only approached as a hypothetical limit.

During a reversible process the system passes through a continuous sequence of equilibrium states. These states
are ones that can be approached, as closely as desired, by the states of a spontaneous process carried out sufficiently
slowly. The slower the process is, the more time there is between two successive intermediate states for equilibrium
to be approached. As the spontaneous process is carried out more and more slowly, it approaches the reversible limit.
Thus, a reversible process is an idealized process with a sequence of equilibrium states that are those of a spontaneous
process in the limit of infinite slowness.

Fermi3.2.1 describes a reversible process as follows: “A transformation is said to be reversible when the
successive states of the transformation differ by infinitesimals from equilibrium states. A reversible
transformation can therefore connect only those initial and final states which are states of equilibrium.
A reversible transformation can be realized in practice by changing the external conditions so slowly
that the system has time to adjust itself gradually to the altered conditions.”

3.2.1. Ref. [48], page 4.
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This book has many equations expressing relations among heat, work, and state functions during various kinds of
reversible processes. What is the use of an equation for a process that can never actually occur? The point is that the
equation can describe a spontaneous process to a high degree of accuracy, if the process is carried out slowly enough
for the intermediate states to depart only slightly from exact equilibrium states. For example, for many important
spontaneous processes we can assume the temperature and pressure are uniform throughout the system, although this
is only an approximation.

A reversible process of a closed system, as used in this book, has all of the following characteristics:

• It is an imaginary, idealized process in which the system passes through a continuous sequence of equilibrium
states. That is, the state at each instant is one that in an isolated system would persist with no tendency to
change over time. (This kind of process is sometimes called a quasistatic process.)

• The sequence of equilibrium states can be approximated, as closely as desired, by the intermediate states of
a real spontaneous process carried out sufficiently slowly. The reverse sequence of equilibrium states can
also be approximated, as closely as desired, by the intermediate states of another spontaneous process carried
out sufficiently slowly. (This requirement prevents any spontaneous process with hysteresis, such as plastic
deformation or the stretching of a metal wire beyond its elastic limit, from having a reversible limit.) During
the approach to infinite slowness, very slow changes of the type described in item 3 on page 40 must be
eliminated, i.e., prevented with hypothetical constraints.

• The spontaneous process of a closed system that has a reversible limit must be a process with heat, or work,
or both—the system cannot be an isolated one. It must be possible for an experimenter to use conditions in the
surroundings to control the rate at which energy is transferred across the boundary by means of heat and work,
and thus to make the process go as slowly as desired.

• If energy is transferred by work during a reversible process, the work coefficient Y in the expression đw=Y dX
must be finite (nonzero) in equilibrium states of the system. For example, if the work is given by đw=−Fx

sysdx
(Eq. 3.1.2), the force Fx

sys exerted by the system on the surroundings must be present when the system is in an
equilibrium state.

• In the reversible limit, any energy dissipation within the system, such as that due to internal friction, vanishes.
Internal energy dissipation is the situation in which energy transferred to the system by positive work is not
fully recovered in the surroundings when the sign of the work coordinate change dX is reversed.

• When any infinitesimal step of a reversible process takes place in reverse, the magnitudes of the heat đq and
work đw are unchanged and their signs are reversed. Thus, energy transferred as heat in one direction across
the boundary during a reversible process is transferred as heat in the opposite direction during the reverse
process. The same is true for the energy transferred as work.

We must imagine the reversible process to proceed at a finite rate, otherwise there would be no change of state over
time. The precise rate of the change is not important. Imagine a gas whose volume, temperature, and pressure are
changing at some finite rate while the temperature and pressure magically stay perfectly uniform throughout the
system. This is an entirely imaginary process, because there is no temperature or pressure gradient—no physical
“driving force”—that would make the change tend to occur in a particular direction. This imaginary process is a
reversible process—one whose states of uniform temperature and pressure are approached by the states of a real
process as the real process takes place more and more slowly.

It is a good idea, whenever you see the word “reversible,” to think “in the reversible limit.” Thus a reversible
process is a process in the reversible limit, reversible work is work in the reversible limit, and so on.

3.2.2 Reversibility and the surroundings
The reverse of a reversible process is itself a reversible process. As explained on page 54, the quantities of energy
transferred across the boundary as heat and work during a reversible process are returned across the boundary when
the reversible process is followed by the reverse process.
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Figure 3.2.1. Gas confined by a lubricated piston in a cylinder in contact with a heat reservoir (res).

Some authors describe a reversible process as one that allows both the system and the surroundings to be restored
to their initial states.3.2.2 The problem with this description is that during the time period in which the process and its
reverse take place, spontaneous irreversible changes inevitably occur in the surroundings.

The textbook Heat and Thermodynamics by Zemansky and Dittman3.2.3 states that “a reversible process is one
that is performed in such a way that, at the conclusion of the process, both the system and the local surroundings may
be restored to their initial states without producing any changes in the rest of the universe.” The authors explain that
by “local surroundings” they mean parts of the surroundings that interact directly with the system to transfer energy
across the boundary, and that “the rest of the universe” consists of what they call “auxiliary surroundings” that might
interact with the system.

They give as an example of local surroundings a weight whose lowering or raising causes work to be done on or
by the system, and a series of heat reservoirs placed in thermal contact with the system to cause heat transfer. The
auxiliary surroundings presumably include a way to lower or raise the weight and to move the heat reservoirs to
and away from the system. The control of these external operations would require a human operator or some sort
of automated mechanism whose actions would be spontaneous and irreversible. If these are considered to be part
of the auxiliary surroundings, as it seems they should be, then it would in fact not be possible for all the auxiliary
surroundings to return to their initial states as claimed.

The cylinder-and-piston device shown in Fig. 3.2.1 on page 55 can be used to illustrate a reversible process whose
reverse process does not restore the local surroundings.

The system in this example is the confined gas. The local surroundings are the piston (a weight), and the heat
reservoir of temperature Tres in thermal contact with the system. Initially, the gas pressure pushes the piston against
the catches, which hold it in place at elevation h1. The gas is in an equilibrium state at temperature Tres, volume V1,
and pressure p1. To begin the process, the catches are removed. The piston moves upwards and comes to rest at an
elevation greater than h1. The gas has now changed to a new equilibrium state with temperature Tres, a volume greater
than V1, and a pressure less than p1.

The rate of this expansion process is influenced by sliding friction in the surroundings at the lubricated seal between
the edge of the piston and the inner surface of the cylinder. Although the frictional drag force for a given lubricant
viscosity approaches zero as the piston velocity decreases, model calculations3.2.4 show that the greater is the vis-
cosity, the slower is the expansion. Assume the lubricant has a high viscosity that slows the expansion enough to make
the intermediate states differ only slightly from equilibrium states. In the limit of infinite slowness, the process would
be a reversible isothermal expansion of the gas. The friction at the piston, needed for the approach to a reversible
expansion, produces thermal energy that is transferred as heat to the heat reservoir.

3.2.2. For example, Ref. [89], page 73: “A process in which a system goes from state A to state B is defined to be (thermodynamically)
reversible, if it is possible to restore the system to the state A without producing permanent changes of any kind anywhere else.”

3.2.3. Ref. [143], page 158.
3.2.4. Ref. [38], Example 2.
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Figure 3.2.2. Two purely mechanical processes that are the reverse of one another: a thrown ball moving through a vacuum (a) to the
right; (b) to the left.

To reverse the expansion process, a weight is placed on the piston, causing the piston to sink and eventually return
to rest. Again friction at the piston causes heat transfer to the heat reservoir. The weight's mass is such that, after
the gas has become equilibrated with the heat reservoir, the piston has returned to its initial elevation h1. The system
has now returned to its initial state with T =Tres, V =V1, and p= p1. In the limit of infinite slowness, this process is a
reversible isothermal compression that is the reverse of the reversible expansion.

Note that the local surroundings have not returned to their initial conditions: a weight has been added to the
piston, and the heat reservoir's internal energy has increased due to the friction at the piston. It would be possible to
restore these initial conditions, but the necessary operations would involve further irreversible changes in the auxiliary
surroundings.

Based on the above, it is apparent that it is neither useful nor valid to describe a reversible process as one for which
the surroundings can be restored. Instead, this book defines a reversible process by the characteristics listed on pages
54 and 54, involving only changes in the system itself, regardless of what happens in the surroundings. Such a process
can be described as having internal reversibility and as being internally reversible.3.2.5

3.2.3 Irreversible processes
An irreversible process is a spontaneous process whose reverse is neither spontaneous nor reversible. That is, the
reverse of an irreversible process can never actually occur and is impossible. If a movie is made of a spontaneous
process, and the time sequence of the events depicted by the film when it is run backward could not occur in reality,
the spontaneous process is irreversible.

A good example of a spontaneous, irreversible process is experiment 1 on page 50, in which the sinking of an
external weight causes a paddle wheel immersed in water to rotate and the temperature of the water to increase. During
this experiment mechanical energy is dissipated into thermal energy. Suppose you insert a thermometer in the water
and make a movie film of the experiment. Then when you run the film backward in a projector, you will see the paddle
wheel rotating in the direction that raises the weight, and the water becoming cooler according to the thermometer.
Clearly, this reverse processis impossible in the real physical world, and the process occurring during the experiment is
irreversible. It is not difficult to understand why it is irreversible when we consider events on the microscopic level: it
is extremely unlikely that the H2O molecules next to the paddles would happen to move simultaneously over a period
of time in the concerted motion needed to raise the weight.

3.2.4 Purely mechanical processes
There is a class of spontaneous processes that are also spontaneous in reverse; that is, spontaneous but not irreversible.
These are purely mechanical processes involving the motion of perfectly-elastic macroscopic bodies without friction,
temperature gradients, viscous flow, or other irreversible changes.

A simple example of a purely mechanical process and its reverse is shown in Fig. 3.2.2.
The ball can move spontaneously in either direction. Another example is a flywheel with frictionless bearings

rotating in a vacuum.

3.2.5. Ref. [66], Section 14.7; Ref. [128], page 182; Ref. [35], Section 5.4.
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Figure 3.3.1. Temperature profiles in a copper sphere of radius 5 cm immersed in a water bath. The temperature at each of the times
indicated is plotted as a function of r, the distance from the center of the sphere. The temperature at distances greater than 5 cm, to the
right of the vertical dashed line in each graph, is that of the external water bath.

(a) Bath temperature raised at the rate of 0.10K⋅s−1.
(b) Bath temperature raised infinitely slowly.
(c) Bath temperature lowered at the rate of 0.10K⋅s−1.

A purely mechanical process proceeding at a finite rate is not reversible, for its states are not equilibrium states.
Such a process is an idealization, of a different kind than a reversible process, and is of little interest in chemistry. Later
chapters of this book will ignore such processes and will treat the terms spontaneous and irreversible as synonyms.

3.3 Heat Transfer
This section describes irreversible and reversible heat transfer. Keep in mind that when this book refers to heat transfer
or heat flow, energy is being transferred across the boundary on account of a temperature gradient at the boundary.
The transfer is always in the direction of decreasing temperature.

We may sometimes wish to treat the temperature as if it is discontinuous at the boundary, with different values
on either side. The transfer of energy is then from the warmer side to the cooler side. The temperature is not actually
discontinuous; instead there is a thin zone with a temperature gradient.

3.3.1 Heating and cooling
As an illustration of irreversible heat transfer, consider a system that is a solid metal sphere. This spherical body is
immersed in a well-stirred water bath whose temperature we can control. The bath and the metal sphere are initially
equilibrated at temperature T1=300.0K, and we wish to raise the temperature of the sphere by one kelvin to a final
uniform temperature T2=301.0K.

One way to do this is to rapidly increase the external bath temperature to 301.0K and keep it at that temperature.
The temperature difference across the surface of the immersed sphere then causes a spontaneous flow of heat through
the system boundary into the sphere. It takes time for all parts of the sphere to reach the higher temperature, so a tem-
porary internal temperature gradient is established. Thermal energy flows spontaneously from the higher temperature
at the boundary to the lower temperature in the interior. Eventually the temperature in the sphere becomes uniform
and equal to the bath temperature of 301.0K.

Figure 3.3.1(a)3.3.1 on page 57 raphically depicts temperatures within the sphere at different times during the
heating process. Note the temperature gradient in the intermediate states. Because of the gradient, these states cannot
be characterized by a single value of the temperature. If we were to suddenly isolate the system (the sphere) with a
thermally-insulated jacket while it is in one of these states, the state would change as the temperature gradient rapidly
disappears. Thus, the intermediate states of the spontaneous heating process are not equilibrium states, and the rapid
heating process is not reversible.
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To make the intermediate states more nearly uniform in temperature, with smaller temperature gradients, we can
raise the temperature of the bath at a slower rate. The sequence of states approached in the limit of infinite slowness
is indicated in Fig. 3.3.1(b). In each intermediate state of this limiting sequence, the temperature is perfectly uniform
throughout the sphere and is equal to the external bath temperature. That is, each state has thermal equilibrium both
internally and with respect to the surroundings. A single temperature now suffices to define the state at each instant.
Each state is an equilibrium state because it would have no tendency to change if we isolated the system with thermal
insulation. This limiting sequence of states is a reversible heating process.

The reverse of the reversible heating process is a reversible cooling process in which the temperature is again
uniform in each state. The sequence of states of this reverse process is the limit of the spontaneous cooling process
depicted in Fig. 3.3.1(c) as we decrease the bath temperature more and more slowly.

In any real heating process occurring at a finite rate, the sphere's temperature could not be perfectly uniform in
intermediate states. If we raise the bath temperature very slowly, however, the temperature in all parts of the sphere
will be very close to that of the bath. At any point in this very slow heating process, it would then take only a small
decrease in the bath temperature to start a cooling process; that is, the practically-reversible heating process would be
reversed.

The important thing to note about the temperature gradients shown in Fig. 3.3.1(c) for the spontaneous cooling
process is that none resemble the gradients in Fig. 3.3.1(a) for the spontaneous heating process—the gradients are
in opposite directions. It is physically impossible for the sequence of states of either process to occur in the reverse
chronological order, for that would have thermal energy flowing in the wrong direction along the temperature gradient.
These considerations show that a spontaneous heat transfer is irreversible. Only in the reversible limits do the heating
and cooling processes have the same intermediate states; these states have no temperature gradients.

Although the spontaneous heating and cooling processes are irreversible, the energy transferred into the system
during heating can be fully recovered as energy transferred back to the surroundings during cooling, provided there is
no irreversible work. This recoverability of irreversible heat is in distinct contrast to the behavior of irreversible work.

3.3.2 Spontaneous phase transitions
Consider a different kind of system, one consisting of the liquid and solid phases of a pure substance. At a given
pressure, this kind of system can be in transfer equilibrium at only one temperature: for example, water and ice at
1.01bar and 273.15K. Suppose the system is initially at this pressure and temperature. Heat transfer into the system
will then cause a phase transition from solid to liquid (Sec. 2.2.2). We can carry out the heat transfer by placing the
system in thermal contact with an external water bath at a higher temperature than the equilibrium temperature, which
will cause a temperature gradient in the system and the melting of an amount of solid proportional to the quantity of
energy transferred.

The closer the external temperature is to the equilibrium temperature, the smaller are the temperature gradients and
the closer are the states of the system to equilibrium states. In the limit as the temperature difference approaches zero,
the system passes through a sequence of equilibrium states in which the temperature is uniform and constant, energy
is transferred into the system by heat, and the substance is transformed from solid to liquid. This idealized process is
an equilibrium phase transition, and it is a reversible process.

3.4 Deformation Work
This and the four following sections (Secs. 3.5–3.8) describe some spontaneous, irreversible processes with various
kinds of work and illustrate the concept of a reversible limit for the processes that have such a limit.

The deformation of a system involves changes in the position, relative to the local frame, of portions of the system
boundary. At a small surface element 𝜏 of the boundary, the work of deformation is given in general by the expres-
sion3.4.1

đw𝜏=F𝜏surcos𝛼𝜏ds𝜏 (3.4.1)

3.4.1. From Eq. G.6.10 on page 400.
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Figure 3.4.1. Forces acting on the piston (cross hatched) in a cylinder-and-piston device containing a gas (shaded). The direction of Ffric
shown here is for expansion.

where F𝜏sur is the magnitude of the contact force exerted by the surroundings on the surface element, ds𝜏 is the infini-
tesimal displacement of the surface element in the local frame, and 𝛼𝜏 is the angle between the directions of the force
and the displacement. If the displacement is entirely parallel to the x axis, the expression becomes equivalent to that
already given by Eq. 3.1.1 on page 48: đw=Fx

sur dx.

3.4.1 Gas in a cylinder-and-piston device
A useful kind of deformation for the development of thermodynamic theory is a change in the volume of a gas or
liquid.

As a model for the work involved in changing the volume of a gas, consider the arrangement shown in Fig. 3.4.1
on page 59.

A sample of gas is confined in a horizontal cylinder by a piston. The system is the gas. The piston is not part of
the system, but its position given by the variable xpis determines the system's volume. Movement of the piston to the
right, in the +x direction, expands the gas; movement to the left, in the −x direction, compresses it.

We will find it instructive to look in detail at the forces acting on the piston. There are three kinds: the force
Fgas exerted in the +x direction by the gas; an external force Fext in the −x direction, which we can control in the
surroundings; and a frictional force Ffric in the direction opposite to the piston's velocity when the piston moves.

The friction occurs at the seal between the edge of the piston and the cylinder wall. We will assume this seal is
lubricated, and that Ffric approaches zero as the piston velocity approaches zero.

Let pb be the average pressure of the gas at the piston—that is, at the moving portion of the system boundary (the
subscript “b” stands for boundary). Then the force exerted by the gas on the piston is given by

Fgas= pb As (3.4.2)

where As is the cross-section area of the cylinder.
The component in the +x direction of the net force Fnet acting on the piston is given by

Fnet=Fgas −Fext+Ffric (3.4.3)

Here, Fgas and Fext are taken as positive. Ffric is negative when the piston moves to the right, positive when the piston
moves to the left, and zero when the piston is stationary.

Suppose the system (the gas) initially is in an equilibrium state of uniform temperature T1 and uniform pressure p1,
and the piston is stationary, so that Ffric is zero. According to Newton's second law of motion, the net force Fnet is also
zero, because otherwise the piston would be accelerating. Then, from Eqs. 3.4.2 and 3.4.3, the external force needed
to keep the piston from moving is Fext=Fgas= p1 As.

To avoid complications of heat transfer, we confine our attention to a system with an adiabatic boundary. By
reducing Fext from its initial value of p1 As, we cause spontaneous expansion to begin. As the piston moves to the
right, the pressure pb exerted on the left face of the piston becomes slightly less than the pressure on the stationary
cylinder wall. The molecular explanation of this pressure gradient is that gas molecules moving to the right approach
the moving piston at lower velocities relative to the piston than if the piston were stationary, so that they collide with
the piston less frequently and with a smaller loss of momentum in each collision. The temperature and pressure within
the gas become nonuniform, and we cannot describe intermediate states of this spontaneous process with single values
of T and p. These intermediate states are not equilibrium states.
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The more slowly we allow the adiabatic expansion to take place, the more nearly uniform are the temperature
and pressure. In the limit of infinite slowness, the gas passes through a continuous sequence of equilibrium states of
uniform temperature and pressure.

Let p2 be the pressure in the final state of the infinitely-slow expansion. In this state, Fext is equal to p2 As. By
increasing Fext from this value, we cause spontaneous compression to begin. The gas pressure pb at the piston now
becomes slightly greater than at the stationary cylinder wall, because the piston is moving to the left toward the
molecules that are moving to the right. A different pressure gradient develops than during expansion. The states
approached in the limit as we carry out the compression more and more slowly are equilibrium states, occurring in the
reverse sequence of the states for expansion at infinite slowness. The sequence of equilibrium states, taken in either
direction, is a reversible process.

The magnitude of the effect of piston velocity on pb can be estimated with the help of the kinetic-
molecular theory of gases. This theory, of course, is not part of classical macroscopic thermodynamics.
Consider the collision of a gas molecule of mass m with the left face of the piston shown in Fig. 3.4.1.
Assume the piston moves at a constant velocity u= dxpis/dt, positive for expansion of the gas and
negative for compression.
Let x be the horizontal distance of the molecule from the left end of the cylinder, and vx be the compo-
nent of its velocity in the +x direction measured in the cylinder-fixed lab frame: vx=dx/dt. Let vx′ be
the component of its velocity in the +x direction measured in a reference frame moving with the piston:
vx′=vx −u.
In one cycle of the molecule's motion, the molecule starts at the left end of the cylinder at time t1, moves
to the right with velocity vx,1>0, collides with and is reflected from the piston face, moves to the left
with velocity vx,2<0, and finally collides with the left end at time t2. In the piston-fixed frame, the
collision with the piston changes the sign but not the magnitude of vx′: vx,2′ =−vx,1′ . Consequently, the
relation between the velocity components in the lab frame after and before the collision with the piston
is

vx,2−u = −(vx,1−u)
vx,2 = −vx,1+2u (3.4.4)

At each instant during the collision itself, the interaction of the piston face with the gas molecule
changes vx. From Newton's second law, the force exerted on the molecule equals its mass times its
acceleration. From Newton's third law, the force Fx exerted by the molecule on the piston has the
same magnitude and opposite sign of the force exerted on the molecule: Fx =−m dvx/dt. Fx is zero
at times before and after the collision. Rearrangement to Fx dt=−mdvx and integration over the time
interval of the cycle yields

�
t1

t2
Fx dt=−m�

t1

t2
dvx=−m(vx,2−vx,1) (3.4.5)

Then from the relation of Eq. 3.4.4, ∫t1
t2Fx dt equals 2m (vx,1−u).

The time average ⟨Fx⟩ of Fx over the interval of the cycle is

⟨Fx⟩=
1

(t2− t1)
�

t1

t2
Fx dt= 2m (vx,1−u)

(t2− t1)
(3.4.6)

An expression for t2− t1 as a function of vx,1 and u can be derived using Δ t=Δx/vx:

t2− t1=
l

vx,1
+ −l

vx,2
= l

vx,1
+ −l

−vx,1+2u =
2 l (vx,1−u)
vx,1
2 −2uvx,1

(3.4.7)

Here l is the interior length of the cylinder at the time the molecule collides with the piston.
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From Eqs. 3.4.6 and 3.4.7, the time average during the cycle of the force exerted by the gas molecule
on the piston is

⟨Fx⟩=
2m(vx,1−u)(vx,1

2 −2uvx,1)
2 l (vx,1−u) = m

l (vx,1
2 −2uvx,1) (3.4.8)

The gas consists of nM/m molecules, where n is the amount and M is the molar mass. There is a range
of values of vx,1. The total pressure pb exerted by the gas on the piston is found by summing ⟨Fx⟩ over
all molecules and dividing by the piston area As:

pb=�
1
As
��nM

m ��
m
l �(⟨vx,1

2 ⟩−2u⟨vx,1⟩) (3.4.9)

The pressure p at the stationary cylinder wall is found by setting u equal to zero in the expression for
pb. Thus pb is related to p by3.4.2

pb= p((((((((((((((1−2u ⟨vx,1⟩
⟨vx,1
2 ⟩)))))))))))))) (3.4.10)

From kinetic-molecular theory, the averages are given by ⟨vx,1⟩=(2RT /𝜋M)1/2 and ⟨vx,1
2 ⟩=RT /M.

Suppose the piston moves at the considerable speed of 10 m
s and the gas in the cylinder is nitrogen

(N2) at 300K; then Eq. 3.4.10 predicts the pressure pb exerted on the piston by the gas during expan-
sion is only about 5% lower than the pressure p at the stationary wall, and during compression about
5% higher. At low piston speeds the percentage difference is proportional to the piston speed, so this
example shows that for reasonably slow speeds the difference is quite small and for practical calcula-
tions can usually be ignored.

3.4.2 Expansion work of a gas
We now consider the work involved in expansion and compression of the gas in the cylinder-and-piston device of Fig.
3.4.1. This kind of deformation work, for both expansion and compression, is called expansion work or pressure-
volume work.

Keep in mind that the system is just the gas. The only moving portion of the boundary of this system is at the
inner surface of the piston, and this motion is in the +x or −x direction. The x component of the force exerted by the
system on the surroundings at this portion of the boundary, Fx

sys, is equal to Fgas. (The other forces shown in Fig. 3.4.1
are within the surroundings.) Applying the differential form of Eq. 3.1.2, we have đw=−Fgas dxpis which, with the
substitution Fgas= pb As (from Eq. 3.4.2), becomes

đw=−pb As dxpis (3.4.11)

It will be convenient to change the work coordinate from xpis to V . The gas volume is given by V = As xpis so that an
infinitesimal change dx changes the volume by dV = As dxpis. The infinitesimal quantity of work for an infinitesimal
volume change is then given by

đw=−pb dV (3.4.12)
(expansion work, closed system)

and the finite work for a finite volume change, found by integrating from the initial to the final volume, is

w=−�
V1

V2
pb dV (3.4.13)

(expansion work, closed system)

During expansion (positive dV ), đw is negative and the system does work on the surroundings. During compression
(negative dV ), đw is positive and the surroundings do work on the system.

3.4.2. A formula similar to this to the first order in u is given in Ref. [14]. A formula that yields similar values of pb appears in Ref. [9], Eq. 7.
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When carrying out dimensional analysis, you will find it helpful to remember that the product of two
quantities with dimensions of pressure and volume (such as pb dV ) has dimensions of energy, and that
1Pa⋅m3 is equal to 1 J.

The integral on the right side of Eq. 3.4.13 is a line integral (Sec. E.4 on page 386). In order to evaluate the
integral, one must be able to express the integrand pb as a function of the integration variable V along the path of the
expansion or compression process.

If the piston motion during expansion or compression is sufficiently slow, we can with little error assume that the
gas has a uniform pressure p throughout, and that the work can be calculated as if the process has reached its reversible
limit. Under these conditions, Eq. 3.4.12 becomes

đw=−pdV
(3.4.14)

(reversible expansion
work, closed system)

and Eq. 3.4.13 becomes

w=−�
V1

V2
pdV

(3.4.15)
(reversible expansion
work, closed system)

The appearance of the symbol p in these equations, instead of pb, implies that the equations apply only to a process in
which the system has at each instant a single uniform pressure. As a general rule,an equation containing the symbol of
an intensive property not assigned to a specific phase is valid only if that property is uniform throughout the system,
and this will not be explicitly indicated as a condition of validity.

Some texts state that expansion work in a horizontal cylinder-and-piston device like that shown in Fig.
3.4.1 should be calculated from w=−∫pext dV , where pext is a pressure in the surroundings that exerts
the external force Fext on the piston. However, if the system is the gas the correct general expression is
the one given by Eq. 3.4.13: w=−∫pb dV . This is because it is the force Fgas= pb As that is exerted by
the system on the surroundings, whereas the force Fext= pext As is exerted by one part of the surround-
ings on another part of the surroundings.
In other words, if the integrals ∫Fgas dxpis and ∫Fext dxpis have different values, it is the first of these
two integrals that should be used to evaluate the work: w=−∫Fgas dxpis. Both integrals are equal if
the expansion or compression process is carried out reversibly. This is because in the limit of infinite
slowness the piston has neither friction (Ffric=0) nor acceleration (Fnet=0), and therefore according to
Eq. 3.4.3, Fgas and Fext are equal throughout the process. Another situation in which the two integrals
are equal is when the piston is frictionless and is stationary in the initial and final states, because then
both Ffric and ∫Fnet dxpis are zero. (The integral ∫Fnet dxpis can be shown to be equal to the change in
the kinetic energy of the piston, by a derivation similar to that leading to Eq. G.1.5 on page 392.) In
the general irreversible case, however, the integrals ∫Fgas dxpis and ∫Fextdxpis are not equal.3.4.3

3.4.3 Expansion work of an isotropic phase
Expansion work does not require a cylinder-and-piston device. Suppose the system is an isotropic fluid or solid phase,
and various portions of its boundary undergo displacements in different directions. Figure 3.4.2 on page 63 shows
an example of compression in a system of arbitrary shape. The deformation is considered to be carried out slowly,
so that the pressure p of the phase remains uniform. Consider the surface element 𝜏 of the boundary, with area As,
𝜏, indicated in the figure by a short thick curve. Because the phase is isotropic, the force F𝜏

sys= pAs,𝜏 exerted by the
system pressure on the surroundings is perpendicular to this surface element; that is, there is no shearing force. The
force F𝜏sur exerted by the surroundings on the system is equal in magnitude to F𝜏

sys and is directed in the opposite
direction. The volume change for an infinitesimal displacement ds𝜏 that reduces the volume is dV𝜏=−As,𝜏ds𝜏, so that
the work at this surface element (from Eq. 3.4.1 with 𝛼𝜏=0) is đw𝜏=−pdV𝜏.

3.4.3. For an informative discussion of this topic see Ref. [8]; also comments in Refs. [26], [7], [79], [6], and [102]; also Ref. [77].
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Figure 3.4.2. Deformation of an isotropic phase (shaded) confined by a wall.
(a) Equal and opposite forces exerted by the surroundings and system at surface element 𝜏 (thick curve) of the system boundary.
(b) Change from initial volume (dotted curve) to a smaller volume.

By summing the work over the entire boundary, we find the total reversible expansion work is given by the same
expression as for a gas in a piston-and-cylinder device: đw=−p dV . This expression can be used for deformation
caused by reversible displacements of a confining wall, or for a volume change caused by slow temperature changes
at constant pressure. It is valid if the system is an isotropic fluid phase in which other phases are immersed, provided
the fluid phase contacts all parts of the system boundary. The expression is not necessarily valid for an anisotropic
fluid or solid, because the angle 𝛼𝜏 appearing in Eq. 3.4.1 might not be zero.

3.4.4 Generalities
The expression đw=−p dV for reversible expansion work of an isotropic phase is the product of a work coefficient,
−p, and the infinitesimal change of a work coordinate, V . In the reversible limit, in which all states along the path of
the process are equilibrium states, the system has two independent variables, e.g., p and V or T and V . The number
of independent variables is one greater than the number of work coordinates. This will turn out to be a general rule:
The number of independent variables needed to describe equilibrium states of a closed system is one greater than the
number of independent work coordinates for reversible work.

Another way to state the rule is as follows: The number of independent variables is one greater than the number
of different kinds of reversible work, where each kind i is given by an expression of the form đwi=Yi dXi.

3.5 Applications of Expansion Work
This book uses expansion work as a general term that includes the work of both expansion and compression of an
isotropic phase.

3.5.1 The internal energy of an ideal gas
The model of an ideal gas is used in many places in the development of thermodynamics. For examples to follow, the
following definition is needed: An ideal gas is a gas

1. whose equation of state is the ideal gas equation, pV =nRT ; and
2. whose internal energy in a closed system is a function only of temperature.3.5.1

On the molecular level, a gas with negligible intermolecular interactions3.5.2 fulfills both of these requirements. Kinetic-
molecular theory predicts that a gas containing noninteracting molecules obeys the ideal gas equation. If intermol-
ecular forces (the only forces that depend on intermolecular distance) are negligible, the internal energy is simply the
sum of the energies of the individual molecules. These energies are independent of volume but depend on temperature.

3.5.1. A gas with this second property is sometimes called a “perfect gas”. In Sec. 7.2 it will be shown that if a gas has the first property, it
must also have the second.

3.5.2. This book uses the terms “intermolecular interactions” and “intermolecular forces” for interactions or forces between either multi-atom
molecules or unbonded atoms.
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The behavior of any real gas approaches ideal-gas behavior when the gas is expanded isothermally. As the molar
volume Vm becomes large and p becomes small, the average distance between molecules becomes large, and intermol-
ecular forces become negligible.

3.5.2 Reversible isothermal expansion of an ideal gas
During reversible expansion or compression, the temperature and pressure remain uniform. If we substitute p=nRT /
V from the ideal gas equation into Eq. huniniti and treat n and T as constants, we obtain

w=−nRT �
V1

V2 dV
V =−nRT ln V2

V1

(3.5.1)
(reversible isothermal
expansion work, ideal gas)

In these expressions for w the amount n appears as a constant for the process, so it is not necessary to state as a
condition of validity that the system is closed.

3.5.3 Reversible adiabatic expansion of an ideal gas
This section derives temperature-volume and pressure-volume relations when a fixed amount of an ideal gas is
expanded or compressed without heat.

First we need a relation between internal energy and temperature. Since the value of the internal energy of a fixed
amount of an ideal gas depends only on its temperature (Sec. 3.5.1), an infinitesimal change dT will cause a change
dU that depends only on T and dT :

dU= f (T)dT (3.5.2)

where f (T)=dU/dT is a function of T . For a constant-volume process of a closed system without work, we know
from the first law that dU is equal to đq and that đq/đT is equal to CV, the heat capacity at constant volume (Sec.
3.1.5). Thus we can identify the function f (T) as the heat capacity at constant volume:

dU=CV dT (3.5.3)
(ideal gas, closed system)

The relation given by Eq. 3.5.3 is valid for any process of a closed system of an ideal gas of uniform temperature,
even if the volume is not constant or if the process is adiabatic, because it is a general relation between state functions.

In a reversible adiabatic expansion with expansion work only, the heat is zero and the first law becomes

dU=đw=−pdV (3.5.4)

We equate these two expressions for dU to obtain

CV dT =−pdV (3.5.5)

and substitute p=nRT /V from the ideal gas equation:

CV dT =−nRT
V dV (3.5.6)

It is convenient to make the approximation that over a small temperature range, CV is constant. When we divide both
sides of the preceding equation by T in order to separate the variables T and V , and then integrate between the initial
and final states, we obtain

CV�T1

T2 dT
T =−nR�

V1

V2 dV
V (3.5.7)

CV ln
T2
T1
=−nR ln V2

V1
(3.5.8)

We can rearrange this result into the form

ln T2
T1
=−nR

CV
ln V2

V1
=ln�V1

V2
�

nR/CV
(3.5.9)
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Figure 3.5.1. An adiabat (solid curve) and four isotherms (dashed curves) for an ideal gas (n=0.0120mol, CV ,m=1.5R).

and take the exponential of both sides:
T2
T1
=�V1

V2
�

nR/CV
(3.5.10)

The final temperature is then given as a function of the initial and final volumes by

T2=T1�
V1
V2
�

nR/CV
(3.5.11)

(reversible adiabatic
expansion, ideal gas)

This relation shows that the temperature decreases during an adiabatic expansion and increases during an adiabatic
compression, as expected from expansion work on the internal energy.

To find the work during the adiabatic volume change, we can use the relation

w = ΔU=� dU=CV�T1

T2
dT

= CV (T2−T1)
(3.5.12)
(reversible adiabatic
expansion, ideal gas)

To express the final pressure as a function of the initial and final volumes, we make the substitutions T1= p1V1/nR
and T2= p2V2/nR in Eq. 3.5.11 and obtain

p2V2
nR =

p1V1
nR �

V1
V2
�

nR/CV
(3.5.13)

Solving this equation for p2, we obtain finally

p2= p1�
V1
V2
�
1+ nR

CV
(3.5.14)

(reversible adiabatic
expansion, ideal gas)

The solid curve in Fig. 3.5.1 on page 65 shows how the pressure of an ideal gas varies with volume during a reversible
adiabatic expansion or compression. This curve is an adiabat. The dashed curves in the figure are isotherms showing
how pressure changes with volume at constant temperature according to the equation of state p= n R T /V . In the
direction of increasing V (expansion), the adiabat crosses isotherms of progressively lower temperatures. This cooling
effect, of course, is due to the loss of energy by the gas as it does work on the surroundings without a compensating
flow of heat into the system.
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Figure 3.5.2. Indicator with paper-covered roll at left and pressure gauge at right. 3.5.4

3.5.4 Indicator diagrams
An indicator diagram (or pressure–volume diagram) is usually a plot of p as a function of V . The curve describes
the path of an expansion or compression process of a fluid that is essentially uniform. The area under the curve has the
same value as the integral ∫pdV , which is the negative of the reversible expansion work given by w=−∫pdV . For
example, the area under the solid curve of Fig. 3.5.1 between any two points on the curve is equal to −w for reversible
adiabatic expansion or compression. If the direction of the process is to the right along the path (expansion), the area
is positive and the work is negative; but if the direction is to the left (compression), the area is taken as negative and
the work is positive.

More generally, an indicator diagram can be a plot of a work coefficient or its negative as a function of the work
coordinate. For example, it could be a plot of the pressure pb at a moving boundary as a function of V . The area under
this curve is equal to ∫pb dV , the negative of expansion work in general (Eq. 3.4.13).

Historically, an indicator diagram was a diagram drawn by an ``indicator,'' an instrument invented by
James Watt in the late 1700s to monitor the performance of steam engines. The steam engine indicator
was a simple pressure gauge: a piston moving in a small secondary cylinder, with the steam pressure of
the main cylinder on one side of the piston and a compressed spring opposing this pressure on the other
side. A pointer attached to the small piston indicated the steam pressure. In later versions, the pointer
was replaced with a pencil moving along a paper-covered roll, which in turn was mechanically linked to
the piston of the main cylinder (see Fig. 3.5.2 on page 66). During each cycle of the engine, the pencil
moved back and forth along the length of the roll and the roll rotated in a reciprocating motion, causing
the pencil to trace a closed curve whose area was proportional to the net work performed by one cycle
of the engine.

3.5.5 Spontaneous adiabatic expansion or compression
Section 3.4.1 explained that during a rapid spontaneous expansion of the gas in the cylinder shown in Fig. 3.4.1,
the pressure pb exerted by the gas at the moving piston is less than the pressure at the stationary wall. Consequently
the work given by w=−∫pbdV is less negative for a spontaneous adiabatic expansion than for a reversible adiabatic
expansion with the same initial state and the same volume change.

During a rapid spontaneous compression, pb is greater than the pressure at the stationary wall. The work is positive
and greater for a spontaneous adiabatic compression than for a reversible adiabatic compression with the same initial
state and the same volume change.
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Figure 3.5.3. Free expansion into a vacuum.

These observations are summarized by the statement that, for an adiabatic expansion or compression with a given
change of the work coordinate, starting at a given initial equilibrium state, the work is algebraically smallest (least
positive or most negative) in the reversible limit. That is, in the reversible limit the surroundings do the least possible
work on the system and the system does the maximum possible work on the surroundings. This behavior will turn out
to be true of any adiabatic process of a closed system.

3.5.6 Free expansion of a gas into a vacuum

When we open the stopcock of the apparatus shown in Fig. 3.5.3 on page 67, the gas expands from the vessel at the left
into the evacuated vessel at the right. This process is called free expansion. The system is the gas. The surroundings
exert a contact force on the system only at the vessel walls, where there is no displacement. Thus, there is no work in
free expansion: đw=0.

If the free expansion is carried out adiabatically in a thermally-insulated apparatus, there is neither heat nor work
and therefore no change in the internal energy: ΔU =0. If the gas is ideal, its internal energy depends only on tem-
perature; thus the adiabatic free expansion of an ideal gas causes no temperature change.

3.6 Work in a Gravitational Field

Figure 3.6.1 on page 67 depicts a spherical body, such as a glass marble, immersed in a liquid or gas in the presence
of an external gravitational field. The vessel containing the fluid is stationary on a lab bench, and the local reference
frame for work is a stationary lab frame. The variable z is the body's elevation above the bottom of the vessel. All
displacements are parallel to the vertical z axis. From Eq. 3.1.1, the work is given by đw=Fz

sur dz where Fz
sur is the

upward component of the net contact force exerted by the surroundings on the system at the moving portion of the
boundary. There is also a downward gravitational force on the body, but as explained in Sec. huniniti, this force does
not contribute to Fz

sur.

Figure 3.6.1. Spherical body (dark gray) in a gravitational field. The arrows indicate the directions and magnitudes of contact and
gravitational forces exerted on the body.

(a) The body falls freely through a fluid.
(b) The body is lowered on a string through the fluid.
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Consider first the simple process in Fig. 3.6.1(a) in which the body falls freely through the fluid. This process is
clearly spontaneous. Here are two choices for the definition of the system:

• The system is the combination of the spherical body and the fluid. The system boundary is where the fluid
contacts the atmosphere and the vessel walls. Because there is no displacement of this boundary, no work is
being done on or by the system: đw=0. (We ignore expansion work caused by the small temperature increase.)
If the process is adiabatic, the first law tells us the system's internal energy remains constant: as the body loses
gravitational potential energy, the system gains an equal quantity of kinetic and thermal energy.

• The system is the body; the fluid is in the surroundings. The upward components of the forces exerted on the
body are (1) a gravitational force −m g, where m is the body's mass and g is the acceleration of free fall; (2)
a buoyant force3.6.1 Fbuoy=𝜌V ′ g, where 𝜌 is the fluid density and V ′ is the volume of the body; and (3) a
frictional drag force Ffric of opposite sign from the velocity v=dz/dt. As mentioned above, the gravitational
force is not included in Fz

sur. Therefore the gravitational work is given by

đw=Fz
sur dz=(Fbuoy+Ffric)dz (3.6.1)

and is negative because dz is negative: the body as it falls does work on the fluid.The positive quantity |Fbuoydz|
is the work of moving displaced fluid upward, and |Ffric dz| is the energy dissipated by friction to thermal
energy in the surroundings. This process has no reversible limit, because the rate of energy transfer cannot be
controlled from the surroundings and cannot be made to approach zero.

Next, consider the arrangement in Fig. 3.6.1(b) in which the body is suspended by a thin string. The string is in the
surroundings and provides a means for the surroundings to exert an upward contact force on the body. As before, there
are two appropriate choices for the system:

• The system includes both the body and the fluid, but not the string. The moving part of the boundary is at the
point where the string is attached to the body. The force exerted here by the string is an upward force , and
the gravitational work is given by đw=Fz

sur dz=Fstr dz. According to Newton's second law, the net force on
the body equals the product of its mass and acceleration: (−m g+Fbuoy+Ffric+Fstr)=m dv/dt. Solving this
equation for Fstr, we obtain

Fstr=(mg−Fbuoy −Ffric+mdv/dt) (3.6.2)

We can therefore express the work in the form

đw=Fstr dz=(mg−Fbuoy −Ffric+mdv/dt)dz (3.6.3)

This work can be positive or negative, depending on whether the body is being pulled up or lowered by the
string. The quantity (mdv/dt)dz is an infinitesimal change of the body's kinetic energy Ek,3.6.2 so that the inte-
gral ∫(mdv/dt)dz is equal toΔEk. The finite quantity of work in a process that starts and ends in equilibrium
states, so that ΔEk is zero, is therefore

w=�đw=(mg−Fbuoy)Δz −�Ffric dz (3.6.4)

The work has a reversible limit, because the string allows the velocity v to be controlled from the surroundings.
As v approaches zero from either direction, Ffric approaches zero and the work approaches the reversible limit
w=(m g − Fbuoy)Δ z. (If the fluid is a gas whose density is much smaller than the density of the body, Fbuoy
can be neglected in comparison with m g, and the reversible work can be written w=m gΔ z.) Ffric and dz
have opposite signs, so w for a given change of the work coordinate z is least positive or most negative in the
reversible limit.

3.6.1. The buoyant force is a consequence of the pressure gradient that exists in the fluid in a gravitational field (see Sec. 8.1.4). We ignore
this gradient when we treat the fluid as a uniform phase.

3.6.2. To prove this, we write m (dv/dt)dz=m (dz/dt)dv=mv dv=d�12 mv2�=dEk.
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Figure 3.7.1. Two systems with shaft work. The dashed rectangles indicate the system boundaries. System A has an internal weight,
cord, and pulley wheel in air; system B has a stirrer immersed in water.

• The system is the body only. In this case, Fz
sur is equal to (Fbuoy+Ffric+Fstr) which by substitution from Eq.

3.6.2 is (mg+mdv/dt). The work is then given by

đw=F sur dz=(mg+mdv/dt)dz (3.6.5)

For a process that begins and ends in equilibrium states, ΔEk is zero and the finite work is w=m gΔ z,unaf-
fected by the velocity v during the process. The expressions for infinitesimal and finite work in the reversible
limit are

đw=mgdz and w=mgΔz
(3.6.6)

(reversible gravitational
work of a body)

When we compare Eqs. 3.6.3 and 3.6.5, we see that the work when the system is the body is greater by the quantity
(Fbuoy+Ffric)dz than the work when the system is the combination of body and fluid, just as in the case of the freely-
falling body. The difference in the quantity of work is due to the different choices of the system boundary where
contact forces are exerted by the surroundings.

3.7 Shaft Work

Shaft work refers to energy transferred across the boundary by a rotating shaft.
The two systems shown in Fig. 3.7.1 on page 69 will be used to illustrate two different kinds of shaft work. Both

systems have a straight cylindrical shaft passing through the system boundary. Let 𝜗3.7.1 be the angle of rotation of
the shaft in radians, and 𝜔 be the angular velocity d𝜗/dt.

Tangential forces imposed on one of these shafts can create a torque 𝜏sys at the lower end within the system,
and a torque 𝜏sur at the upper end in the surroundings.3.7.2 The sign convention for a torque is that a positive value
corresponds to tangential forces in the rotational direction in which the shaft turns as 𝜗 increases.

The condition for𝜔 to be zero, or finite and constant (i.e., no angular acceleration), is that the algebraic sum of the
imposed torques be zero: 𝜏sys=−𝜏sur. Under these conditions of constant𝜔, the torque couple creates rotational shear
forces in the circular cross section of the shaft where it passes through the boundary. These shear forces are described
by an internal torque with the same magnitude as 𝜏sys and 𝜏sur. Applying the condition for zero angular acceleration
to just the part of the shaft within the system, we find that 𝜏sys is balanced by the internal torque 𝜏b exerted on this part
of the shaft by the part of the shaft in the surroundings: 𝜏b=−𝜏sys. The shaft work is then given by the formula

w=�
𝜗1

𝜗2
𝜏b d𝜗=−�

𝜗1

𝜗2
𝜏sys d𝜗

(3.7.1)
(shaft work, constant 𝜔)

3.7.1. The symbol ϑ is GREEK THETA SYMBOL at Unicode point U+03D1.
3.7.2. A torque is a moment of tangential force with dimensions of force times distance.
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Figure 3.7.2. Shaft work w for a fixed magnitude of shaft rotation Δ𝜗 as a function of the angular velocity 𝜔=d𝜗/dt. The open circles
indicate work in the limit of infinite slowness. (a) System A of Fig. 3.7.1. (b) System B of Fig. 3.7.1.

In system A of Fig. 3.7.1, when 𝜔 is zero the torque 𝜏sys is due to the tension in the cord from the weight of mass m,
and is finite: 𝜏sys=−m gr where r is the radius of the shaft at the point where the cord is attached. When 𝜔 is finite
and constant, frictional forces at the shaft and pulley bearings make 𝜏sys more negative than −mgr if𝜔 is positive, and
less negative than −mgr if 𝜔 is negative. Figure 3.7.2(a) on page 70 shows how the shaft work given by Eq. huniniti
depends on the angular velocity for a fixed value of |𝜗2−𝜗1|. The variation of w with 𝜔 is due to the frictional forces.
System A has finite, reversible shaft work in the limit of infinite slowness (𝜔→0) given by w=mg rΔ𝜗. The shaft
work is least positive or most negative in the reversible limit.

In contrast to system A, the shaft work in system B has no reversible limit, as discussed in the next section.

3.7.1 Stirring work
The shaft work done when a shaft turns a stirrer or paddle to agitate a liquid, as in system B of Fig. 3.7.1 on page 69,
is called stirring work.

In system B, when the angular velocity 𝜔 is zero and the water in which the stirrer is immersed is at rest, the
torques 𝜏sys and 𝜏b are both zero. When 𝜔 is finite and constant, the water is stirred in a turbulent manner and there
is a frictional drag force at the stirrer blades, as well as frictional forces at the shaft bearings. These forces make the
value of 𝜏sys have the opposite sign from 𝜔, increasing in magnitude the greater is the magnitude of 𝜔. As a result,
the stirring work for a fixed value of |𝜗2−𝜗1| depends on 𝜔 in the way shown in Fig. 3.7.2(b). The work is positive
for finite values of 𝜔 of either sign, and approaches zero in the limit of infinite slowness.

Stirring work is an example of dissipative work. Dissipative work is work that is positive for both positive and
negative changes of the work coordinate, and therefore cannot be carried out reversibly. Energy transferred into the
system by dissipative work is not recovered as work done on the surroundings when the work coordinate is reversed.
In the case of stirring work, if the shaft rotates in one direction work is done on the system; if the rotation direction is
reversed, still more work is done on the system. The energy transferred to the system by stirring work is converted by
friction within the system into the random motion of thermal energy: the energy is completely dissipated.

Because energy transferred to the system by dissipative work is converted to thermal energy, we could replace this
work with an equal quantity of positive heat and produce the same overall change. The replacement of stirring work
with heat was illustrated by experiment 3 on page 51.

The shaft rotation angle 𝜗, which is the work coordinate for stirring work, is a property of the system but is not
a state function, as we can see by the fact that the state of the system can be exactly the same for 𝜗=0 and 𝜗=2𝜋.
The work coordinate and work coefficient of work with a reversible limit are always state functions,whereas the work
coordinate of any kind of dissipative work is not a state function.

In system B of Fig. 3.7.1, there is in addition to the stirring work the possibility of expansion work given by
đw=−pdV . When we take both kinds of work into account, we must treat this system as having two work coordinates:
𝜗 for stirring work and V for expansion work. Only the expansion work can be carried out reversibly. The number of
independent variables in equilibrium states of this system is two, which we could choose as T and V . Thus, the number
of independent variables of the equilibrium states is one greater than the number of work coordinates for reversible
work, in agreement with the general rule given on page 63.
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Joule, James Prescott (1818–1889). James Joule drove the final nails into the coffin of the caloric theory by his experimental demonstra-
tions of the mechanical equivalent of heat.

Joule (pronounced like “jewel”) was born in Salford, near Manchester, England. His father was a prosperous brewery owner; after
his death, James and one of his brothers carried on the business until it was sold in 1854.

Joule was a sickly child with a minor spinal weakness. He was tutored at home, and at the age of 16 was a pupil of the atomic theory
advocate John Dalton.

As an adult, Joule was a political conservative and a member of the Church of England. He dressed plainly, was of a somewhat
nervous disposition, and was a poor speaker. He was shy and reserved unless with friends, had a strong sense of humor, and loved nature.

Joule never attended a university or had a university appointment, but as an “amateur” scientist and inventor he published over
100 papers (some of them jointly with collaborators) and received many honors. He invented arc welding and a mercury displacement
pump. He carried out investigations on electrical heating and, in collaboration with William Thomson, on the cooling accompanying the
expansion of a gas through a porous plug (the Joule--Thomson experiment). The joule, of course, is now the SI derived unit of energy.

Joule's best-known experiment was the determination of the mechanical equivalent of heat using a paddle wheel to agitate water (Sec.
3.7.2 and Prob. 3.3.11.10). He reported his results in 1845, and published a more refined measurement in 1850.3.7.6

In a note dated 1885 in his Collected Papers, Joule wrote:

It was in the year 1843 that I read a paper “On the Calorific Effects of Magneto-Electricity and the Mechanical Value
of Heat” to the Chemical Section of the British Association assembled at Cork. With the exception of some eminent
men ...the subject did not excite much general attention; so that when I brought it forward again at the meeting in 1847,
the chairman suggested that, as the business of the section pressed, I should not read my paper, but confine myself to a
short verbal description of my experiments. This I endeavoured to do, and discussion not being invited, the communication
would have passed without comment if a young man had not risen in the section, and by his intelligent observations
created a lively interest in the new theory. The young man was William Thomson, who had two years previously passed
the University of Cambridge with the highest honour, and is now probably the foremost scientific authority of the age.

The William Thomson mentioned in Joule's note later became Lord Kelvin. Thomson described introducing himself to Joule after
the 1847 meeting, which was in Oxford, as a result of which the two became collaborators and life-long friends. Thomson wrote:3.7.7

Joule's paper at the Oxford meeting made a great sensation. Faraday was there and was much struck with it, but did not
enter fully into the new views. It was many years after that before any of the scientific chiefs began to give their adhesion.

According to a biographer:3.7.8

His modesty was always notable. ‘I believe,’ he told his brother on 14 Sept. 1887, ‘I have done two or three little things,
but nothing to make a fuss about.’ During the later years of his life he received many distinctions both English and foreign.

3.7.2 The Joule paddle wheel
A good example of the quantitative measurement of stirring work is the set of experiments conducted by James Joule
in the 1840s to determine the “mechanical equivalent of heat.” In effect, he determined the quantity of dissipative
stirring work that could replace the heat needed for the same temperature increase.

Joule's apparatus contained the paddle wheel shown in Fig. 3.7.3 on page 72. It consisted of eight sets of metal
paddle arms attached to a shaft in a water-filled copper vessel. When the shaft rotated, the arms moved through
openings in four sets of stationary metal vanes fixed inside the vessel, and churned the water. The vanes prevented the
water from simply moving around in a circle. The result was turbulent motion (shearing or viscous flow) in the water
and an increase in the temperature of the entire assembly.
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Photo by Mirko Junge / CC BY-SA / cropped from original

(a) (b)

Figure 3.7.3. Joule paddle wheel.
(a) Joule's original paddle wheel on exhibit at the Science Museum, London.
(b) Cross-section elevation of paddle wheel and water in copper vessel. Dark shading: rotating shaft and paddle arms; light shading:

stationary vanes.

Figure 3.7.4. Joule's apparatus for measuring the mechanical equivalent of heat (redrawn from a figure in Ref. [72]).
Key: A�paddle wheel and vessel (see Fig. 3.7.3); B�wood thermal insulator; C�pin used to engage paddle wheel shaft to roller;

D�roller; E�crank used to wind up the weights; F, G�strings; H, I�pulley wheels; J, K�weights (round lead disks, viewed here
edge-on).

The complete apparatus is depicted in Fig. 3.7.4 on page 72. In use, two lead weights sank and caused the paddle
wheel to rotate. Joule evaluated the stirring work done on the system (the vessel, its contents, and the lid) from the
change of the vertical position h of the weights. To a first approximation, this work is the negative of the change of
the weights' potential energy: w=−mgΔh where m is the combined mass of the two weights. Joule made corrections
for the kinetic energy gained by the weights, the friction in the connecting strings and pulley bearings, the elasticity
of the strings, and the heat gain from the air surrounding the system.

A typical experiment performed by Joule is described in Prob. 3.3.11.10 on page huniniti. His results for the
mechanical equivalent of heat, based on 40 such experiments at average temperatures in the range 13 ∘C–16 ∘C and
expressed as the work needed to increase the temperature of one gram of water by one kelvin, was 4.165J. This value
is close to the modern value of 4.1855J for the “15 ∘C calorie,” the energy needed to raise the temperature of one gram
of water from 14.5 ∘C to 15.5 ∘C.3.7.9

3.7.9. The thermochemical calorie (cal), often used as an energy unit in the older literature, is defined as 4.184J. Thus 1kcal=4.184kJ.
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3.8 Electrical Work
The electric potential𝜙 at a point in space is defined as the work needed to reversibly move an infinitesimal test charge
from a position infinitely far from other charges to the point of interest, divided by the value of the test charge.The
electrical potential energy of a charge at this point is the product of 𝜙 and the charge.

3.8.1 Electrical work in a circuit
Electric current is usually conducted in an electrical circuit. Consider a thermodynamic system that is part of a circuit:
in a given time period electrons enter the system through one wire, and an equal number of electrons leave through a
second wire. To simplify the description, the wires are called the right conductor and the left conductor.

The electric potentials experienced by a electron in the right and left conductors are 𝜙R and 𝜙L, respectively. The
electron charge is −e, where e is the elementary charge (the charge of a proton). Thus the electrical potential energy of
an electron is −𝜙R e in the right conductor and −𝜙Le in the left conductor. The difference in the energies of an electron
in the two conductors is the difference in the electrical potential energies.

The sum of charges of a small number of electrons can be treated as an infinitesimal negative charge. During a
period of time in which an infinitesimal charge đQsys enters the system at the right conductor and an equal charge
leaves at the left conductor, the contribution of the electric current to the internal energy change is the energy differ-
ence (𝜙R đQsys −𝜙L đQsys)=(𝜙R −𝜙L)đQsys. (The notation is đQsys instead of dQsys, because Qsys is a path function.)
This internal energy change is called electrical work. Thus the general formula for an infinitesimal quantity of elec-
trical work when the system is part of an electrical circuit is

đwel=Δ𝜙đQsys
(3.8.1)

(electrical work in a circuit)

where Δ𝜙 is the electric potential difference defined by

Δ𝜙 =
def
𝜙R −𝜙L (3.8.2)

Note that in the expression (𝜙RđQsys −𝜙L đQsys) for the energy difference, the term 𝜙R đQsys does
not represent the energy transferred across the boundary at the right conductor, and −𝜙L đQsys is not
the energy transferred at the left conductor. These energies cannot be measured individually, because
they include not just the electrical potential energy but also the energy of the rest mass of the electrons.
The reason we can write Eq. 3.8.1 for the electrical work in a circuit is that equal numbers of electrons
enter and leave the system, so that the net energy transferred across the boundary depends only on the
difference of the electric potential energies. Because the number of electrons in the system remains
constant, we can treat the system as if it were closed.
Why should we regard the transfer of energy across the boundary by an electric current as a kind of
work? One justification for doing so is that the energy transfer is consistent with the interpretation of
work discussed on page 48: the only effect on the surroundings could be a change in the elevation of
an external weight. For example, the weight when it sinks could drive a generator in the surroundings
that does electrical work on the system, and electrical work done by the system could run an external
motor that raises the weight.

What is the meaning of Qsys in the differential đQsys? We define Qsys as the total cumulative charge, positive or
negative, that has entered the system at the right conductor since the beginning of the process: Qsys =

def
∫đQsys. Qsys is a

path function for charge, and đQsys is its inexact differential, analogous to q and đq for heat. Because the charge of an
electron is negative, đQsys is negative when electrons enter at the right conductor and positive when they leave there.

The electric current I is the rate at which charges pass a point in the circuit: I =đQsys/đt, where t is time. We take
I as negative if electrons enter at the right conductor and positive if electrons leave there. This relation provides an
alternative form of Eq. 3.8.1:

đwel= IΔ𝜙dt (3.8.3)
(electrical work in a circuit)
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Figure 3.8.1. System containing an electrical resistor immersed in a liquid. The dashed rectangle indicates the system boundary.

Equations 3.8.1 and 3.8.3 are general equations for electrical work in a system that is part of a circuit. The electric
potential difference Δ𝜙 which appears in these equations may have its source in the surroundings, as for electrical
heating with a resistor discussed in the next section, or in the system, as in the case of a galvanic cell (Sec. 3.8.3).

3.8.2 Electrical heating

Figure 3.8.1 on page 74 shows an electrical resistor immersed in a liquid. We will begin by defining the system to
include both the resistor and the liquid. An external voltage source provides an electric potential differenceΔ𝜙 across
the wires. When electrons flow in the circuit, the resistor becomes warmer due to the ohmic resistance of the resistor.
This phenomenon is variously called electrical heating, Joule heating, ohmic heating, or resistive heating. The heating
is caused by inelastic collisions of the moving electrons with the stationary atoms of the resistor, a type of friction. If
the resistor becomes warmer than the surrounding liquid, there will be a transfer of thermal energy from the resistor
to the liquid.

The electrical work performed on this system is given by the expressions đwel=Δ𝜙đQsys and đwel= IΔ𝜙dt (Eqs.
3.8.1 and 3.8.3). The portion of the electrical circuit inside the system has an electric resistance given by Rel=Δ𝜙/I
(Ohm's law). Making the substitutionΔ𝜙=IRel in the work expressions gives two new expressions for electrical work
in this system:

đwel= IRel đQsys (3.8.4)

đwel= I2Reldt (3.8.5)

The integrated form of Eq. 3.8.4 when I and Rel are constant is wel= IRelQsys. When the source of the electric potential
difference is in the surroundings, as it is here, I and Qsys have the same sign, so wel is positive for finite current and
zero when there is no current. Figure 3.8.2 on page 74 shows graphically how the work of electrical heating is positive
for both positive and negative changes of the work coordinate Qsys and vanishes as I , the rate of change of the work
coordinate, approaches zero. These are characteristic of irreversible dissipative work (page 70). Note the resemblance
of Fig. 3.8.2 to Fig. 3.7.2(b) on page 70 for dissipative stirring work—they are the same graphs with different labels.

Figure 3.8.2. Work of electrical heating with a fixed magnitude of Qsys as a function of the electric current I =đQsys/dt. The open circle
indicates the limit of infinite slowness.
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Figure 3.8.3. Galvanic cell and external electrical resistor.
(a) Open circuit with isolated cell in an equilibrium state.
(b) Closed circuit.

Suppose we redefine the system to be only the liquid. In this case, electric current passes through the resistor
but not through the system boundary. There is no electrical work, and we must classify energy transfer between the
resistor and the liquid as heat.

3.8.3 Electrical work with a galvanic cell

A galvanic cell is an electrochemical system that, when isolated, exhibits an electric potential difference between the
two terminals at the system boundary. The potential difference has its source at the interfaces between phases within
the cell.

Consider the combination of galvanic cell and electrical resistor in Fig. 3.8.3 on page 75, and let the system be the
cell. When an electric current passes through the cell in either direction, a cell reaction takes place in one direction or
the other.

In a manner similar to the labeling of the conductors of a circuit, the cell terminals are called the right terminal and
the left terminal. The cell potential Ecell is the electric potential difference between the terminals, and is defined by

E cell =
def
𝜙R −𝜙L (3.8.6)

When the cell is in an isolated zero-current equilibrium state, as in Fig. 3.8.3(a), the cell potential is the equilibrium
cell potential Ecell,eq. When the cell is part of an electrical circuit with an electric current passing through the cell, as
in Fig. 3.8.3(b), Ecell is different from Ecell,eq on account of the internal resistance Rcell of the cell:

E=Ecell,eq+ IRcell (3.8.7)

The sign of the current I is negative when electrons enter the cell at the right terminal, and positive when electrons
leave there.

In the circuit shown in Fig. 3.8.3(b), the cell does electrical work on the resistor in the surroundings. The energy
for this work comes from the cell reaction. The formula for the electrical work is given by Eq. 3.8.1 withΔ𝜙 replaced
by Ecell:

đwel=Ecell đQsys (3.8.8)

The figure shows Ecell as positive and đQsys as negative, so for this arrangement đwel is negative.
When current passes through the cell, the work done is irreversible because the internal resistance causes energy

dissipation. We can make this work approach a finite reversible limit by replacing the external resistor shown in Fig.
3.8.3(b) with an adjustable voltage source that we can use to control the cell potential Ecell and the current I . According
to Eq. 3.8.7, Ecell is greater than Ecell,eq when I is positive, and is less than Ecell,eq when I is negative. This behavior is
shown graphically in Fig. 3.8.4 on page 76.
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Figure 3.8.4. Electrical work of a galvanic cell for a fixed magnitude of Qsys as a function of the electric current I = đQsys/dt. Open
circles: reversible limits.

In the limit as the electric current approaches zero from either direction and the external adjustable voltage
approaches Ecell,eq, the electrical work approaches a reversible limit given by

đwel,rev=Ecell,eq đQsys (3.8.9)

Note that the electrical work is the least positive or most negative in the reversible limit.
Thus, unlike the dissipative work of stirring and electrical heating, electrical work with a galvanic cell has a

nonzero reversible limit, as reflected by the difference in the appearance of Fig. 3.8.4 compared to Figs. 3.7.2 and
3.8.2. During irreversible electrical work of a galvanic cell, there is only partial dissipation of energy within the cell:
the energy transferred across the boundary by the work can be partially recovered by returning the work coordinate
Qsys to its initial value.

On page huniniti the observation was made that the work coordinate of work with a reversible limit is
always a state function. Electrical work with a galvanic cell does not contradict this statement, because
the work coordinate Qsys is proportional to the extent of the cell reaction, a state function.

The thermodynamics of galvanic cells will be treated in detail in Chap. 14.

3.9 Irreversible Work and Internal Friction
Consider an irreversible adiabatic process of a closed system in which a work coordinate X changes at a finite rate
along the path, starting and ending with equilibrium states. For a given initial state and a given change ΔX, the work
is found to be less positive or more negative the more slowly is the rate of change of X. The work is least positive or
most negative in the limit of infinite slowness—that is, the least work needs to be done on the system, or the most work
can be done by the system on the surroundings. This minimal work principle is illustrated in Sec. 3.5.5 for expansion
work, Sec. 3.6 for work in a gravitational field, and Sec. 3.8.3 for electrical work with a galvanic cell.

Let wirr be the work during an irreversible adiabatic process occurring at a finite rate, and w0 be the adiabatic work
for the same initial state and the same value of ΔX in the limit of infinite slowness. According to the minimal work
principle, the difference wirr−w0 is positive. w0 is the reversible work if the work has a reversible limit: compare Figs.
3.7.2(a) and 3.7.2(b) for shaft work with and without a reversible limit, respectively; also Figs. 3.8.2 and 3.8.4 for
electrical work without and with a reversible limit.

Conceptually, we can attribute the positive value of wirr − w0 to internal friction that dissipates other forms of
energy into thermal energy within the system. Internal friction is not involved when, for example, a temperature
gradient causes heat to flow spontaneously across the system boundary, or an irreversible chemical reaction takes place
spontaneously in a homogeneous phase. Nor is internal friction necessarily involved when positive work increases the
thermal energy: during an infinitely slow adiabatic compression of a gas, the temperature and thermal energy increase
but internal friction is absent—the process is reversible.

During a process with internal friction, energy dissipation can be either partial or complete. Dissipative work, such
as the stirring work and electrical heating described in Sec. 3.7.1 and Sec. 3.8.2, is irreversible work with complete
energy dissipation and no reversible limit. The final equilibrium state of an adiabatic process with dissipative work can
also be reached by a path in which positive heat replaces the dissipative work. This is a special case of the minimal
work principle.
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Figure 3.9.1. Cylinder and piston with internal sliding friction. The dashed rectangle indicates the system boundary. P�piston;
R�internal rod attached to the piston; B�bushing fixed inside the cylinder. A fixed amount of gas fills the remaining space inside
the cylinder.

As a model for work with partial energy dissipation, consider the gas-filled cylinder-and-piston device depicted
in Fig. 3.9.1 on page 77. This device has an obvious source of internal friction in the form of a rod sliding through a
bushing. The system consists of the contents of the cylinder to the left of the piston, including the gas, the rod, and the
bushing; the piston and cylinder wall are in the surroundings.

From Eq. 3.1.2, the energy transferred as work across the boundary of this system is

w=−�
x1

x2
F sys dx (3.9.1)

where x is the piston position and F sys is the component in the direction of increasing x of the force exerted by the
system on the surroundings at the moving boundary.

For convenience, we let V be the volume of the gas rather than that of the entire system. The relation between
changes of V and x is dV =As dx where As is the cross-section area of the cylinder. We also define psys to be the total
force per unit area exerted by the system: psys=F sys/As. With V replacing x as the work coordinate, Eq. 3.9.1 becomes

w=−�
V1

V2
(F sys/As)dV =−�

V1

V2
psys dV (3.9.2)

Equation 3.9.2 shows that a plot of psys as a function of V is an indicator diagram (Sec. 3.5.4), and that the work is
equal to the negative of the area under the curve of this plot.

We can write the force F sys as the sum of two contributions:3.9.1

F sys= pAs+Ffric (3.9.3)

Here p is the gas pressure, and Ffric is the force exerted on the rod due to internal friction with sign opposite to that of
the piston velocity dx/dt. Substitution of this expression for F sys in Eq. 3.9.2 gives

w=−�
V1

V2
pdV −�

V1

V2
(Ffric/As)dV (3.9.4)

The first term on the right is the work of expanding or compressing the gas. The second term is the frictional work:
wfric=−∫(Ffric/As)dV . The frictional work is positive or zero, and represents the energy dissipated within the system
by internal sliding friction.

The motion of the piston is controlled by an external force applied to the right face of the piston. The internal
friction at the bushing can be either lubricated friction or dry friction.

If the contact between the rod and bushing is lubricated, a film of fluid lubricant separates the two solid surfaces
and prevents them from being in direct contact. When the rod is in motion, the adjacent fluid layer moves with it, and
the layer next to the bushing is stationary. Adjacent layers within the film move relative to one another. The result
is shear stress (page huniniti) and a frictional force exerted on the moving rod. The frictional force depends on the
lubricant viscosity, the area of the film, and the velocity of the rod. As the rod velocity approaches zero, the frictional
force also approaches zero.

3.9.1. This equation assumes the gas pressure is uniform and a term for the acceleration of the rod is negligible.
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Figure 3.9.2. Indicator diagrams for the system of Fig. 3.9.1 with internal lubricated friction.
Solid curves: psys for irreversible adiabatic volume changes at finite rates in the directions indicated by the arrows.
Dashed curves: psys= p along a reversible adiabat.
Open circles: initial and final equilibrium states.
(a) Adiabatic expansion.
(b) Adiabatic compression.

In the limit of infinite slowness Ffric and wfric vanish, and the process is reversible with expansion work given by
w=−∫pdV .

The situation is different when the piston moves at an appreciable finite rate. The frictional work wfric is then
positive. As a result, the irreversible work of expansion is less negative than the reversible work for the same volume
increase, and the irreversible work of compression is more positive than the reversible work for the same volume
decrease. These effects of piston velocity on the work are consistent with the minimal work principle.

The piston velocity, besides affecting the frictional force on the rod, has an effect on the force exerted
by the gas on the piston as described in Sec. 3.4.1. At large finite velocities, this latter effect tends to
further decrease F sys during expansion and increase it during compression, and so is an additional con-
tribution to internal friction. If turbulent flow is present within the system, that is also a contribution.

Figure 3.9.2 on page 78 shows indicator diagrams for adiabatic expansion and compression with internal lubri-
cated friction. The solid curves are for irreversible processes at a constant piston velocity, and the dashed curves are
for reversible processes with the same initial states as the irreversible processes. The areas under the curves confirm
that the work for expansion is less negative along the irreversible path than along the reversible path, and that for
compression the work is more positive along the irreversible path than along the reversible path.

Because of these differences in work, the final states of the irreversible processes have greater internal energies and
higher temperatures and pressures than the final states of the reversible processes with the same volume change, as can
be seen from the positions on the indicator diagrams of the points for the final equilibrium states. The overall change of
state during the irreversible expansion or compression is the same for a path in which the reversible adiabatic volume
change is followed by positive heat at constant volume. Since ΔU must be the same for both paths, the required heat
equals wirr −wrev. This is not the value of the frictional work, because the thermal energy released by frictional work
increases the gas pressure, making wirr−wrev less than wfric for expansion and greater than wfric for compression. There
seems to be no general method by which the energy dissipated by internal friction can be evaluated, and it would be
even more difficult for an irreversible process with both work and heat.
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Figure 3.9.3. Adiabatic expansion work with internal lubricated friction for a fixed magnitude of ΔV , as a function of the average rate
of volume change. The open circles indicate the reversible limits.

Figure 3.9.3 on page 79 shows the effect of the rate of change of the volume on the adiabatic work for a fixed
magnitude of the volume change. Note that the work of expansion and the work of compression have opposite signs,
and that it is only in the reversible limit that they have the same magnitude. The figure resembles Fig. 3.8.4 for
electrical work of a galvanic cell with the horizontal axis reversed, and is typical of irreversible work with partial
energy dissipation.

If the rod and bushing shown in Fig. 3.9.1 are not lubricated, so that their surfaces are in direct contact, the
frictional force does not approach zero in the limit of zero piston velocity, unlike the behavior of lubricated friction.
This dry friction is due to the roughness, on a microscopic scale, of the contacting surfaces. The frictional force of
dry friction is typically independent of the area of contact and the rate at which the solid surfaces slide past one another.

The curves on indicator diagrams for adiabatic expansion and compression with internal dry friction are similar to
the solid curves in Figs. 3.9.2(a) and 3.9.2(b), but their positions, unlike the curves for lubricated friction, change little
as the average rate of volume change approaches zero. In the limit of infinite slowness, the work for a fixed magnitude
of ΔV is negative for expansion and positive for compression, but the expansion work is smaller in magnitude than
the compression work. The internal dry friction prevents the expansion process from being reversed as a compression
process, regardless of piston velocity, and these processes are therefore irreversible.

3.10 Reversible and Irreversible Processes: Generalities

This section summarizes some general characteristics of processes in closed systems. Some of these statements
will be needed to develop aspects of the second law in Chap. 4.
• Infinitesimal quantities of work during a process are calculated from an expression of the form đw=∑i YidXi,

where Xi is the work coordinate of kind of work i and Yi is the conjugate work coefficient.
• The work coefficients and work coordinates of reversible work are state functions.
• Energy transferred across the boundary by work in a reversible process is fully recovered as work of the

opposite sign in the reverse reversible process. It follows from the first law that heat is also fully recovered in
the reverse process.

• When work occurs irreversibly at a finite rate, there is partial or complete dissipation of energy. The dissipation
results in a change that could also be accomplished with positive heat, such as an increase of thermal energy
within the system.

• Dissipative work is positive irreversible work with complete energy dissipation. The work coordinate for this
type of work is not a state function. Examples are stirring work (Sec. 3.7.1) and the work of electrical heating
(Sec. 3.8.2).

• If a process is carried out adiabatically and has a reversible limit, the work for a given initial equilibrium state
and a given change in the work coordinate is least positive or most negative in the reversible limit.The depen-
dence of work on the rate of change of the work coordinate is shown graphically for examples of dissipative
work in Figs. 3.7.2(b) and 3.8.2, and for examples of work with partial energy dissipation in Figs. 3.7.2(a),
3.8.4, and 3.9.3.
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Kind Formula Definitions

Linear mechanical work đw=Fx
sur dx

Fx
sur = x-component of force exerted

by surroundings
dx = displacement in x direction

Shaft work đw=𝜏b d𝜗 𝜏b = internal torque at boundary
𝜗 = angle of rotation

Expansion work đw=−pb dV pb= average pressure at moving
boundary

Surface work of a flat surface đw=𝛾dAs 𝛾= surface tension, As= surface area

Stretching or compression
of a rod or spring đw=F dl

F = stress (positive for tension,
negative for compression)

l = length

Gravitational work đw=mgdh m = mass, h= height
g = acceleration of free fall

Electrical work in a circuit đw=Δ𝜙đQsys
Δ𝜙 = electric potential difference

= 𝜙R −𝜙L

Electric polarization đw=𝑬•d𝒑 𝑬 = electric field strength
𝒑 = electric dipole moment of system

Magnetization đw=𝑩•d𝒎 𝑩 = magnetic flux density
𝒎 = magnetic dipole moment of system

Table 3.10.1. Some kinds of work

• The number of independent variables needed to describe equilibrium states of a closed system is one greater
than the number of independent work coordinates for reversible work.3.10.1 Thus, we could choose the inde-
pendent variables to be each of the work coordinates and in addition either the temperature or the internal
energy.3.10.2 The number of independent variables needed to describe a nonequilibrium state is greater (often
much greater) than this.

Table 3.10.1 on page 80 lists general formulas for various kinds of work, including those that were described in detail
in Secs. 3.4–3.8.

3.10.1. If the system has internal adiabatic partitions that allow different phases to have different temperatures in equilibrium states, then the
number of independent variables is equal to the number of work coordinates plus the number of independent temperatures.

3.10.2. There may be exceptions to this statement in special cases. For example, along the triple line of a pure substance the values of V and
T , or of V and U, are not sufficient to determine the amounts in each of the three possible phases.
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3.11 Problems

Problem 3.11.1. Assume you have a metal spring that obeys Hooke's law: F=c (l − l0), where F is the force exerted on the spring of length l,
l0 is the length of the unstressed spring, and c is the spring constant. Find an expression for the work done on the spring when you reversibly
compress it from length l0 to a shorter length l′.

Problem 3.11.2. The apparatus shown in Fig. 3.11.1 on page 82 consists of fixed amounts of water and air and an incompressible solid glass
sphere (a marble), all enclosed in a rigid vessel resting on a lab bench. Assume the marble has an adiabatic outer layer so that its temperature
cannot change, and that the walls of the vessel are also adiabatic.

Initially the marble is suspended above the water. When released, it falls through the air into the water and comes to rest at the bottom of
the vessel, causing the water and air (but not the marble) to become slightly warmer. The process is complete when the system returns to an
equilibrium state. The system energy change during this process depends on the frame of reference and on how the system is defined. ΔEsys
is the energy change in a lab frame, and ΔU is the energy change in a specified local frame.

For each of the following definitions of the system, give the sign (positive, negative, or zero) of both ΔEsys and ΔU, and state your
reasoning. Take the local frame for each system to be a center-of-mass frame.

a) The system is the marble.

b) The system is the combination of water and air.

c) The system is the combination of water, air, and marble.

Problem 3.11.3. Figure 3.11.2 on page 82 shows the initial state of an apparatus consisting of an ideal gas in a bulb, a stopcock, a porous plug,
and a cylinder containing a frictionless piston. The walls are diathermal, and the surroundings are at a constant temperature of 300.0K and a
constant pressure of 1.00bar.

When the stopcock is opened, the gas diffuses slowly through the porous plug, and the piston moves slowly to the right. The process
ends when the pressures are equalized and the piston stops moving. The system is the gas. Assume that during the process the temperature
throughout the system differs only infinitesimally from 300.0K and the pressure on both sides of the piston differs only infinitesimally from
1.00bar.

a) Which of these terms correctly describes the process: isothermal, isobaric, isochoric, reversible, irreversible?

b) Calculate q and w.

Figure 3.11.1.

Figure 3.11.2.
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Figure 3.11.3.

Problem 3.11.4. Consider a horizontal cylinder-and-piston device similar to the one shown in Fig. 3.4.1 on page 59. The piston has mass
m. The cylinder wall is diathermal and is in thermal contact with a heat reservoir of temperature . The system is an amount n of an ideal gas
confined in the cylinder by the piston.

The initial state of the system is an equilibrium state described by p1 and T =Text. There is a constant external pressure pext, equal to twice
p1, that supplies a constant external force on the piston. When the piston is released, it begins to move to the left to compress the gas. Make
the idealized assumptions that (1) the piston moves with negligible friction; and (2) the gas remains practically uniform (because the piston is
massive and its motion is slow) and has a practically constant temperature T =Text (because temperature equilibration is rapid).

a) Describe the resulting process.

b) Describe how you could calculate w and q during the period needed for the piston velocity to become zero again.

c) Calculate w and q during this period for 0.500mol gas at 300K.

Problem 3.11.5. This problem is designed to test the assertion on page 49 that for typical thermodynamic processes in which the elevation
of the center of mass changes, it is usually a good approximation to set w equal to wlab. The cylinder shown in Fig. 3.11.3 on page 83 has a
vertical orientation, so the elevation of the center of mass of the gas confined by the piston changes as the piston slides up or down. The system
is the gas. Assume the gas is nitrogen (M =28.0gmol−1) at 300K, and initially the vertical length l of the gas column is one meter. Treat
the nitrogen as an ideal gas, use a center-of-mass local frame, and take the center of mass to be at the midpoint of the gas column. Find the
difference between the values of w and wlab, expressed as a percentage of w, when the gas is expanded reversibly and isothermally to twice
its initial volume.

Problem 3.11.6. Figure 3.11.4 on page 84 shows an ideal gas confined by a frictionless piston in a vertical cylinder. The system is the gas,
and the boundary is adiabatic. The downward force on the piston can be varied by changing the weight on top of it.

a) Show that when the system is in an equilibrium state, the gas pressure is given by p=mgh/V where m is the combined mass of the
piston and weight, g is the acceleration of free fall, and h is the elevation of the piston shown in the figure.

b) Initially the combined mass of the piston and weight is m1, the piston is at height h1, and the system is in an equilibrium state with
conditions p1 and V1. The initial temperature is T1= p1V1/n R. Suppose that an additional weight is suddenly placed on the piston,
so that m increases from m1 to m2, causing the piston to sink and the gas to be compressed adiabatically and spontaneously. Pressure
gradients in the gas, a form of friction, eventually cause the piston to come to rest at a final position h2. Find the final volume, V2, as
a function of p1, p2, V1, and CV. (Assume that the heat capacity of the gas, CV, is independent of temperature.) Hint: The potential
energy of the surroundings changes by m2gΔh; since the kinetic energy of the piston and weights is zero at the beginning and end of
the process, and the boundary is adiabatic, the internal energy of the gas must change by −m2gΔh=−m2gΔV /As=−p2ΔV .

c) It might seem that by making the weight placed on the piston sufficiently large, V2 could be made as close to zero as desired. Actually,
however, this is not the case. Find expressions for V2 and T2 in the limit as m2 approaches infinity, and evaluate V2/V1 in this limit if
the heat capacity is CV=(3/2)nR (the value for an ideal monatomic gas at room temperature).
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Figure 3.11.4.

Figure 3.11.5.

Problem 3.11.7. The solid curve in Fig. 3.5.1 on page 65 shows the path of a reversible adiabatic expansion or compression of a fixed amount
of an ideal gas. Information about the gas is given in the figure caption. For compression along this path, starting at V = 0.3000 dm3 and
T =300.0K and ending at V =0.1000dm3, find the final temperature to 0.1K and the work.

Problem 3.11.8. Figure 3.11.5 on page 84 shows the initial state of an apparatus containing an ideal gas. When the stopcock is opened, gas
passes into the evacuated vessel. The system is the gas. Find q, w, and ΔU under the following conditions.

a) The vessels have adiabatic walls.

b) The vessels have diathermal walls in thermal contact with a water bath maintained at 300.K, and the final temperature in both vessels
is T =300.K.

Problem 3.11.9. Consider a reversible process in which the shaft of system A in Fig. 3.7.1 makes one revolution in the direction of increasing
𝜗. Show that the gravitational work of the weight is the same as the shaft work given by w=mgrΔ𝜗.

Problem 3.11.10. This problem guides you through a calculation of the mechanical equivalent of heat using data from one of James Joule's
experiments with a paddle wheel apparatus (see Sec. 3.7.2). The experimental data are collected in Table 3.11.1 on page 85.

In each of his experiments, Joule allowed the weights of the apparatus to sink to the floor twenty times from a height of about 1.6m, using a
crank to raise the weights before each descent (see Fig. 3.7.4 on page 72). The paddle wheel was engaged to the weights through the roller and
strings only while the weights descended. Each descent took about 26 seconds, and the entire experiment lasted 35 minutes. Joule measured
the water temperature with a sensitive mercury-in-glass thermometer at both the start and finish of the experiment.

For the purposes of the calculations, define the system to be the combination of the vessel, its contents (including the paddle wheel and
water), and its lid. All energies are measured in a lab frame. Ignore the small quantity of expansion work occurring in the experiment. It helps
conceptually to think of the cellar room in which Joule set up his apparatus as being effectively isolated from the rest of the universe; then the
only surroundings you need to consider for the calculations are the part of the room outside the system.

a) Calculate the change of the gravitational potential energy Ep of the lead weights during each of the descents. For the acceleration of
free fall at Manchester, England (where Joule carried out the experiment) use the value g=9.813m⋅s−2. This energy change represents
a decrease in the energy of the surroundings, and would be equal in magnitude and opposite in sign to the stirring work done on the
system if there were no other changes in the surroundings.

b) Calculate the kinetic energy Ek of the descending weights just before they reached the floor. This represents an increase in the energy
of the surroundings. (This energy was dissipated into thermal energy in the surroundings when the weights came to rest on the floor.)
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Properties of the paddle wheel apparatus:
combined mass of the two lead weights ................................. 26.3182kg
mass of water in vessel ........................................................... 6.04118kg
mass of water with same heat capacity

as paddle wheel, vessel, and lid3.11.1. .................................... 0.27478kg
Measurements during the experiment:

number of times weights were wound up and released .......... 20
change of elevation of weights during each descent............... −1.5898m
final downward velocity of weights during descent ............... 0.0615m⋅s−1

initial temperature in vessel .................................................... 288.829K
final temperature in vessel ...................................................... 289.148 K
mean air temperature .............................................................. 289.228K

Table 3.11.1. Data for Problem 3.11.10. The values are from Joule's 1850 paper3.11.2. and have been converted to SI units.
3.11.2 Ref. [72], p. 67, experiment 5
3.11.1 Calculated from the masses and specific heat capacities of the materials.

c) Joule found that during each descent of the weights, friction in the strings and pulleys decreased the quantity of work performed on
the system by 2.87 J. This quantity represents an increase in the thermal energy of the surroundings. Joule also considered the slight
stretching of the strings while the weights were suspended from them: when the weights came to rest on the floor, the tension was
relieved and the potential energy of the strings changed by −1.15J. Find the total change in the energy of the surroundings during the
entire experiment from all the effects described to this point. Keep in mind that the weights descended 20 times during the experiment.

d) Data in Table 3.11.1 show that change of the temperature of the system during the experiment was

ΔT =(289.148−288.829)K=+0.319K

The paddle wheel vessel had no thermal insulation, and the air temperature was slighter warmer, so during the experiment there was
a transfer of some heat into the system. From a correction procedure described by Joule, the temperature change that would have
occurred if the vessel had been insulated is estimated to be +0.317K.

Use this information together with your results from part (c) to evaluate the work needed to increase the temperature of one gram
of water by one kelvin. This is the “mechanical equivalent of heat” at the average temperature of the system during the experiment.
(As mentioned on p. 72, Joule obtained the value 4.165 J based on all 40 of his experiments.)

Problem 3.11.11. Refer to the apparatus depicted in Fig. 3.1.1 on page 50. Suppose the mass of the external weight is m =1.50 kg, the
resistance of the electrical resistor is Rel=5.50kΩ, and the acceleration of free fall is g=9.81m⋅s2. For how long a period of time will the
external cell need to operate, providing an electric potential difference |Δ𝜙|=1.30V, to cause the same change in the state of the system as
the change when the weight sinks 20.0cm without electrical work? Assume both processes occur adiabatically.

3.11 PROBLEMS 85

85





Chapter 4

The Second Law

The second law of thermodynamics concerns entropy and the spontaneity of processes. This chapter discusses theo-
retical aspects and practical applications.

We have seen that the first law allows us to set up a balance sheet for energy changes during a process, but says
nothing about why some processes occur spontaneously and others are impossible. The laws of physics explain some
spontaneous changes. For instance, unbalanced forces on a body cause acceleration, and a temperature gradient at a
diathermal boundary causes heat transfer. But how can we predict whether a phase change, a transfer of solute from
one solution phase to another, or a chemical reaction will occur spontaneously under the existing conditions? The
second law provides the principle we need to answer these and other questions—a general criterion for spontaneity in
a closed system.

4.1 Types of Processes

Any conceivable process is either spontaneous, reversible, or impossible. These three possibilities were discussed in
Sec. 3.2 and are summarized below.

• A spontaneous process is a real process that can actually take place in a finite time period.

• A reversible process is an imaginary, idealized process in which the system passes through a continuous
sequence of equilibrium states. This sequence of states can be approached by a spontaneous process in the
limit of infinite slowness, and so also can the reverse sequence of states.

• An impossibleprocess is a change that cannot occur under the existing conditions, even in a limiting sense.
It is also known as an unnatural or disallowed process. Sometimes it is useful to describe a hypothetical
impossible process that we can imagine but that does not occur in reality. The second law of thermodynamics
will presently be introduced with two such impossible processes.

The spontaneous processes relevant to chemistry are irreversible. An irreversible process is a spontaneous process
whose reverse is an impossible process.

There is also the special category, of little interest to chemists, of purely mechanical processes. A purely mechan-
ical process is a spontaneous process whose reverse is also spontaneous.

It is true that reversible processes and purely mechanical processes are idealized processes that cannot occur in
practice, but a spontaneous process can be practically reversible if carried out sufficiently slowly, or practically purely
mechanical if friction and temperature gradients are negligible. In that sense, they are not impossible processes. This
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Figure 4.2.1. Two impossible processes in isolated systems.
(a) Heat transfer from a cool to a warm body.
(b) The same, with a device that operates in a cycle.

book will reserve the term “impossible” for a process that cannot be approached by any spontaneous process, no matter
how slowly or how carefully it is carried out.

4.2 Statements of the Second Law

A description of the mathematical statement of the second law is given in the box below.

dS= đq
Tb

for a reversible change of a closed system;

dS> đq
Tb

for an irreversible change of a closed system;
where S is an extensive state function, the entropy, and đq is an infinitesimal quantity of energy transferred by

heat at a portion of the boundary where the thermodynamic temperature is Tb.

The box includes three distinct parts. First, there is the assertion that a property called entropy, S, is an extensive
state function. Second, there is an equation for calculating the entropy change of a closed system during a reversible
change of state: dS is equal to đq/Tb.4.2.1 Third, there is a criterion for spontaneity: dS is greater than đq/Tb during an
irreversible change of state. The temperature Tb is a thermodynamic temperature, which will be defined in Sec. 4.3.4.

Each of the three parts is an essential component of the second law, but is somewhat abstract. What funda-
mental principle, based on experimental observation, may we take as the starting point to obtain them? Two principles
are available, one associated with Clausius and the other with Kelvin and Planck. Both principles are equivalent
statements of the second law. Each asserts that a certain kind of process is impossible, in agreement with common
experience.

Consider the process depicted in Fig. 4.2.1(a) 4.2.1 on page 88.
The system is isolated, and consists of a cool body in thermal contact with a warm body. During the process,

energy is transferred by means of heat from the cool to the warm body, causing the temperature of the cool body to
decrease and that of the warm body to increase. Of course, this process is impossible; we never observe heat flow
from a cooler to a warmer body. (In contrast, the reverse process, heat transfer from the warmer to the cooler body,

4.2.1. During a reversible process, the temperature usually has the same value T throughout the system, in which case we can simply write
dS=đq/T . The equation dS=đq/Tb allows for the possibility that in an equilibrium state the system has phases of different temperatures separated
by internal adiabatic partitions.
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Figure 4.2.2. Two more impossible processes.
(a) A weight rises as a liquid becomes cooler.
(b) The same, with a heat engine.

is spontaneous and irreversible.) Note that this impossible process does not violate the first law, because energy is
conserved.

Suppose we attempt to bring about the same changes in the two bodies by interposing a device of some sort
between them, as depicted in Fig. 4.2.1(b). Here is how we would like the device to operate in the isolated system:
Heat should flow from the cool body to the device, an equal quantity of heat should flow from the device to the warm
body, and the final state of the device should be the same as its initial state. In other words, we want the device to
transfer energy quantitatively by means of heat from the cool body to the warm body while operating in a cycle. If the
device could do this, there would be no limit to the quantity of energy that could be transferred by heat, because after
each cycle the device would be ready to repeat the process. But experience shows that it is impossible to build such a
device! The proposed process of Fig. 4.2.1(b) is impossible even in the limit of infinite slowness.

The general principle was expressed by Rudolph Clausius4.2.2 in the words: “Heat can never pass from a colder to
a warmer body without some other change, connected therewith, occurring at the same time.” For use in the derivation
to follow, the statement can be reworded as follows.

The Clausius statement of the second law: It is impossible to construct a device whose only effect, when it operates
in a cycle, is heat transfer from a body to the device and the transfer by heat of an equal quantity of energy from the
device to a warmer body.

Next consider the impossible process shown in Fig. 4.2.2(a) 4.2.2 on page 89.

A Joule paddle wheel rotates in a container of water as a weight rises. As the weight gains potential energy, the
water loses thermal energy and its temperature decreases. Energy is conserved, so there is no violation of the first law.
This process is just the reverse of the Joule paddle-wheel experiment (Sec. 3.7.2) and its impossibility was discussed
on page 56.

We might again attempt to use some sort of device operating in a cycle to accomplish the same overall process,
as in Fig. 4.2.2(b). A closed system that operates in a cycle and does net work on the surroundings is called a heat
engine. The heat engine shown in Fig. 4.2.2(b) is a special one. During one cycle, a quantity of energy is transferred
by heat from a heat reservoir to the engine, and the engine performs an equal quantity of work on a weight, causing
it to rise. At the end of the cycle, the engine has returned to its initial state. This would be a very desirable engine,
because it could convert thermal energy into an equal quantity of useful mechanical work with no other effect on
the surroundings.4.2.3 The engine could power a ship; it would use the ocean as a heat reservoir and require no fuel.
Unfortunately, it is impossible to construct such a heat engine!

4.2.2. Ref. [28], page 117.
4.2.3. This hypothetical process is called “perpetual motion of the second kind.”
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The principle was expressed by William Thomson (Lord Kelvin) in 1852 as follows: “It is impossible by means of
inanimate material agency to derive mechanical effect from any portion of matter by cooling it below the temperature
of the coldest of the surrounding objects.” Max Planck4.2.4 gave this statement: “It is impossible to construct an engine
which will work in a complete cycle, and produce no effect except the raising of a weight and the cooling of a heat-
reservoir.” For the purposes of this chapter, the principle can be reworded as follows.

The Kelvin--Planck statement of the second law: It is impossible to construct a heat engine whose only effect, when
it operates in a cycle, is heat transfer from a heat reservoir to the engine and the performance of an equal quantity of
work on the surroundings.

Both the Clausius statement and the Kelvin–Planck statement assert that certain processes, although they do not violate
the first law, are nevertheless impossible.

These processes would not be impossible if we could control the trajectories of large numbers of indi-
vidual particles. Newton's laws of motion are invariant to time reversal. Suppose we could measure
the position and velocity of each molecule of a macroscopic system in the final state of an irreversible
process. Then, if we could somehow arrange at one instant to place each molecule in the same position
with its velocity reversed, and if the molecules behaved classically, they would retrace their trajectories
in reverse and we would observe the reverse ``impossible'' process.

The plan of the remaining sections of this chapter is as follows. In Sec. 4.3, a hypothetical device called a Carnot
engine is introduced and used to prove that the two physical statements of the second law (the Clausius statement
and the Kelvin–Planck statement) are equivalent, in the sense that if one is true, so is the other. An expression is also
derived for the efficiency of a Carnot engine for the purpose of defining thermodynamic temperature. Section 4.4
combines Carnot cycles and the Kelvin–Planck statement to derive the existence and properties of the state function
called entropy. Section 4.5 uses irreversible processes to complete the derivation of the mathematical statements given
in the box on page 88, Sec. 4.6 describes some applications, and Sec. 4.7 is a summary. Finally, Sec. 4.8 briefly
describes a microscopic, statistical interpretation of entropy.

Carnot engines and Carnot cycles are admittedly outside the normal experience of chemists, and using
them to derive the mathematical statement of the second law may seem arcane. G. N. Lewis and M.
Randall, in their classic 1923 book Thermodynamics and the Free Energy of Chemical Substances,4.2.5

complained of the presentation of `` `cyclical processes' limping about eccentric and not quite com-
pleted cycles.'' There seems, however, to be no way to carry out a rigorous general derivation without
invoking thermodynamic cycles. You may avoid the details by skipping Secs. 4.3--4.5. (Incidently,
the cycles described in these sections are complete!)

4.3 Concepts Developed with Carnot Engines

4.3.1 Carnot engines and Carnot cycles

A heat engine, as mentioned in Sec. 4.2, is a closed system that converts heat to work and operates in a cycle. A
Carnot engine is a particular kind of heat engine, one that performs Carnot cycles with a working substance. A
Carnot cycle has four reversible steps, alternating isothermal and adiabatic; see the examples in Figs. 4.3.1

4.2.4. Ref. [113], p. 89.
4.2.5. Ref. [85], p. 2.
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Figure 4.3.1. Indicator diagram for a Carnot engine using an ideal gas as the working substance. In this example, Th=400K, Tc=300K,
𝜖=1/4, CV ,m=(3/2)R, n=2.41mmol. The processes of paths A→B and C→D are isothermal; those of paths B→C, B′→C′, and D→A
are adiabatic. The cycle A→B→C→D→A has net work w=−1.0J; the cycle A→B′→C′→D→A has net work w=−0.5J.

Figure 4.3.2. Indicator diagram for a Carnot engine using H2O as the working substance. In this example, Th= 400K, Tc = 396K,
𝜖 = 1/100, w= −1.0 J. In state A, the system consists of one mole of H2O(l). The processes (all carried out reversibly) are: A→B,
vaporization of 2.54mmol H2O at 400K; B→C, adiabatic expansion, causing vaporization of an additional 7.68mmol; C→D, condensation
of 2.50mmol at 396K; D→A, adiabatic compression returning the system to the initial state.

and 4.3.2
in which the working substances are an ideal gas and H2O, respectively.

(!!!! bio/carnot !!!!)
name (year–year). text

The steps of a Carnot cycle are as follows. In this description, the system is the working substance.

• Path A→B: A quantity of heat qh is transferred reversibly and isothermally from a heat reservoir (the ``hot''
reservoir) at temperature Th to the system, also at temperature Th. qh is positive because energy is transferred
into the system.

• Path B→C: The system undergoes a reversible adiabatic change that does work on the surroundings and reduces
the system temperature to Tc.

• Path C→D: A quantity of heat qc is transferred reversibly and isothermally from the system to a second heat
reservoir (the ``cold'' reservoir) at temperature Tc. qc is negative.
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Figure 4.3.3. (a) One cycle of a Carnot engine that does work on the surroundings.
(b) The same system run in reverse as a Carnot heat pump.
Figures 4.3.3--4.3.5 use the following symbols: A square box represents a system (a Carnot engine or Carnot heat pump). Vertical

arrows indicate heat and horizontal arrows indicate work; each arrow shows the direction of energy transfer into or out of the system.
The number next to each arrow is an absolute value of q/J or w/J in the cycle. For example, (a) shows 4 joules of heat transferred to the
system from the hot reservoir, 3 joules of heat transferred from the system to the cold reservoir, and 1 joule of work done by the system
on the surroundings.

• Path D→A: The system undergoes a reversible adiabatic change in which work is done on the system, the
temperature returns to Th, and the system returns to its initial state to complete the cycle.

In one cycle, a quantity of heat is transferred from the hot reservoir to the system, a portion of this energy is transferred
as heat to the cold reservoir, and the remainder of the energy is the negative net work w done on the surroundings. (It
is the heat transfer to the cold reservoir that keeps the Carnot engine from being an impossible Kelvin–Planck engine.)
Adjustment of the length of path A→B makes the magnitude of w as large or small as desired—note the two cycles
with different values of w described in the caption of Fig. 4.3.1.

The Carnot engine is an idealized heat engine because its paths are reversible processes. It does not
resemble the design of any practical steam engine. In a typical working steam engine, such as those
once used for motive power in train locomotives and steamships, the cylinder contains an open system
that undergoes the following irreversible steps in each cycle: (1) high-pressure steam enters the cylinder
from a boiler and pushes the piston from the closed end toward the open end of the cylinder; (2)
the supply valve closes and the steam expands in the cylinder until its pressure decreases to atmospheric
pressure; (3) an exhaust valve opens to release the steam either to the atmosphere or to a condenser;
(4) the piston returns to its initial position, driven either by an external force or by suction created
by steam condensation.

The energy transfers involved in one cycle of a Carnot engine are shown schematically in Fig. 4.3.3(a) on page 92.
When the cycle is reversed, as shown in Fig. 4.3.3(b), the device is called a Carnot heat pump. In each cycle

of a Carnot heat pump, qh is negative and qc is positive. Since each step of a Carnot engine or Carnot heat pump is a
reversible process, neither device is an impossible device.

4.3.2 The equivalence of the Clausius and Kelvin–Planck statements
We can use the logical tool of reductio ad absurdum to prove the equivalence of the Clausius and Kelvin–Planck
statements of the second law.

Let us assume for the moment that the Clausius statement is incorrect, and that the device the Clausius statement
claims is impossible (a “Clausius device”) is actually possible. If the Clausius device is possible, then we can combine
one of these devices with a Carnot engine as shown in Fig. 4.3.4(a) on page 93. We adjust the cycles of the Clausius
device and Carnot engine to transfer equal quantities of heat from and to the cold reservoir. The combination of the
Clausius device and Carnot engine is a system. When the Clausius device and Carnot engine each performs one cycle,
the system has performed one cycle as shown in Fig. 4.3.4(b). There has been a transfer of heat into the system and
the performance of an equal quantity of work on the surroundings, with no other net change. This system is a heat
engine that according to the Kelvin–Planck statement is impossible.
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(!!!! ./bio/clausius!!!!)
name (year–year). text

Figure 4.3.4. (a) A Clausius device combined with the Carnot engine of Fig. 4.3.3(a).
(b) The resulting impossible Kelvin--Planck engine.
(c) A Kelvin--Planck engine combined with the Carnot heat pump of Fig. 4.3.3(b).
(d) The resulting impossible Clausius device.

Thus, if the Kelvin–Planck statement is correct, it is impossible to operate the Clausius device as shown, and our
provisional assumption that the Clausius statement is incorrect must be wrong. In conclusion, if the Kelvin–Planck
statement is correct, then the Clausius statement must also be correct.

We can apply a similar line of reasoning to the heat engine that the Kelvin–Planck statement claims is impossible
(a “Kelvin–Planck engine”) by seeing what happens if we assume this engine is actually possible. We combine a
Kelvin–Planck engine with a Carnot heat pump, and make the work performed on the Carnot heat pump in one
cycle equal to the work performed by the Kelvin–Planck engine in one cycle, as shown in Fig. 4.3.4(c). One cycle
of the combined system, shown in Fig. 4.3.4(d), shows the system to be a device that the Clausius statement says
is impossible. We conclude that if the Clausius statement is correct, then the Kelvin–Planck statement must also be
correct.

These conclusions complete the proof that the Clausius and Kelvin–Planck statements are equivalent: the truth of
one implies the truth of the other. We may take either statement as the fundamental physical principle of the second
law, and use it as the starting point for deriving the mathematical statement of the second law. The derivation will be
taken up in Sec. 4.4.

4.3.3 The efficiency of a Carnot engine

Integrating the first-law equation dU=đq+đw over one cycle of a Carnot engine, we obtain

0=qh+qc+w (4.3.1)
(one cycle of a Carnot engine)

The efficiency 𝜖 of a heat engine is defined as the fraction of the heat input qh that is returned as net work done on the
surroundings:

𝜖 =
def −w

qh
(4.3.2)

By substituting for w from Eq. 4.3.1, we obtain

𝜖=1+ qc
qh

(4.3.3)
(Carnot engine)

Because qc is negative, qh is positive, and qc is smaller in magnitude than qh, the efficiency is less than one.The example
shown in Fig. 4.3.3(a) is a Carnot engine with 𝜖=1/4.
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Figure 4.3.5. (a) A Carnot engine of efficiency 𝜖=1/4 combined with a Carnot engine of efficiency 𝜖=1/5 run in reverse.
(b) The resulting impossible Clausius device.
(c) A Carnot engine of efficiency 𝜖=1/3 combined with the Carnot engine of efficiency 𝜖=1/4 run in reverse.
(d) The resulting impossible Clausius device.

We will be able to reach an important conclusion regarding efficiency by considering a Carnot engine operating
between the temperatures Th and Tc, combined with a Carnot heat pump operating between the same two temperatures.
The combination is a supersystem, and one cycle of the engine and heat pump is one cycle of the supersystem. We
adjust the cycles of the engine and heat pump to produce zero net work for one cycle of the supersystem.

Could the efficiency of the Carnot engine be different from the efficiency the heat pump would have when run in
reverse as a Carnot engine? If so, either the supersystem is an impossible Clausius device as shown in Fig. 4.3.5(b)
on page 94,

or the supersystem operated in reverse (with the engine and heat pump switching roles) is an impossible Clausius
device as shown in Fig. 4.3.5(d). We conclude that all Carnot engines operating between the same two temperatures
have the same efficiency.

This is a good place to pause and think about the meaning of this statement in light of the fact that the
steps of a Carnot engine, being reversible changes, cannot take place in a real system (Sec. 3.2). How
can an engine operate that is not real? The statement is an example of a common kind of thermody-
namic shorthand. To express the same idea more accurately, one could say that all heat engines (real
systems) operating between the same two temperatures have the same limiting efficiency, where the
limit is the reversible limit approached as the steps of the cycle are carried out more and more slowly.
You should interpret any statement involving a reversible process in a similar fashion: a reversible
process is an idealized limiting process that can be approached but never quite reached by a real system.

Thus, the efficiency of a Carnot engine must depend only on the values of Tc and Th and not on the properties of
the working substance. Since the efficiency is given by 𝜖=1+qc/qh, the ratio qc/qh must be a unique function of Tc

and Th only. To find this function for temperatures on the ideal-gas temperature scale, it is simplest to choose as the
working substance an ideal gas.

An ideal gas has the equation of state p V = n R T . Its internal energy change in a closed system is given by
dU=CV dT (Eq. 3.5.3), where CV (a function only of T ) is the heat capacity at constant volume. Reversible expansion
work is given by đw=−pdV , which for an ideal gas becomes đw=−(nRT

V )dV . Substituting these expressions for dU
and đw in the first law, dU=đq+đw, and solving for đq, we obtain

đq=CV dT + nRT
V dV

(4.3.4)
(ideal gas, reversible
expansion work only)

Dividing both sides by T gives

đq
T =

CV dT
T +nR dV

V

(4.3.5)
(ideal gas, reversible
expansion work only)

94 THE SECOND LAW

94



In the two adiabatic steps of the Carnot cycle, đq is zero. We obtain a relation among the volumes of the four labeled
states shown in Fig. 4.3.1 by integrating Eq. 4.3.5 over these steps and setting the integrals equal to zero:

Path B→C: � đq
T
= �

Th

Tc CV dT
T +nR ln VC

VB
=0 (4.3.6)

Path D→A: � đq
T = �

Tc

Th CV dT
T +nR ln VA

VD
=0 (4.3.7)

Adding these two equations (the integrals shown with limits cancel) gives the relation

nR ln VAVc
VbVD

=0 (4.3.8)

which we can rearrange to

ln�VB
VA
�=−ln�VD

VC
� (4.3.9)

(ideal gas, Carnot cycle)

We obtain expressions for the heat in the two isothermal steps by integrating Eq. 4.3.4 with dT set equal to 0.

Path A→B: qh = nRTh ln�VB
VA
� (4.3.10)

Path C→D: qc = nRTc ln�VD
VC
� (4.3.11)

The ratio of qc and qh obtained from these expressions is

qc
qh
= Tc

Th
× ln (VD/Vc)
ln (Vb/VA)

(4.3.12)

By means of Eq. 4.3.9, this ratio becomes
qc
qh
=− Tc

Th

(4.3.13)
(Carnot cycle)

Accordingly, the unique function of Tc and Th we seek that is equal to qc/qh is the ratio −Tc/Th. The efficiency, from
Eq. 4.3.3, is then given by

𝜖=1− Tc
Th

(4.3.14)
(Carnot engine)

Eqs. 4.3.13 and 4.3.14, Tc and Th are temperatures on the ideal-gas scale. As we have seen, these equations must be
valid for any working substance; it is not necessary to specify as a condition of validity that the system is an ideal gas.

The ratio Tc/Th is positive but less than one, so the efficiency is less than one as deduced earlier on page 93. This
conclusion is an illustration of the Kelvin–Planck statement of the second law: A heat engine cannot have an efficiency
of unity—that is, it cannot in one cycle convert all of the energy transferred by heat from a single heat reservoir
into work. The example shown in Fig. 4.3.3 on page 92, with 𝜖=1/4, must have Tc/Th=3/4 (e.g., Tc=300K and
Th=400K).

Keep in mind that a Carnot engine operates reversibly between two heat reservoirs. The expression of Eq. 4.3.14
gives the efficiency of this kind of idealized heat engine only. If any part of the cycle is carried out irreversibly,
dissipation of mechanical energy will cause the efficiency to be lower than the theoretical value given by Eq. 4.3.14.

4.3.4 Thermodynamic temperature

The negative ratio qc/qh for a Carnot cycle depends only on the temperatures of the two heat reservoirs. Kelvin
(1848) proposed that this ratio be used to establish an “absolute” temperature scale. The physical quantity now called
thermodynamic temperature is defined by the relation

Tc
Th
=−qc

qh

(4.3.15)
(Carnot cycle)
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That is, the ratio of the thermodynamic temperatures of two heat reservoirs is equal, by definition, to the ratio of
the absolute quantities of heat transferred in the isothermal steps of a Carnot cycle operating between these two
temperatures. In principle, a measurement of qc/qh during a Carnot cycle, combined with a defined value of the
thermodynamic temperature of one of the heat reservoirs, can establish the thermodynamic temperature of the other
heat reservoir. This defined value is provided by the triple point of H2O; its thermodynamic temperature is defined
as exactly 273.16 kelvins (page 33).

Just as measurements with a gas thermometer in the limit of zero pressure establish the ideal-gas temperature scale
(Sec. Gas constant), the behavior of a heat engine in the reversible limit establishes the thermodynamic temperature
scale. Note, however, that a reversible Carnot engine used as a “thermometer” to measure thermodynamic temperature
is only a theoretical concept and not a practical instrument, since a completely-reversible process cannot occur in
practice.

It is now possible to justify the statement in Sec. 2.3.6 that the ideal-gas temperature scale is proportional to the
thermodynamic temperature scale. Both Eq.

4.3.13 and Eq. 4.3.15 equate the ratio Tc/Th to −qc/qh; but whereas Tc and Th refer in Eq. 4.3.13 to the ideal-gas
temperatures of the heat reservoirs, in Eq. 4.3.15 they refer to the thermodynamic temperatures. This means that the
ratio of the ideal-gas temperatures of two bodies is equal to the ratio of the thermodynamic temperatures of the same
bodies, and therefore the two scales are proportional to one another. The proportionality factor is arbitrary, but must
be unity if the same unit (e.g., kelvins) is used in both scales. Thus, as stated on page 33, the two scales expressed in
kelvins are identical.

4.4 The Second Law for Reversible Processes

This section derives the existence and properties of the state function called entropy. To begin, a useful relation called
the Clausius inequality will be derived.

4.4.1 The Clausius inequality

Consider an arbitrary cyclic process of a closed system. To avoid confusion, this system will be the “experimental
system” and the process will be the “experimental process” or “experimental cycle.” There are no restrictions on the
contents of the experimental system—it may have any degree of complexity whatsoever. The experimental process
may involve more than one kind of work, phase changes and reactions may occur, there may be temperature and
pressure gradients, constraints and external fields may be present, and so on. All parts of the process must be either
irreversible or reversible, but not impossible.

We imagine that the experimental cycle is carried out in a special way that allows us to apply the Kelvin–Planck
statement of the second law. The heat transferred across the boundary of the experimental system in each infinitesimal
path element of the cycle is exchanged with a hypothetical Carnot engine. The combination of the experimental
system and the Carnot engine is a closed supersystem (see Fig. 4.4.1 on page 97).

(!!!! ./bio/planck!!!!)
name (year–year). text
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Figure 4.4.1. Experimental system, Carnot engine (represented by a small square box), and heat reservoir. The dashed lines indicate the
boundary of the supersystem.

(a) Reversible heat transfer between heat reservoir and Carnot engine.
(b) Heat transfer between Carnot engine and experimental system. The infinitesimal quantities đq′ and đq are positive for transfer

in the directions indicated by the arrows.

In the surroundings of the supersystem is a heat reservoir of arbitrary constant temperature Tres. By allowing
the supersystem to exchange heat with only this single heat reservoir, we will be able to apply the Kelvin–Planck
statement to a cycle of the supersystem.4.4.1

We assume that we are able to control changes of the work coordinates of the experimental system from the
surroundings of the supersystem. We are also able to control the Carnot engine from these surroundings, for example
by moving the piston of a cylinder-and-piston device containing the working substance. Thus the energy transferred
by work across the boundary of the experimental system, and the work required to operate the Carnot engine, is
exchanged with the surroundings of the supersystem.

During each stage of the experimental process with nonzero heat, we allow the Carnot engine to undergo many
infinitesimal Carnot cycles with infinitesimal quantities of heat and work. In one of the isothermal steps of each
Carnot cycle, the Carnot engine is in thermal contact with the heat reservoir, as depicted in Fig. 4.4.1(a). In this step
the Carnot engine has the same temperature as the heat reservoir, and reversibly exchanges heat đq′ with it. The sign
convention is that đq′ is positive if heat is transferred in the direction of the arrow, from the heat reservoir to the Carnot
engine.

In the other isothermal step of the Carnot cycle, the Carnot engine is in thermal contact with the experimental
system at a portion of the system's boundary as depicted in Fig. 4.4.1(b). The Carnot engine now has the same
temperature, Tb, as the experimental system at this part of the boundary, and exchanges heat with it. The heat đq is
positive if the transfer is into the experimental system.

The relation between temperatures and heats in the isothermal steps of a Carnot cycle is given by Eq. 4.3.15. From
this relation we obtain, for one infinitesimal Carnot cycle, the relation Tb/Tres=đq/đq′, or

đq′=Tres
đq
Tb

(4.4.1)

After many infinitesimal Carnot cycles, the experimental cycle is complete, the experimental system has returned to its
initial state, and the Carnot engine has returned to its initial state in thermal contact with the heat reservoir. Integration
of Eq. 4.4.1 around the experimental cycle gives the net heat entering the supersystem during the process:

q′=Tres�
đq
Tb

(4.4.2)

The integration here is over each path element of the experimental process and over each surface element of the
boundary of the experimental system.

4.4.1. This procedure is similar to ones described in Ref. [66], Sec. 16.1; Ref. [111], p. 36; Ref. [108], p. 21-23; Ref. [1], p. 68-69; and Ref.
[104].
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Keep in mind that the value of the cyclic integral ∮(đq/Tb) depends only on the path of the experimental cycle,
that this process can be reversible or irreversible, and that Tres is a positive constant.

In this experimental cycle, could the net heat q′ transferred to the supersystem be positive? If so, the net work
would be negative (to make the internal energy change zero) and the supersystem would have converted heat from a
single heat reservoir completely into work, a process the Kelvin–Planck statement of the second law says is impos-
sible. Therefore it is impossible for q′ to be positive, and from Eq. 4.4.2 we obtain the relation

� đq
Tb
≤0 (4.4.3)

(cyclic process of a closed system)

This relation is known as the Clausius inequality. It is valid only if the integration is taken around a cyclic path in a
direction with nothing but reversible and irreversible changes—the path must not include an impossible change, such
as the reverse of an irreversible change. The Clausius inequality says that if a cyclic path meets this specification, it is
impossible for the cyclic integral ∮(đq/Tb) to be positive.

If the entire experimental cycle is adiabatic (which is only possible if the process is reversible), the Carnot engine
is not needed and Eq. 4.4.3 can be replaced by ∮(đq/Tb)=0.

4.4.2 Using reversible processes to define the entropy
Next let us investigate a reversible nonadiabatic process of the closed experimental system. Starting with a particular
equilibrium state A, we carry out a reversible process in which there is a net flow of heat into the system, and in which
đq is either positive or zero in each path element. The final state of this process is equilibrium state B. Let đqrev
denote an infinitesimal quantity of heat in a reversible process. If đqrev is positive or zero during the process, then the
integral ∫A

B (đqrev/Tb)must be positive. In this case the Clausius inequality tells us that if the system completes a cycle
by returning from state B back to state A by a different path, the integral ∫B

A (đqrev/Tb) for this second path must be
negative. Therefore the change B→A cannot be carried out by any adiabatic process.

Any reversible process can be carried out in reverse. Thus, by reversing the reversible nonadiabatic process, it is
possible to change the state from B to A by a reversible process with a net flow of heat out of the system and with đqrev
either negative or zero in each element of the reverse path. In contrast, the absence of an adiabatic path from B to A
means that it is impossible to carry out the change A→B by a reversible adiabatic process.

The general rule, then, is that whenever equilibrium state A of a closed system can be changed to equilibrium
state B by a reversible process with finite “one-way” heat (i.e., the flow of heat is either entirely into the system or
else entirely out of it), it is impossible for the system to change from either of these states to the other by a reversible
adiabatic process.

A simple example will relate this rule to experience. We can increase the temperature of a liquid by
allowing heat to flow reversibly into the liquid. It is impossible to duplicate this change of state by
a reversible process without heat�that is, by using some kind of reversible work. The reason is that
reversible work involves the change of a work coordinate that brings the system to a different final state.
There is nothing in the rule that says we can't increase the temperature irreversibly without heat, as we
can for instance with stirring work.

tes A and B can be arbitrarily close. We conclude that every equilibrium state of a closed system has other equi-
librium states infinitesimally close to it that are inaccessible by a reversible adiabatic process. This is Carathéodory's
principle of adiabatic inaccessibility.4.4.2

Next let us consider the reversible adiabatic processes that are possible. To carry out a reversible adiabatic process,
starting at an initial equilibrium state, we use an adiabatic boundary and slowly vary one or more of the work coor-
dinates. A certain final temperature will result. It is helpful in visualizing this process to think of an N-dimensional
space in which each axis represents one of the N independent variables needed to describe an equilibrium state. A
point in this space represents an equilibrium state, and the path of a reversible process can be represented as a curve
in this space.

4.4.2. Constantin Carathéodory in 1909 combined this principle with a mathematical theorem (Carathéodory's theorem) to deduce the existence
of the entropy function. The derivation outlined here avoids the complexities of that mathematical treatment and leads to the same results.
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Figure 4.4.2. A family of reversible adiabatic curves (two-dimensional reversible adiabatic surfaces) for an ideal gas with V and T as
independent variables. A reversible adiabatic process moves the state of the system along a curve, whereas a reversible process with
positive heat moves the state from one curve to another above and to the right. The curves are calculated for n=1mol and CV ,m=(3/2)R.
Adjacent curves differ in entropy by 1 J

K .

A suitable set of independent variables for equilibrium states of a closed system of uniform temperature consists
of the temperature T and each of the work coordinates (Sec. 3.10). We can vary the work coordinates independently
while keeping the boundary adiabatic, so the paths for possible reversible adiabatic processes can connect any arbitrary
combinations of work coordinate values.

There is, however, the additional dimension of temperature in the N-dimensional space. Do the paths for possible
reversible adiabatic processes, starting from a common initial point, lie in a volume in the N-dimensional space?
Or do they fall on a surface described by T as a function of the work coordinates? If the paths lie in a volume,
then every point in a volume element surrounding the initial point must be accessible from the initial point by a
reversible adiabatic path. This accessibility is precisely what Carathéodory's principle of adiabatic inaccessibility
denies. Therefore, the paths for all possible reversible adiabatic processes with a common initial state must lie on a
unique surface. This is an (N−1)-dimensional hypersurface in the N-dimensional space, or a curve if N is 2. One of
these surfaces or curves will be referred to as a reversible adiabatic surface.

Now consider the initial and final states of a reversible process with one-way heat (i.e., each nonzero infinitesimal
quantity of heat đqrev has the same sign). Since we have seen that it is impossible for there to be a reversible adiabatic
path between these states, the points for these states must lie on different reversible adiabatic surfaces that do not
intersect anywhere in the N-dimensional space. Consequently, there is an infinite number of nonintersecting reversible
adiabatic surfaces filling the N-dimensional space. (To visualize this for N =3, think of a flexed stack of paper sheets;
each sheet represents a different reversible adiabatic surface in three-dimensional space.) A reversible, nonadiabatic
process with one-way heat is represented by a path beginning at a point on one reversible adiabatic surface and ending
at a point on a different surface. If q is positive, the final surface lies on one side of the initial surface, and if q is
negative, the final surface is on the opposite side.

The existence of reversible adiabatic surfaces is the justification for defining a new state function S, the entropy. S
is specified to have the same value everywhere on one of these surfaces, and a different, unique value on each different
surface. In other words, the reversible adiabatic surfaces are surfaces of constant entropy in the N-dimensional space.
The fact that the surfaces fill this space without intersecting ensures that S is a state function for equilibrium states,
because any point in this space represents an equilibrium state and also lies on a single reversible adiabatic surface
with a definite value of S.

We know the entropy function must exist, because the reversible adiabatic surfaces exist. For instance, Fig. 4.4.2
on page 99

shows a family of these surfaces for a closed system of a pure substance in a single phase. In this system, N is
equal to 2, and the surfaces are two-dimensional curves. Each curve is a contour of constant S. At this stage in the
derivation, our assignment of values of S to the different curves is entirely arbitrary.
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Figure 4.4.3. Reversible paths in V --T space. The thin curves are reversible adiabatic surfaces.
(a) Two paths connecting the same pair of reversible adiabatic surfaces.
(b) A cyclic path.

How can we assign a unique value of S to each reversible adiabatic surface? We can order the values by letting a
reversible process with positive one-way heat, which moves the point for the state to a new surface, correspond to an
increase in the value of S. Negative one-way heat will then correspond to decreasing S. We can assign an arbitrary
value to the entropy on one particular reversible adiabatic surface. (The third law of thermodynamics is used for
this purpose—see Sec. 6.1.) Then all that is needed to assign a value of S to each equilibrium state is a formula for
evaluating the difference in the entropies of any two surfaces.

Consider a reversible process with positive one-way heat that changes the system from state A to state B. The path
for this process must move the system from a reversible adiabatic surface of a certain entropy to a different surface of
greater entropy. An example is the path A→B in Fig. 4.4.3(a) on page 100.

s in this figure are actually two-dimensional curves.) As before, we combine the experimental system with a Carnot
engine to form a supersystem that exchanges heat with a single heat reservoir of constant temperature Tres. The net
heat entering the supersystem, found by integrating Eq. 4.4.1, is

q′=Tres�A

B đqrev
Tb

(4.4.4)

and it is positive.
Suppose the same experimental system undergoes a second reversible process, not necessarily with one-way heat,

along a different path connecting the same pair of reversible adiabatic surfaces. This could be path C→D in Fig.
4.4.3(a). The net heat entering the supersystem during this second process is q′′:

q′′=Tres�C

D đqrev
Tb

(4.4.5)

We can then devise a cycle of the supersystem in which the experimental system undergoes the reversible path
A→B→D→C→A, as shown in Fig. 4.4.3(b). Step A→B is the first process described above, step D→C is the reverse
of the second process described above, and steps B→D and C→A are reversible and adiabatic. The net heat entering
the supersystem in the cycle is q′ − q′′. In the reverse cycle the net heat is q′′ − q′. In both of these cycles the
heat is exchanged with a single heat reservoir; therefore, according to the Kelvin–Planck statement, neither cycle can
have positive net heat. Therefore q′ and q′′ must be equal, and Eqs. 4.4.4 and 4.4.5 then show the integral ∫(đqrev/
Tb) has the same value when evaluated along either of the reversible paths from the lower to the higher entropy surface.

Note that since the second path (C→D) does not necessarily have one-way heat, it can take the experimental system
through any sequence of intermediate entropy values, provided it starts at the lower entropy surface and ends at the
higher. Furthermore, since the path is reversible, it can be carried out in reverse resulting in reversal of the signs of
ΔS and ∫(đqrev/Tb).
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It should now be apparent that a satisfactory formula for defining the entropy change of a reversible process in a
closed system is

ΔS=� đqrev
Tb

(4.4.6)
(reversible process,
closed system)

This formula satisfies the necessary requirements: it makes the value of ΔS positive if the process has positive one-
way heat, negative if the process has negative one-way heat, and zero if the process is adiabatic. It gives the same value
of ΔS for any reversible change between the same two reversible adiabatic surfaces, and it makes the sum of the ΔS
values of several consecutive reversible processes equal to ΔS for the overall process.

In Eq. 4.4.6, ΔS is the entropy change when the system changes from one arbitrary equilibrium state to another.
If the change is an infinitesimal path element of a reversible process, the equation becomes

dS= đqrev
Tb

(4.4.7)
(reversible process,
closed system)

In Eq. 4.4.7, the quantity 1/Tb is called an integrating factor for đqrev, a factor that makes the product
(1/Tb)đqrev be an exact differential and the infinitesimal change of a state function. The quantity c/Tb,
where c is any nonzero constant, would also be a satisfactory integrating factor; so the definition of
entropy, using c=1, is actually one of an infinite number of possible choices for assigning values to the
reversible adiabatic surfaces.

4.4.3 Alternative derivation of entropy as a state function
The Clausius inequality ∮(đq/Tb)≤0 (Eq. 4.4.3) can be used to show, by a more direct route than in the preceding
section, that (đqrev/Tb) is an exact differential during a reversible process of a closed system. When we equate ΔS to
this differential, as in Eq. 4.4.7, the entropy S can be shown to be a state function.

The proof uses the fact that when a reversible process is reversed and the system passes through the same contin-
uous sequence of equilibrium states in reverse order, the heat đqrev in each infinitesimal step changes its sign but not its
magnitude (Sec. 3.2.1). As a result, the integral ∫(đqrev/Tb) changes its sign but not its magnitude when the process
is reversed.

Consider an arbitrary reversible cyclic process of a closed system. Could the cyclic integral ∮(đqrev/Tb) for this
process be positive? No, that is impossible according to the Clausius inequality. Could the cyclic integral be negative?
No, because in this case ∮(đqrev/Tb) for the reverse cycle is positive, which is also impossible. Thus the value of the
cyclic integral for a reversible cyclic process must be zero:

� đqrev
Tb
=0

(4.4.8)
(reversible cyclic process
of a closed system)

Let A and B be any two equilibrium states. Let path 1 and path 2 be two arbitrary but different reversible paths starting
at state A and ending at state B, and let path 3 be the path from state B to state A that is the reverse of path 2. When the
system changes from state A to state B along path 1, and then changes back to state A along path 3, it has undergone
a reversible cyclic process. From Eq. 4.4.8, the sum of the integrals of (đqrev/Tb) along paths 1 and 3 is zero. The
integral of (đqrev/Tb) along path 3 has the same magnitude and opposite sign of the integral of (đqrev/Tb) along path
2. Therefore the integral ∫A

B (đqrev/Tb) must have the same value along paths 1 and 2. The result would be the same
for a reversible cycle using any other two paths from state A to state B. We conclude that the value of (đqrev/Tb)
integrated over a reversible path between any two equilibrium states depends only on the initial and final states and
not on the path; that is, (đqrev/Tb) is an exact differential as defined on page huniniti.
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When we equate ΔS to (đqrev/Tb), the entropy change along a reversible path from any initial equilibrium state
A to any final equilibrium state B is given by

ΔSA→B=SB −SA=�A

B
dS=�

A

B đqrev
Tb

(4.4.9)

Since the value of ∫A
B (đqrev/Tb) depends only on the initial and final states A and B, so also does the value of ΔSA→B.

If a value of S is assigned to a reference state, Eq. 4.4.9 in principle allows the value of S to be evaluated for any other
equilibrium state of the system. Each value of S then depends only on the state and not on the past or future history
of the system. Therefore, by the definition in Sec. 2.4.1 on page 37, the entropy is a state function.

4.4.4 Some properties of the entropy
It is not difficult to show that the entropy of a closed system in an equilibrium state is an extensive property. Suppose
a system of uniform temperature T is divided into two closed subsystems A and B. When a reversible infinitesimal
change occurs, the entropy changes of the subsystems are dSA= đqA/T and dSb= đqb/T and of the system dS =
đqrev/T . But đqrev is the sum of đqA and đqb, which gives dS=dSA+dSb. Thus, the entropy changes are additive, so
that entropy must be extensive: S=SA+Sb.4.4.3

How can we evaluate the entropy of a particular equilibrium state of the system? We must assign an arbitrary value
to one state and then evaluate the entropy change along a reversible path from this state to the state of interest using
ΔS=∫(đqrev/Tb).

We may need to evaluate the entropy of a nonequilibrium state. To do this, we imagine imposing hypothetical
internal constraints that change the nonequilibrium state to a constrained equilibrium state with the same internal
structure. Some examples of such internal constraints were given in Sec. 2.4.4, and include rigid adiabatic partitions
between phases of different temperature and pressure, semipermeable membranes to prevent transfer of certain species
between adjacent phases, and inhibitors to prevent chemical reactions.

We assume that we can, in principle, impose or remove such constraints reversibly without heat, so there is no
entropy change. If the nonequilibrium state includes macroscopic internal motion, the imposition of internal con-
straints involves negative reversible work to bring moving regions of the system to rest.4.4.4 If the system is nonuniform
over its extent, the internal constraints will partition it into practically-uniform regions whose entropy is additive.
The entropy of the nonequilibrium state is then found from Δ S=∫(đqrev/Tb) using a reversible path that changes
the system from an equilibrium state of known entropy to the constrained equilibrium state with the same entropy
as the state of interest. This procedure allows every possible state (at least conceptually) to have a definite value of S.

4.5 The Second Law for Irreversible Processes
We know that during a reversible process of a closed system, each infinitesimal entropy changeΔS is equal to đq/Tb
and the finite changeΔS is equal to the integral ∫(đq/Tb)—but what can we say about dS and ΔS for an irreversible
process?

The derivation of this section will show that for an infinitesimal irreversible change of a closed system, dS is
greater than đq/Tb, and for an entire irreversible process Δ S is greater than ∫(đq/Tb). That is, the equalities that
apply to a reversible process are replaced, for an irreversible process, by inequalities.

The derivation begins with irreversible processes that are adiabatic, and is then extended to irreversible processes
in general.

4.5.1 Irreversible adiabatic processes
Consider an arbitrary irreversible adiabatic process of a closed system starting with a particular initial state A. The
final state B depends on the path of this process. We wish to investigate the sign of the entropy change ΔSA→B. Our
reasoning will depend on whether or not there is work during the process.

4.4.3. The argument is not quite complete, because we have not shown that when each subsystem has an entropy of zero, so does the entire
system. The zero of entropy will be discussed in Sec. 6.1.

4.4.4. This concept amounts to defining the entropy of a state with macroscopic internal motion to be the same as the entropy of a state with
the same internal structure but without the motion, i.e., the same state frozen in time. By this definition, ΔS for a purely mechanical process (Sec.
3.2.4) is zero.
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Figure 4.5.1. Supersystem including the experimental system, a Carnot engine (square box), and a heat reservoir. The dashed rectangle
indicates the boundary of the supersystem.

If there is work along any infinitesimal path element of the irreversible adiabatic process (đw=/ 0), we know from
experience that this work would be different if the work coordinate or coordinates were changing at a different rate,
because energy dissipation from internal friction would then be different. In the limit of infinite slowness, an adiabatic
process with initial state A and the same change of work coordinates would become reversible, and the net work
and final internal energy would differ from those of the irreversible process. Because the final state of the reversible
adiabatic process is different from B, there is no reversible adiabatic path with work between states A and B.

All states of a reversible process, including the initial and final states, must be equilibrium states. There
is therefore a conceptual difficulty in considering reversible paths between two states if either of these
states are nonequilibrium states. In such a case we will assume that the state has been replaced by a
constrained equilibrium state of the same entropy, as described in Sec. 4.4.4.

If, on the other hand, there is no work along any infinitesimal path element of the irreversible adiabatic process
(đw≠0), the process is taking place at constant internal energy U in an isolated system. A reversible limit cannot
be reached without heat or work (page 54). Thus any reversible adiabatic change from state A would require work,
causing a change of U and preventing the system from reaching state B by any reversible adiabatic path.

So regardless of whether or not an irreversible adiabatic process A→B involves work, there is no reversible adia-
batic path between A and B. The only reversible paths between these states must be nonadiabatic. It follows that the
entropy change ΔSA→B, given by the value of đqrev/Tb integrated over a reversible path from A to B, cannot be zero.

Next we ask whether Δ SA→B could be negative. In each infinitesimal path element of the irreversible adiabatic
process A→B, đq is zero and the integral ∫A

B (đq/Tb) along the path of this process is zero. Suppose the system
completes a cycle by returning along a different, reversible path from state B back to state A. The Clausius inequality
(Eq. 4.4.3) tells us that in this case the integral ∫B

A (đqrev/Tb) along the reversible path cannot be positive. But this
integral for the reversible path is equal to −ΔSA→B, so ΔSA→B cannot be negative.

We conclude that because the entropy change of the irreversible adiabatic process A→B cannot be zero, and it
cannot be negative, it must be positive.

In this derivation, the initial state A is arbitrary and the final state B is reached by an irreversible adiabatic process.
If the two states are only infinitesimally different, then the change is infinitesimal. Thus for an infinitesimal change
that is irreversible and adiabatic, dS must be positive.

4.5.2 Irreversible processes in general

To treat an irreversible process of a closed system that is nonadiabatic, we proceed as follows. As in Sec. 4.4.1, we
use a Carnot engine for heat transfer across the boundary of the experimental system. We move the boundary of the
supersystem of Fig. 4.4.1 so that the supersystem now includes the experimental system, the Carnot engine, and a heat
reservoir of constant temperature Tres, as depicted in Fig. 4.5.1 on page 103.
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During an irreversible change of the experimental system, the Carnot engine undergoes many infinitesimal cycles.
During each cycle, the Carnot engine exchanges heat đq′ at temperature Tres with the heat reservoir and heat đq at
temperature Tb with the experimental system, as indicated in the figure. We use the sign convention that đq′ is positive
if heat is transferred to the Carnot engine, and đq is positive if heat is transferred to the experimental system, in the
directions of the arrows in the figure.

The supersystem exchanges work, but not heat, with its surroundings. (The work involves the Carnot engine, but
not necessarily the experimental system.) During one infinitesimal cycle of the Carnot engine, the net entropy change
of the Carnot engine is zero, the entropy change of the experimental system is ΔS, the heat transferred between the
Carnot engine and the experimental system is đq, and the heat transferred between the heat reservoir and the Carnot
engine is given by đq′ = Tresđq/Tb (Eq. 4.4.1). The heat transfer between the heat reservoir and Carnot engine is
reversible, so the entropy change of the heat reservoir is

ΔSres=−đq′
Tres
=−đq

Tb
(4.5.1)

The entropy change of the supersystem is the sum of the entropy changes of its parts:

ΔSss=dS+dSres=dS − đq
Tb

(4.5.2)

The process within the supersystem is adiabatic and includes an irreversible change within the experimental system,
so according to the conclusions of Sec. 4.5.1, dSss is positive. Equation 4.5.2 then shows that dS, the infinitesimal
entropy change during the irreversible change of the experimental system, must be greater than đq/Tb:

dS> đq
Tb

(4.5.3)
(irreversible change,
closed system)

This relation includes the case of an irreversible adiabatic change, because it shows that if đq is zero, dS is greater
than zero.

By integrating both sides of Eq. 4.5.3 between the initial and final states of the irreversible process, we obtain a
relation for the finite entropy change corresponding to many infinitesimal cycles of the Carnot engine:

ΔS> đq
Tb

(4.5.4)
(irreversible process,
closed system)

4.6 Applications

The lengthy derivation in Secs. 4.3–4.5 is based on the Kelvin–Planck statement describing the impossibility of
converting completely into work the energy transferred into the system by heat from a single heat reservoir. The
derivation has now given us all parts of the mathematical statement of the second law shown in the box on page
88. The mathematical statement includes an equality, dS=đqrev/Tb, that applies to an infinitesimal reversible change,
and an inequality, dS> đq/Tb, that applies to an infinitesimal irreversible change. It is convenient to combine the
equality and inequality in a single relation that is a general mathematical statement of the second law:

dS≥ đq
Tb

(4.6.1)
( irrev

rev ,closed system)
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The inequality refers to an irreversible change and the equality to a reversible change, as indicated by the notation irrev
rev

in the conditions of validity. The integrated form of this relation is

ΔS≥� đq
Tb

(4.6.2)
( irrev

rev , closed system)

During a reversible process, the states are equilibrium states and the temperature is usually uniform throughout the
system. The only exception is if the system happens to have internal adiabatic partitions that allow phases of different
temperatures in an equilibrium state. As mentioned in the footnote on page huniniti, when the process is reversible and
the temperature is uniform, we can replace dS=đqrev/Tb by dS=đqrev/T .

The rest of Sec. 4.6 will apply Eqs. 4.6.1 and 4.6.2 to various reversible and irreversible processes.

4.6.1 Reversible heating
The definition of the heat capacity C of a closed system is given by Eq. 3.1.9 on page 52: C =

def
đq/dT . For reversible

heating or cooling of a homogeneous phase, đq is equal to T dS and we can write

ΔS=�
T1

T2C
T dT (4.6.3)

where C should be replaced by CV if the volume is constant, or by Cp if the pressure is constant (Sec. 3.1.5). If the
heat capacity has a constant value over the temperature range from T1 to T2, the equation becomes

ΔS=C ln T2
T1

(4.6.4)

Heating increases the entropy, and cooling decreases it.

4.6.2 Reversible expansion of an ideal gas

When the volume of an ideal gas, or of any other fluid, is changed reversibly and adiabatically, there is of course
no entropy change.

When the volume of an ideal gas is changed reversibly and isothermally, there is expansion work given by w=
−nRT ln (V2/V1) (Eq. 3.5.1). Since the internal energy of an ideal gas is constant at constant temperature, there must
be heat of equal magnitude and opposite sign: q=nRT ln (V2/V1). The entropy change is therefore

ΔS=nR ln V2
V1

(4.6.5)
(reversible isothermal volume
change of an ideal gas)

Isothermal expansion increases the entropy, and isothermal compression decreases it.
Since the change of a state function depends only on the initial and final states, Eq. 4.6.5 gives a valid expression

for ΔS of an ideal gas under the less stringent condition T2=T1; it is not necessary for the intermediate states to be
equilibrium states of the same temperature.

4.6.3 Spontaneous changes in an isolated system
An isolated system is one that exchanges no matter or energy with its surroundings. Any change of state of an isolated
system that actually occurs is spontaneous, and arises solely from conditions within the system, uninfluenced by
changes in the surroundings—the process occurs by itself, of its own accord. The initial state and the intermediate
states of the process must be nonequilibrium states, because by definition an equilibrium state would not change over
time in the isolated system.

4.6 APPLICATIONS 105

105



Unless the spontaneous change is purely mechanical, it is irreversible. According to the second law, during an
infinitesimal change that is irreversible and adiabatic, the entropy increases. For the isolated system, we can therefore
write

dS>0 (4.6.6)
(irreversible change, isolated system)

In later chapters, the inequality of Eq. 4.6.6 will turn out to be one of the most useful for deriving conditions for
spontaneity and equilibrium in chemical systems: The entropy of an isolated system continuously increases during a
spontaneous, irreversible process until it reaches a maximum value at equilibrium.

If we treat the universe as an isolated system (although cosmology provides no assurance that this is a valid
concept), we can say that as spontaneous changes occur in the universe, its entropy continuously increases. Clausius
summarized the first and second laws in a famous statement: Die Energie der Welt ist constant; die Entropie der
Welt strebt einem Maximum zu (the energy of the universe is constant; the entropy of the universe strives toward a
maximum).

4.6.4 Internal heat flow in an isolated system
Suppose the system is a solid body whose temperature initially is nonuniform. Provided there are no internal adiabatic
partitions, the initial state is a nonequilibrium state lacking internal thermal equilibrium. If the system is surrounded
by thermal insulation, and volume changes are negligible, this is an isolated system. There will be a spontaneous,
irreversible internal redistribution of thermal energy that eventually brings the system to a final equilibrium state of
uniform temperature.

In order to be able to specify internal temperatures at any instant, we treat the system as an assembly of phases,
each having a uniform temperature that can vary with time. To describe a region that has a continuous temperature
gradient, we approximate the region with a very large number of very small phases or parcels, each having a temper-
ature infinitesimally different from its neighbors.

We use Greek letters to label the phases. The temperature of phase α at any given instant is T α. We can treat
each phase as a subsystem with a boundary across which there can be energy transfer in the form of heat. Let đqαβ

represent an infinitesimal quantity of heat transferred during an infinitesimal interval of time to phase α from phase
β. The heat transfer, if any, is to the cooler from the warmer phase. If phases α and β are in thermal contact and T α

is less than T β, then đqαβ is positive; if the phases are in thermal contact and T α is greater than T β, đqαβ is negative;
and if neither of these conditions is satisfied, đqαβ is zero.

To evaluate the entropy change, we need a reversible path from the initial to the final state. The net quantity of
heat transferred to phase α during an infinitesimal time interval is đqα=∑β≠α đqαβ. The entropy change of phase α is
the same as it would be for the reversible transfer of this heat from a heat reservoir of temperature T α: dSα=đqα/T α.
The entropy change of the entire system along the reversible path is found by summing over all phases:

dS = �
α

dSα=�
α

đqα

T α =�
α
�
β≠α

đqαβ
T α

= �
α
�
β>α
(((((((đqαβ

T α +
đqβα
T α ))))))) (4.6.7)

There is also the condition of quantitative energy transfer, đqβα=−đqαβ, which we use to rewrite Eq. 4.6.7 in the form

dS=�
α
�
β>α
� 1T α − 1

T β�đqαβ (4.6.8)

Consider an individual term of the sum on the right side of Eq. 4.6.8 that has a nonzero value of đqαβ due to finite
heat transfer between phases α and β. If T α is less than T β, then both đqαβ and (1/T α−1/T β) are positive. If, on the
other hand, T α is greater than T β, both đqαβ and (1/T α−1/T β) are negative. Thus each term of the sum is either zero
or positive, and as long as phases of different temperature are present, dS is positive.
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This derivation shows that during a spontaneous thermal equilibration process in an isolated system, starting with
any initial distribution of the internal temperatures, the entropy continuously increases until the system reaches a state
of thermal equilibrium with a single uniform temperature throughout.4.6.1 The result agrees with Eq. 4.6.6.

4.6.5 Free expansion of a gas
Consider the free expansion of a gas shown in Fig. 3.5.3 on page 67. The system is the gas. Assume that the vessel
walls are rigid and adiabatic, so that the system is isolated. When the stopcock between the two vessels is opened, the
gas expands irreversibly into the vacuum without heat or work and at constant internal energy. To carry out the same
change of state reversibly, we confine the gas at its initial volume and temperature in a cylinder-and-piston device and
use the piston to expand the gas adiabatically with negative work. Positive heat is then needed to return the internal
energy reversibly to its initial value. Because the reversible path has positive heat, the entropy change is positive.

This is an example of an irreversible process in an isolated system for which a reversible path between the initial
and final states has both heat and work.

4.6.6 Adiabatic process with work
In general (page 79), an adiabatic process with a given initial equilibrium state and a given change of a work coordinate
has the least positive or most negative work in the reversible limit. Consider an irreversible adiabatic process with
work wirr. The same change of state can be accomplished reversibly by the following two steps: (1) a reversible
adiabatic change of the work coordinate with work wrev, followed by (2) reversible transfer of heat qrev with no further
change of the work coordinate. Since wrev is algebraically less than wirr, qrev must be positive in order to make ΔU
the same in the irreversible and reversible paths. The positive heat increases the entropy along the reversible path, and
consequently the irreversible adiabatic process has a positive entropy change. This conclusion agrees with the second-
law inequality of Eq. 4.6.1.

4.7 Summary
Some of the important terms and definitions discussed in this chapter are as follows.

• Any conceivable process is either spontaneous, reversible, or impossible.

• A reversible process proceeds by a continuous sequence of equilibrium states.

• A spontaneous process is one that proceeds naturally at a finite rate.

• An irreversible process is a spontaneous process whose reverse is impossible.

• A purely mechanical process is an idealized process without temperature gradients, and without friction or
other dissipative effects, that is spontaneous in either direction. This kind of process will be ignored in the
remaining chapters of this book.

• Except for a purely mechanical process, the terms spontaneous and irreversible are equivalent.

The derivation of the mathematical statement of the second law shows that during a reversible process of a closed
system, the infinitesimal quantity đq/Tb equals the infinitesimal change of a state function called the entropy, S. Here
đq is heat transferred at the boundary where the temperature is Tb.

In each infinitesimal path element of a process of a closed system, dS is equal to đq/Tb if the process is reversible,
and is greater than đq/Tb if the process is irreversible, as summarized by the relation dS≥đq/Tb.

Consider two particular equilibrium states 1 and 2 of a closed system. The system can change from state 1 to state
2 by either a reversible process, with ΔS equal to the integral ∫(đq/Tb), or an irreversible process, with ΔS greater
than ∫(đq/Tb). It is important to keep in mind the point made by Fig. 4.7.1 on page 108:

4.6.1. Leff, in Ref. [82], obtains the same result by a more complicated derivation.
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Figure 4.7.1. Reversible and irreversible paths between the same initial and final equilibrium states of a closed system. The value of ΔS
is the same for both paths, but the values of the integral ∫(đq/Tb) are different.

because S is a state function, it is the value of the integral that is different in the two cases, and not the value ofΔS.
The second law establishes no general relation between entropy changes and heat in an open system, or for an

impossible process. The entropy of an open system may increase or decrease depending on whether matter enters
or leaves. It is possible to imagine different impossible processes in which dS is less than, equal to, and greater than
đq/Tb.

4.8 The Statistical Interpretation of Entropy
Because entropy is such an important state function, it is natural to seek a description of its meaning on the microscopic
level.

Entropy is sometimes said to be a measure of “disorder.” According to this idea, the entropy increases whenever a
closed system becomes more disordered on a microscopic scale. This description of entropy as a measure of disorder
is highly misleading. It does not explain why entropy is increased by reversible heating at constant volume or pressure,
or why it increases during the reversible isothermal expansion of an ideal gas. Nor does it seem to agree with the
freezing of a supercooled liquid or the formation of crystalline solute in a supersaturated solution; these processes can
take place spontaneously in an isolated system, yet are accompanied by an apparent decrease of disorder.

Thus we should not interpret entropy as a measure of disorder. We must look elsewhere for a satisfactory micro-
scopic interpretation of entropy.

A rigorous interpretation is provided by the discipline of statistical mechanics, which derives a precise expression
for entropy based on the behavior of macroscopic amounts of microscopic particles. Suppose we focus our attention
on a particular macroscopic equilibrium state. Over a period of time, while the system is in this equilibrium state, the
system at each instant is in a microstate, or stationary quantum state, with a definite energy. The microstate is one that
is accessible to the system—that is, one whose wave function is compatible with the system's volume and with any
other conditions and constraints imposed on the system. The system, while in the equilibrium state, continually jumps
from one accessible microstate to another, and the macroscopic state functions described by classical thermodynamics
are time averages of these microstates.

The fundamental assumption of statistical mechanics is that accessible microstates of equal energy are equally
probable, so that the system while in an equilibrium state spends an equal fraction of its time in each such microstate.
The statistical entropy of the equilibrium state then turns out to be given by the equation

Sstat=k lnW+C (4.8.1)
where k is the Boltzmann constant k=R/NA, W is the number of accessible microstates, and C is a constant.

In the case of an equilibrium state of a perfectly-isolated system of constant internal energy U, the accessible
microstates are the ones that are compatible with the constraints and whose energies all have the same value, equal to
the value of U.

It is more realistic to treat an equilibrium state with the assumption the system is in thermal equilibrium with
an external constant-temperature heat reservoir. The internal energy then fluctuates over time with extremely small
deviations from the average value U, and the accessible microstates are the ones with energies close to this average
value. In the language of statistical mechanics, the results for an isolated system are derived with a microcanonical
ensemble, and for a system of constant temperature with a canonical ensemble.
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A change ΔSstat of the statistical entropy function given by Eq. 4.8.1 is the same as the change ΔS of the macro-
scopic second-law entropy, because the derivation of Eq. 4.8.1 is based on the macroscopic relation dSstat=đq/T =
(dU −đw)/T with dU and đw given by statistical theory. If the integration constant C is set equal to zero, Sstat becomes
the third-law entropy S to be described in Chap. 6.

Equation 4.8.1 shows that a reversible process in which entropy increases is accompanied by an increase in the
number of accessible microstates of equal, or nearly equal, internal energies. This interpretation of entropy increase
has been described as the spreading and sharing of energy4.8.1 and as the dispersal of energy.4.8.2 It has even been
proposed that entropy should be thought of as a “spreading function” with its symbol S suggesting spreading.4.8.3 4.8.4

4.8.1. Ref. [83].
4.8.2. Ref. [80].
4.8.3. Ref. [81].
4.8.4. The symbol S for entropy seems originally to have been an arbitrary choice by Clausius; see Ref. [70].
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Figure 4.9.1.

4.9 Problems
Problem 4.9.1. Explain why an electric refrigerator, which transfers energy by means of heat from the cold food storage compartment to the
warmer air in the room, is not an impossible “Clausius device.”

Problem 4.9.2. A system consisting of a fixed amount of an ideal gas is maintained in thermal equilibrium with a heat reservoir at temperature
T . The system is subjected to the following isothermal cycle:

1. The gas, initially in an equilibrium state with volume V0, is allowed to expand into a vacuum and reach a new equilibrium state of
volume V ′.

2. The gas is reversibly compressed from V ′ to V0.

For this cycle, find expressions or values for w, ∮đq/T , and ∮dS.

Problem 4.9.3. In an irreversible isothermal process of a closed system:

a) Is it possible for ΔS to be negative?

b) Is it possible for ΔS to be less than q/T?

Problem 4.9.4. Suppose you have two blocks of copper, each of heat capacity CV=200.0
J
K . Initially one block has a uniform temperature of

300.00K and the other 310.00K. Calculate the entropy change that occurs when you place the two blocks in thermal contact with one another
and surround them with perfect thermal insulation. Is the sign of ΔS consistent with the second law? (Assume the process occurs at constant
volume.)

Problem 4.9.5. Refer to the apparatus shown in Figs. 3.11.2 on page 82 and 3.11.5 on page 84 and described in Probs. 3.11.3 and 3.11.8. For
both systems, evaluateΔS for the process that results from opening the stopcock. Also evaluate ∫đq/Text for both processes (for the apparatus
in Fig. 3.11.5, assume the vessels have adiabatic walls). Are your results consistent with the mathematical statement of the second law?

Problem 4.9.6. Figure 4.9.1 on page 110 shows the walls of a rigid thermally-insulated box (cross hatching). The system is the contents of
this box. In the box is a paddle wheel immersed in a container of water, connected by a cord and pulley to a weight of mass m. The weight
rests on a stop located a distance h above the bottom of the box. Assume the heat capacity of the system, CV, is independent of temperature.
Initially the system is in an equilibrium state at temperature T1. When the stop is removed, the weight irreversibly sinks to the bottom of the
box, causing the paddle wheel to rotate in the water. Eventually the system reaches a final equilibrium state with thermal equilibrium. Describe
a reversible process with the same entropy change as this irreversible process, and derive a formula for ΔS in terms of m, h, CV, and T1.
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Chapter 5
Thermodynamic Potentials

This chapter begins with a discussion of mathematical properties of the total differential of a dependent variable. Three
extensive state functions with dimensions of energy are introduced: enthalpy, Helmholtz energy, and Gibbs energy.
These functions, together with internal energy, are called thermodynamic potentials.5.0.1 Some formal mathematical
manipulations of the four thermodynamic potentials are described that lead to expressions for heat capacities, surface
work, and criteria for spontaneity in closed systems.

5.1 Total Differential of a Dependent Variable

Recall from Sec. 2.4.1 that the state of the system at each instant is defined by a certain minimum number of state
functions, the independent variables. State functions not treated as independent variables are dependent variables.
Infinitesimal changes in any of the independent variables will, in general, cause an infinitesimal change in each depen-
dent variable.

A dependent variable is a function of the independent variables. The total differential of a dependent variable
is an expression for the infinitesimal change of the variable in terms of the infinitesimal changes of the independent
variables. As explained in Sec. F.2 of Appendix F, the expression can be written as a sum of terms, one for each
independent variable. Each term is the product of a partial derivative with respect to one of the independent variables
and the infinitesimal change of that independent variable. For example, if the system has two independent variables,
and we take these to be T and V , the expression for the total differential of the pressure is

d

dp=�∂ p
∂T�V

dT +�∂ p
∂V�T

dV (5.1.1)

Thus, in the case of a fixed amount of an ideal gas with pressure given by p= n R T /V , the total differential of the
pressure can be written

dp= nR
V dT − nRT

V 2
dV (5.1.2)

5.2 Total Differential of the Internal Energy

For a closed system undergoing processes in which the only kind of work is expansion work, the first law becomes
dU=đq+đw=đq− pbdV . Since it will often be useful to make a distinction between expansion work and other kinds
of work, this book will sometimes write the first law in the form

dU=đq− pb dV +đw′ (5.2.1)
(closed system)

where đw′ is nonexpansion work—that is, any thermodynamic work that is not expansion work.

5.0.1. The term thermodynamic potential should not be confused with the chemical potential, 𝜇, to be introduced on page 112.
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Consider a closed system of one chemical component (e.g., a pure substance) in a single homogeneous phase.
The only kind of work is expansion work, with V as the work variable. This kind of system has two independent
variables (Sec. 2.4.3). During a reversible process in this system, the heat is đq=T dS, the work is đw=−pdV , and
an infinitesimal internal energy change is given by

dU=T dS − pdV
(5.2.2)

(closed system, C=1,
P=1, đw′=0)

In the conditions of validity shown next to this equation, C =1 means there is one component (C is the number of
components) and P=1 means there is one phase (P is the number of phases).

The appearance of the intensive variables T and p in Eq. 5.2.2 implies, of course, that the temperature and pressure
are uniform throughout the system during the process. If they were not uniform, the phase would not be homogeneous
and there would be more than two independent variables. The temperature and pressure are strictly uniform only if
the process is reversible; it is not necessary to include “reversible” as one of the conditions of validity.

A real process approaches a reversible process in the limit of infinite slowness. For all practical purposes, there-
fore, we may apply Eq. 5.2.2 to a process obeying the conditions of validity and taking place so slowly that the
temperature and pressure remain essentially uniform—that is, for a process in which the system stays very close to
thermal and mechanical equilibrium.

Because the system under consideration has two independent variables, Eq. 5.2.2 is an expression for the total
differential of U with S and V as the independent variables. In general, an expression for the differential dX of a state
function X is a total differential if

1. it is a valid expression for dX, consistent with the physical nature of the system and any conditions and con-
straints;

2. it is a sum with the same number of terms as the number of independent variables;
3. each term of the sum is a function of state functions multiplied by the differential of one of the independent

variables.

Note that the work coordinate of any kind of dissipative work—work without a reversible limit—cannot appear in the
expression for a total differential, because it is not a state function (Sec. 3.10).

As explained in Appendix F, we may identify the coefficient of each term in an expression for the total differential
of a state function as a partial derivative of the function. We identify the coefficients on the right side of Eq. 5.2.2 as
follows:

T =�∂U
∂S �V

− p=�∂U
∂V�S

(5.2.3)

Now let us consider some of the ways a system might have more than two independent variables. Suppose the system
has one phase and one substance, with expansion work only, and is open so that the amount n of the substance can
vary. Such a system has three independent variables. Let us write the formal expression for the total differential of U
with S, V , and n as the three independent variables:

dU=�∂U
∂S �V,n

dS+�∂U
∂V�S,n

dV +�∂U
∂n �S,V

dn
(5.2.4)

(pure substance,
P=1,đw′=0)

We have seen above that if the system is closed, the partial derivatives are (∂U/∂S)V=T and (∂U/∂V)S=−p. Since
both of these partial derivatives are for a closed system in which n is constant, they are the same as the first two partial
derivatives on the right side of Eq. 5.2.4.

The quantity given by the third partial derivative, (∂U/∂n)S,V, is represented by the symbol𝜇 (mu). This quantity
is an intensive state function called the chemical potential.

With these substitutions, Eq. 5.2.4 becomes

dU=TdS − pdV +𝜇dn
(5.2.5)

(pure substance,
P=1, đw′=0)
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./bio/gibbs
Gibbs.

and this is a valid expression for the total differential of U under the given conditions.
If a system contains a mixture of s different substances in a single phase, and the system is open so that the amount

of each substance can vary independently, there are 2+ s independent variables and the total differential of U can be
written

dU=T dS − pdV +�
i=1

s

𝜇idni

(5.2.6)
(open system,
P=1,đw′=0)

The coefficient 𝜇i is the chemical potential of substance i. We identify it as the partial derivative (∂U/∂ni)S,V,nj=/ i.

The term −pdV on the right side of Eq. 5.2.6 is the reversible work. However, the term T dS does not
equal the reversible heat as it would if the system were closed. This is because the entropy change dS
is partly due to the entropy of the matter transferred across the boundary. It follows that the remaining
term,∑i𝜇idni (sometimes called the “chemical work”), should not be interpreted as the energy brought
into the system by the transfer of matter.5.2.1

Suppose that in addition to expansion work, other kinds of reversible work are possible. Each work coordinate
adds an additional independent variable. Thus, for a closed system of one component in one phase, with reversible
nonexpansion work given by đw′=Y dX, the total differential of U becomes

dU=T dS − pdV +Y dX
(5.2.7)

(closed system,
C=1,P=1)

5.3 Enthalpy, Helmholtz Energy, and Gibbs Energy
For the moment we shall confine our attention to closed systems with one component in one phase. The total differen-
tial of the internal energy in such a system is given by Eq. 5.2.2: dU=TdS − pdV . The independent variables in this
equation, S and V , are called the natural variables of U.

In the laboratory, entropy and volume may not be the most convenient variables to measure and control. Entropy
is especially inconvenient, as its value cannot be measured directly. The way to change the independent variables is
to make Legendre transforms, as explained in Sec. F.4 in Appendix F.

A Legendre transform of a dependent variable is made by subtracting one or more products of conjugate variables.
In the total differential dU=TdS − pdV , T and S are conjugates (that is, they comprise a conjugate pair), and −p and
V are conjugates. Thus the products that can be subtracted from U are either T S or −p V , or both. Three Legendre
transforms of the internal energy are possible, defined as follows:

Enthalpy H =
def

U+ pV (5.3.1)

Helmholtz energy A =
def

U −TS (5.3.2)

Gibbs energy G =
def

U −TS+ pV =H −TS (5.3.3)

These definitions are used whether or not the system has only two independent variables.
The enthalpy, Helmholtz energy, and Gibbs energy are important functions used extensively in thermodynamics.

They are state functions (because the quantities used to define them are state functions) and are extensive (because
U, S, and V are extensive). If temperature or pressure are not uniform in the system, we can apply the definitions to
constituent phases, or to subsystems small enough to be essentially uniform, and sum over the phases or subsystems.

5.2.1. Ref. [78].
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Alternative names for the Helmholtz energy are Helmholtz function, Helmholtz free energy, and work
function. Alternative names for the Gibbs energy are Gibbs function and Gibbs free energy. Both the
Helmholtz energy and Gibbs energy have been called simply free energy, and the symbol F has been
used for both. The nomenclature in this book follows the recommendations of the IUPAC Green Book
(Ref. [30]).

Expressions for infinitesimal changes of H, A, and G are obtained by applying the rules of differentiation to their
defining equations:

dH = dU+ pdV +V dp (5.3.4)
dA = dU −T dS −S dT (5.3.5)
dG = dU −T dS −S dT + pdV +V dp (5.3.6)

These expressions for dH, dA, and dG are general expressions for any system or phase with uniform T and p. They
are not total differentials of H, A, and G, as the variables in the differentials in each expression are not independent.

A useful property of the enthalpy in a closed system can be found by replacing dU in Eq. 5.3.4 by the first law
expression đq − p dV + đw′, to obtain dH = đq+V dp+ đw′. Thus, in a process at constant pressure (dp=0) with
expansion work only (đw′=0), we have

dH=đq
(5.3.7)

(closed system, constant p
đw′=0)

The enthalpy change under these conditions is equal to the heat. The integrated form of this relation is ∫dH=∫đq, or

ΔH=q
(5.3.8)

(closed system, constant p
w′=0)

Equation 5.3.7 is analogous to the following relation involving the internal energy, obtained from the first law:

dU=đq
(5.3.9)

(closed system, constant V
đw′=0)

That is, in a process at constant volume with expansion work only, the internal energy change is equal to the heat.

5.4 Closed Systems

n order to find expressions for the total differentials of H, A, and G in a closed system with one component in one
phase, we must replace dU in Eqs. 5.3.4–5.3.6 with

dU=TdS − pdV (5.4.1)

to obtain

dH = T dS+V dp (5.4.2)
dA = −S dT − pdV (5.4.3)
dG = −S dT +V dp (5.4.4)

Equations 5.4.1–5.4.4 are sometimes called the Gibbs equations. They are expressions for the total differentials of the
thermodynamic potentials U, H, A, and G in closed systems of one component in one phase with expansion work only.
Each equation shows how the dependent variable on the left side varies as a function of changes in two independent
variables (the natural variables of the dependent variable) on the right side.
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By identifying the coefficients on the right side of Eqs. 5.4.1–5.4.4, we obtain the following relations (which again
are valid for a closed system of one component in one phase with expansion work only):

from Eq. 5.4.1 �∂U
∂S �V

= T (5.4.5)

�∂U
∂V�S

= −p (5.4.6)

from Eq. 5.4.2 �∂H
∂S �p

= T (5.4.7)

�∂H
∂ p �S

= V (5.4.8)

from Eq. 5.4.3 �∂ A
∂T�V

= −S (5.4.9)

�∂ A
∂V�T

= −p (5.4.10)

from Eq. 5.4.4 �∂G
∂T �p

= −S (5.4.11)

�∂G
∂ p �T

= V (5.4.12)

This book now uses for the first time an extremely useful mathematical tool called the reciprocity relation of a total
differential (Sec. F.2). Suppose the independent variables are x and y and the total differential of a dependent state
function f is given by

d f =adx+bdy (5.4.13)

where a and b are functions of x and y. Then the reciprocity relation is

�∂a
∂y�x

=�∂b
∂x�y

(5.4.14)

The reciprocity relations obtained from the Gibbs equations (Eqs. 5.4.1–5.4.4) are called Maxwell relations (again
valid for a closed system with C=1, P=1, and đw′=0):

from Eq. 5.4.1 �∂T
∂V�S

= −�∂ p
∂S�V

(5.4.15)

from Eq. 5.4.2 �∂T
∂ p�S

= �∂V
∂S�p

(5.4.16)

from Eq. 5.4.3 �∂S
∂V�T

= �∂ p
∂T�V

(5.4.17)

from Eq. 5.4.4 −�∂S
∂ p�T

= �∂V
∂T�p

(5.4.18)

5.5 Open Systems

An open system of one substance in one phase, with expansion work only, has three independent variables. The total
differential of U is given by Eq. 5.2.5:

dU=TdS − pdV +𝜇dn (5.5.1)

In this open system the natural variables of U are S, V , and n. Substituting this expression for dU into the expressions
for dH, dA, and dG given by Eqs. 5.3.4–5.3.6, we obtain the following total differentials:

dH = T dS+V dp+𝜇dn (5.5.2)
dA = −S dT − pdV +𝜇dn (5.5.3)
dG = −S dT +V dp+𝜇dn (5.5.4)
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Note that these are the same as the four Gibbs equations (Eqs. 5.4.1–5.4.4) with the addition of a term 𝜇dn to allow
for a change in the amount of substance.

Identification of the coefficient of the last term on the right side of each of these equations shows that the chemical
potential can be equated to four different partial derivatives:

𝜇=�∂U
∂n �S,V

=�∂H
∂n �S,p

=�∂ A
∂n �T ,V

=�∂G
∂n �T ,p

(5.5.5)

All four of these partial derivatives must have the same value for a given state of the system; the value, of course,
depends on what that state is.

The last partial derivative on the right side of Eq. 5.5.5, (∂G/∂ n)T ,p, is especially interesting because it is the
rate at which the Gibbs energy increases with the amount of substance added to a system whose intensive properties
remain constant. Thus, 𝜇 is revealed to be equal to Gm, the molar Gibbs energy of the substance.

Suppose the system contains several substances or species in a single phase (a mixture) whose amounts can be
varied independently. We again assume the only work is expansion work. Then, making use of Eq. 5.2.6, we find the
total differentials of the thermodynamic potentials are given by

dU = T dS − pdV +�
i
𝜇idni (5.5.6)

dH = T dS+V dp+�
i
𝜇idni (5.5.7)

dA = −S dT − pdV +�
i
𝜇idni (5.5.8)

dG = −S dT +V dp+�
i
𝜇idni (5.5.9)

The independent variables on the right side of each of these equations are the natural variables of the corresponding
thermodynamic potential. Section F.4 shows that all of the information contained in an algebraic expression for a state
function is preserved in a Legendre transform of the function. What this means for the thermodynamic potentials is
that an expression for any one of them, as a function of its natural variables, can be converted to an expression for each
of the other thermodynamic potentials as a function of its natural variables.

Willard Gibbs, after whom the Gibbs energy is named, called Eqs. 5.5.6–5.5.9 the fundamental equations of ther-
modynamics, because from any single one of them not only the other thermodynamic potentials but also all thermal,
mechanical, and chemical properties of the system can be deduced.5.5.1 Problem 5.5.9.4 illustrates this useful applica-
tion of the total differential of a thermodynamic potential.

In Eqs. 5.5.6–5.5.9, the coefficient 𝜇i is the chemical potential of species i. The equations show that 𝜇i can be
equated to four different partial derivatives, similar to the equalities shown in Eq. 5.5.5 for a pure substance:

𝜇i=�
∂U
∂ni
�

S,V,nj=/ i

=�∂H
∂ni
�

S,p,nj=/ i

=�∂A
∂ni
�

T ,V,nj=/ i

=�∂G
∂ni
�

T ,p,nj=/ i

(5.5.10)

The partial derivative (∂G/∂ ni)T ,P,nj=/ i is called the partial molar Gibbs energy of species i, another name for the
chemical potential as will be discussed in Sec. 9.2.6.

5.6 Expressions for Heat Capacity

As explained in Sec. 3.1.5, the heat capacity of a closed system is defined as the ratio of an infinitesimal quantity of
heat transferred across the boundary under specified conditions and the resulting infinitesimal temperature change:
heat capacity =

def
đq/dT . The heat capacities of isochoric (constant volume) and isobaric (constant pressure) processes

are of particular interest.

5.5.1. Ref. [54], p. 86.
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The heat capacity at constant volume, CV, is the ratio đq/dT for a process in a closed constant-volume system
with no nonexpansion work—that is, no work at all. The first law shows that under these conditions the internal energy
change equals the heat: dU=đq (Eq. 5.3.9). We can replace đq by dU and write CV as a partial derivative:

CV=�
∂U
∂T �V

(5.6.1)
(closed system)

If the closed system has more than two independent variables, additional conditionsare needed to define
CV unambiguously. For instance, if the system is a gas mixture in which reaction can occur, we might
specify that the system remains in reaction equilibrium as T changes at constant V .
Equation 5.6.1 does not require the condition đw′=0, because all quantities appearing in the equation
are state functions whose relations to one another are fixed by the nature of the system and not by the
path. Thus, if heat transfer into the system at constant V causes U to increase at a certain rate with
respect to T , and this rate is defined as CV, the performance of electrical work on the system at constant
V will cause the same rate of increase of U with respect to T and can equally well be used to evaluate
CV.

Note that CV is a state function whose value depends on the state of the system—that is, on T , V , and any additional
independent variables. CV is an extensive property: the combination of two identical phases has twice the value of CV

that one of the phases has by itself.
For a phase containing a pure substance, the molar heat capacity at constant volume is defined by CV,m =

def
CV/n.

CV,m is an intensive property.
If the system is an ideal gas, its internal energy depends only on T , regardless of whether V is constant, and Eq.

5.6.1 can be simplified to

CV=
dU
dT

(5.6.2)
(closed system, ideal gas)

Thus the internal energy change of an ideal gas is given by dU=CV dT , as mentioned earlier in Sec. 3.5.3.
The heat capacity at constant pressure, Cp, is the ratio đq/dT for a process in a closed system with a constant,

uniform pressure and with expansion work only. Under these conditions, the heat đq is equal to the enthalpy change
dH (Eq. 5.3.7), and we obtain a relation analogous to Eq. 5.6.1:

Cp=�
∂H
∂T �p

(5.6.3)
(closed system)

Cp is an extensive state function. For a phase containing a pure substance, the molar heat capacity at constant
pressure is Cp,m=Cp/n, an intensive property.

Since the enthalpy of a fixed amount of an ideal gas depends only on T (Prob. 5.9.1), we can write a relation
analogous to Eq. 5.6.2:

Cp=
dH
dT

(5.6.4)
(closed system, ideal gas)

5.7 Surface Work
Sometimes we need more than the usual two independent variables to describe an equilibrium state of a closed system
of one substance in one phase. This is the case when, in addition to expansion work, another kind of work is possible.
The total differential of U is then given by dU=T dS − pdV +Y dX (Eq. 5.2.7), where Y dX represents the nonexpan-
sion work đw′.

A good example of this situation is surface work in a system in which surface area is relevant to the description of
the state.

A liquid–gas interface behaves somewhat like a stretched membrane. The upper and lower surfaces of the liquid
film in the device depicted in Fig. 5.7.1 on page 118
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Figure 5.7.1. Device to measure the surface tension of a liquid film. The film is stretched between a bent wire and a sliding rod.

exert a force F on the sliding rod, tending to pull it in the direction that reduces the surface area. We can measure
the force by determining the opposing force Fext needed to prevent the rod from moving. This force is found to be
proportional to the length of the rod and independent of the rod position x. The force also depends on the temperature
and pressure.

The surface tension or interfacial tension, 𝛾, is the force exerted by an interfacial surface per unit length. The film
shown in Fig. 5.7.1 has two surfaces, so we have 𝛾= F

2 l where l is the rod length.
To increase the surface area of the film by a practically-reversible process, we slowly pull the rod to the right in

the +x direction. The system is the liquid. The x component of the force exerted by the system on the surroundings
at the moving boundary, Fx

sys, is equal to −F (F is positive and Fx
sys is negative). The displacement of the rod results

in surface work given by Eq. 3.1.2: đw′=−Fx
sysdx=2𝛾 l dx. The increase in surface area, dAs, is 2 ldx, so the surface

work is đw′=𝛾dAs where 𝛾 is the work coefficient and As is the work coordinate. Equation 5.2.7 becomes

dU=T dS − pdV +𝛾dAs (5.7.1)
Substitution into Eq. 5.3.6 gives

dG=−S dT +V dp+𝛾dAs (5.7.2)

which is the total differential of G with T , p, and As as the independent variables. Identifying the coefficient of the
last term on the right side as a partial derivative, we find the following expression for the surface tension:

𝛾=� ∂G
∂ As
�

T ,p
(5.7.3)

That is, the surface tension is not only a force per unit length, but also a Gibbs energy per unit area.
From Eq. 5.7.2, we obtain the reciprocity relation

�∂𝛾∂T�p,As

=−� ∂S
∂As
�

T ,p
(5.7.4)

It is valid to replace the partial derivative on the left side by (∂𝛾/∂T)p because 𝛾 is independent of As. Thus, the
variation of surface tension with temperature tells us how the entropy of the liquid varies with surface area.

5.8 Criteria for Spontaneity
In this section we combine the first and second laws in order to derive some general relations for changes during a
reversible or irreversible process of a closed system. The temperature and pressure will be assumed to be practically
uniform during the process, even if the process is irreversible. For example, the volume might be changing at a finite
rate but very slowly, or there might be a spontaneous homogeneous reaction in a mixture of uniform temperature and
pressure.

The second law states that dS is equal to đq/T if the process is reversible, and is greater than đq/T if the process
is irreversible:

dS≥đq/T
(5.8.1)

(irrev
rev , closed system)

or

đq≤T dS
(5.8.2)

(irrev
rev , closed system)
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The inequalities in these relations refer to an irreversible process and the equalities to a reversible process, as indicated
by the notation irrev

rev .
When we substitute đq from Eq. 5.8.2 into the first law in the form dU=đq− pdV +đw′, where đw′ is nonexpan-

sion work, we obtain the relation

dU≤TdS − pdV +đw′
(5.8.3)

(irrev
rev , closed system)

We substitute this relation for dU into the differentials of enthalpy, Helmholtz energy, and Gibbs energy given by Eqs.
5.3.4–5.3.6 to obtain three more relations:

dH≤TdS+Vdp+đw′
(5.8.4)

(irrev
rev , closed system)

dA≤−SdT − pdV +đw′
(5.8.5)

(irrev
rev , closed system)

dG≤−SdT +Vdp+đw′
(5.8.6)

(irrev
rev , closed system)

The last two of these relations provide valuable criteria for spontaneity under common laboratory conditions. Equation
5.8.5 shows that during a spontaneous irreversible change at constant temperature and volume, dA is less than đw′. If
the only work is expansion work (i.e., đw′ is zero),the Helmholtz energy decreases during a spontaneous process at
constant T and V and has its minimum value when the system reaches an equilibrium state.

Equation 5.8.6 is especially useful. From it, we can conclude the following:

• Reversible nonexpansion work at constant T and p is equal to the Gibbs energy change. For example, if the
system is a galvanic cell operated in the reversible limit (Sec. 3.8.3) at constant T and p, the electrical work is
given by đwel, rev=dG. There is an application of this relation in Sec. 14.3.1.

• During a spontaneous process at constant T and p in a closed system with expansion work only, the Gibbs
energy continuously decreases until the system reaches an equilibrium state.

Ben-Amotz and Honig5.8.1 developed a “rectification” procedure that simplifies the mathematical manip-
ulation of inequalities. Following this procedure, we can write

dS=đq/T +đ𝜃 (5.8.7)

where đ𝜃 is an excess entropy function that is positive for an irreversible change and zero for a reversible
change (đ𝜃≥0). Solving for đq gives the expression đq= T dS − T đ𝜃 that, when substituted in the
first law expression dU=đq− pdV +đw′, produces

dU=T dS − pdV +đw′−T đ𝜃 (5.8.8)

The equality of this equation is equivalent to the combined equality and inequality of Eq. 5.8.3. Then
by substitution of this expression for dU into Eqs. 5.3.4–5.3.6, we obtain equalities equivalent to Eqs.
5.8.4–5.8.6, for example

dG=−S dT +V dp+đw′−T đ𝜃 (5.8.9)

Equation 5.8.9 tells us that during a process at constant T and p, with expansion work only (đw′=0),
dG has the same sign as −T đ𝜃: negative for an irreversible change and zero for a reversible change.

5.8.1. Refs. [11] and [69].
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5.9 Problems
Problem 5.9.1. Show that the enthalpy of a fixed amount of an ideal gas depends only on the temperature.

Problem 5.9.2. From concepts in this chapter, show that the heat capacities CV and Cp of a fixed amount of an ideal gas are functions only of T .

Problem 5.9.3. During the reversible expansion of a fixed amount of an ideal gas, each increment of heat is given by the expression đq=
CV dT +(nRT /V )dV (Eq. 4.3.4).

a) A necessary and sufficient condition for this expression to be an exact differential is that the reciprocity relation must be satisfied for
the independent variables T and V (see Appendix F). Apply this test to show that the expression is not an exact differential, and that
heat therefore is not a state function.

b) By the same method, show that the entropy increment during the reversible expansion, given by the expression dS=đq/T , is an exact
differential, so that entropy is a state function.

Problem 5.9.4. This problem illustrates how an expression for one of the thermodynamic potentials as a function of its natural variables
contains the information needed to obtain expressions for the other thermodynamic potentials and many other state functions.

From statistical mechanical theory, a simple model for a hypothetical “hard-sphere” liquid (spherical molecules of finite size without
attractive intermolecular forces) gives the following expression for the Helmholtz energy with its natural variables T , V , and n as the indepen-
dent variables:

A=−nRT ln�c T 3/2�V
n −b��−nRT +na

Here a, b, and c are constants. Derive expressions for the following state functions of this hypothetical liquid as functions of T , V , and n.

a) The entropy, S

b) The pressure, p

c) The chemical potential, 𝜇

d) The internal energy, U

e) The enthalpy, H

f) The Gibbs energy, G

g) The heat capacity at constant volume, CV

h) The heat capacity at constant pressure, Cp (hint: use the expression for p to solve for V as a function of T , p, and n; then use
H =U+ pV )

Problem 5.9.5. Figure 5.9.1 on page 120 depicts a hypothetical liquid in equilibrium with its vapor. The liquid and gas are confined in a
cylinder by a piston. An electrical resistor is immersed in the liquid. The system is the contents of the cylinder to the left of the piston (the
liquid, gas, and resistor). The initial state of the system is described by

V1=0.2200m3 T1=300.0K p1=2.50×105Pa

A constant current I =0.5000A is passed for 1600s through the resistor, which has electric resistance Rel=50.00Ω. The piston moves slowly to
the right against a constant external pressure equal to the vapor pressure of the liquid, 2.50×105Pa, and some of the liquid vaporizes. Assume
that the process is adiabatic and that T and p remain uniform and constant. The final state is described by

V2=0.2400m3 T2=300.0K p2=2.50×105Pa

a) Calculate q, w, ΔU, and ΔH .

b) Is the process reversible? Explain.

c) Devise a reversible process that accomplishes the same change of state, and use it to calculate ΔS.

d) Compare q for the reversible process with ΔH . Does your result agree with Eq. 5.3.8?

Figure 5.9.1.
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t/ ∘C 𝛾/10−6 Jcm−2

15 7.350
20 7.275
25 7.199
30 7.120
35 7.041

Table 5.9.1. Surface tension of water at 1bar5.9.1.
5.9.1Ref. [134]

Problem 5.9.6. Use the data in Table 5.9.1 on page 121 to evaluate (∂S/∂As)T ,p at 25 ∘C, which is the rate at which the entropy changes with
the area of the air–water interface at this temperature.

Problem 5.9.7. When an ordinary rubber band is hung from a clamp and stretched with constant downward force F by a weight attached to
the bottom end, gentle heating is observed to cause the rubber band to contract in length. To keep the length l of the rubber band constant
during heating, F must be increased. The stretching work is given by đw′=F dl. From this information, find the sign of the partial derivative
(∂T /∂ l)S,p; then predict whether stretching of the rubber band will cause a heating or a cooling effect.

(Hint: make a Legendre transform of U whose total differential has the independent variables needed for the partial derivative, and write
a reciprocity relation.)

You can check your prediction experimentally by touching a rubber band to the side of your face before and after you rapidly stretch it.
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./bio/nernst
Figure 6.0.1.

Chapter 6
The Third Law and Cryogenics
The third law of thermodynamics concerns the entropy of perfectly-ordered crystals at zero kelvins.

When a chemical reaction or phase transition is studied at low temperatures, and all substances are pure crystals
presumed to be perfectly ordered, the entropy change is found to approach zero as the temperature approaches zero
kelvins:

lim
T→0
ΔS=0 (6.0.1)

(pure, perfectly–ordered crystals)

Equation 6.0.1 is the mathematical statement of the Nernst heat theorem6.0.1 or third law of thermodynamics. It is
true in general only if each reactant and product is a pure crystal with identical unit cells arranged in perfect spatial
order.

6.1 The Zero of Entropy
There is no theoretical relation between the entropies of different chemical elements. We can arbitrarily choose the
entropy of every pure crystalline element to be zero at zero kelvins. Then the experimental observation expressed by
Eq. 6.0.1 requires that the entropy of every pure crystalline compound also be zero at zero kelvins, in order that the
entropy change for the formation of a compound from its elements will be zero at this temperature.

A classic statement of the third law principle appears in the 1923 book Thermodynamics and the Free Energy of
Chemical Substances by G. N. Lewis and M. Randall:6.1.1

“If the entropy of each element in some crystalline state be taken as zero at the absolute zero of temper-
ature: every substance has a finite positive entropy, but at the absolute zero of temperature the entropy
may become zero, and does so become in the case of perfect crystalline substances.”

According to this principle, every substance (element or compound) in a pure, perfectly-ordered crystal at 0K, at
any pressure,6.1.2 has a molar entropy of zero:

Sm(0K)=0 (6.1.1)
(pure, perfectly–ordered crystal)

This convention establishes a scale of absolute entropies at temperatures above zero kelvins called third-law entropies,
as explained in the next section.

6.0.1. Nernst preferred to avoid the use of the entropy function and to use in its place the partial derivative −(∂A/∂T)V (Eq. 5.4.9). The
original 1906 version of his heat theorem was in the form limT→0 (∂ΔA/∂T)V0 (Ref. [33]).

6.1.1. Ref. [85], p. 448.
6.1.2. The entropy becomes independent of pressure as T approaches zero kelvins. This behavior can be deduced from the relation (∂S/∂ p)T =

−𝛼V (Table 7.5.1 on page 144) combined with the experimental observation that the cubic expansion coefficient 𝛼 approaches zero as T approaches
zero kelvins.
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6.2 Molar Entropies
With the convention that the entropy of a pure, perfectly-ordered crystalline solid at zero kelvins is zero, we can
establish the third-law value of the molar entropy of a pure substance at any temperature and pressure. Absolute values
of Sm are what are usually tabulated for calculational use.

6.2.1 Third-law molar entropies
h to evaluate the entropy of an amount n of a pure substance at a certain temperature T ′ and a certain pressure. The
same substance, in a perfectly-ordered crystal at zero kelvins and the same pressure, has an entropy of zero. The
entropy at the temperature and pressure of interest, then, is the entropy change ΔS=∫0

T ′đq/T of a reversible heating
process at constant pressure that converts the perfectly-ordered crystal at zero kelvins to the state of interest.

Consider a reversible isobaric heating process of a pure substance while it exists in a single phase. The definition
of heat capacity as đq/dT (Eq. 3.1.9) allows us to substitute Cp dT for đq, where Cp is the heat capacity of the phase
at constant pressure.

If the substance in the state of interest is a liquid or gas, or a crystal of a different form than the perfectly-ordered
crystal present at zero kelvins, the heating process will include one or more equilibrium phase transitions under condi-
tions where two phases are in equilibrium at the same temperature and pressure (Sec. 2.2.2). For example, a reversible
heating process at a pressure above the triple point that transforms the crystal at 0K to a gas may involve transitions
from one crystal form to another, and also melting and vaporization transitions.

Each such reversible phase transition requires positive heat qtrs. Because the pressure is constant, the heat is
equal to the enthalpy change (Eq. 5.3.8). The ratio qtrs/n is called the molar heat or molar enthalpy of the transition,
ΔtrsH (see Sec. 8.3.1). Because the phase transition is reversible, the entropy change during the transition is given by
ΔtrsS=qtrs/nTtrs where Ttrs is the transition temperature.

With these considerations, we can write the following expression for the entropy change of the entire heating
process:

ΔS=�
0

T ′Cp
T dT +� nΔtrs H

Ttrs
(6.2.1)

The resulting operational equation for the calculation of the molar entropy of the substance at the temperature and
pressure of interest is

Sm(T ′)=
ΔS
n =�0

T ′ Cp,m
T dT +� Δtrs H

Ttrs

(6.2.2)
(pure substance
constant p)

where Cp,m=Cp/n is the molar heat capacity at constant pressure. The summation is over each equilibrium phase
transition occurring during the heating process.

Since Cp,m is positive at all temperatures above zero kelvins, and Δtrs H is positive for all transitions occurring
during a reversible heating process, the molar entropy of a substance is positive at all temperatures above zero kelvins.

The heat capacity and transition enthalpy data required to evaluate Sm(T ′) using Eq.
6.2.2 come from calorimetry. The calorimeter can be cooled to about 10K with liquid hydrogen, but it is difficult to

make measurements below this temperature. Statistical mechanical theory may be used to approximate the part of the
integral in Eq. 6.2.2 between zero kelvins and the lowest temperature at which a value of Cp,m can be measured. The
appropriate formula for nonmagnetic nonmetals comes from the Debye theory for the lattice vibration of a monatomic
crystal. This theory predicts that at low temperatures (from 0K to about 30K), the molar heat capacity at constant
volume is proportional to T 3: CV,m= a T 3, where a is a constant. For a solid, the molar heat capacities at constant
volume and at constant pressure are practically equal. Thus for the integral on the right side of Eq. 6.2.2 we can, to a
good approximation, write

�
0

T ′ Cp,m
T dT =a�

0

T ′′
T 2dT +�

T ′′

T ′ Cp,m
T dT (6.2.3)

where T ′′ is the lowest temperature at which Cp,m is measured. The first term on the right side of Eq. 6.2.3 is

a�
0

T ′′
T 2dT =(aT 3/3)|0T ′′=a(T ′′)3/3 (6.2.4)
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Figure 6.2.1. Properties of hydrogen chloride (HCl): the dependence of Cp,m, Cp,m/T , and Sm on temperature at a pressure of 1bar. The
discontinuities are at a solid→solid phase transition, the melting temperature, and the vaporization temperature. (Condensed-phase data
from Ref. [53]; gas-phase data from Ref. [25], p. 762.)

But a(T ′′)3 is the value of Cp,m at T ′′, so Eq. 6.2.2 becomes

Sm(T ′)=
Cp,m(T ′′)
3 +�

T ′′

T ′ Cp,m
T dT +� Δtrs H

Ttrs

(6.2.5)
(pure substance,
constant p)

In the case of a metal, statistical mechanical theory predicts an electronic contribution to the molar
heat capacity, proportional to T at low temperature, that should be added to the Debye T 3 term: Cp,m=
aT 3+bT . The error in using Eq. 6.2.5, which ignores the electronic term, is usually negligible if the
heat capacity measurements are made down to about 10K.

We may evaluate the integral on the right side of Eq. 6.2.5 by numerical integration. We need the area under the
curve of Cp,m/T plotted as a function of T between some low temperature, T ′′, and the temperature T ′ at which the
molar entropy is to be evaluated. Since the integral may be written in the form

�
T ′′

T ′ Cp,m
T dT =�

T=T ′′

T=T ′
Cp,mdln (T /K) (6.2.6)

we may also evaluate the integral from the area under a curve of Cp,m plotted as a function of ln (T /K).
The procedure of evaluating the entropy from the heat capacity is illustrated for the case of hydrogen chloride in

Fig. 6.2.1 on page 125.
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The areas under the curves of Cp,m/T versus T , and of Cp,m versus ln (T /K), in a given temperature range are
numerically identical (Eq. 6.2.6). Either curve may be used in Eq. 6.2.2 to find the dependence of Sm on T . Note how
the molar entropy increases continuously with increasing T and has a discontinuity at each phase transition.

As explained in Sec. 6.1, by convention the zero of entropy of any substance refers to the pure,
perfectly-ordered crystal at zero kelvins. In practice, experimental entropy values depart from this
convention in two respects. First, an element is usually a mixture of two or more isotopes, so that the
substance is not isotopically pure. Second, if any of the nuclei have spins, weak interactions between
the nuclear spins in the crystal would cause the spin orientations to become ordered at a very low
temperature. Above 1K, however, the orientation of the nuclear spins become essentially random, and
this change of orientation is not included in the Debye T 3 formula.
The neglect of these two effects results in a practical entropy scale, or conventional entropy scale, on
which the crystal that is assigned an entropy of zero has randomly-mixed isotopes and randomly-ori-
ented nuclear spins, but is pure and ordered in other respects. This is the scale that is used for published
values of absolute ``third-law'' molar entropies. The shift of the zero away from a completely-pure and
perfectly-ordered crystal introduces no inaccuracies into the calculated value of Δ S for any process
occurring above 1K, because the shift is the same in the initial and final states. That is, isotopes remain
randomly mixed and nuclear spins remain randomly oriented.

6.2.2 Molar entropies from spectroscopic measurements

Statistical mechanical theory applied to spectroscopic measurements provides an accurate means of evaluating the
molar entropy of a pure ideal gas from experimental molecular properties. This is often the preferred method of
evaluating Sm for a gas. The zero of entropy is the same as the practical entropy scale—that is, isotope mixing and
nuclear spin interactions are ignored. Intermolecular interactions are also ignored, which is why the results apply only
to an ideal gas.

The statistical mechanics formula writes the molar entropy as the sum of a translational contribution
and an internal contribution: Sm=Sm,trans+Sm,int. The translational contribution is given by the Sackur--
Tetrode equation:

Sm,trans=R ln (2𝜋M)3/2(RT)5/2

ph3NA
4 +(5/2)R (6.2.7)

Here h is the Planck constant and NA is the Avogadro constant. The internal contribution is given by

Sm,int=R lnqint+RT (dlnqint/dT) (6.2.8)

where qint is the molecular partition function defined by

qint=�
i
exp (−𝜖i/kT) (6.2.9)

In Eq. 6.2.9, 𝜖i is the energy of a molecular quantum state relative to the lowest energy level, k is
the Boltzmann constant, and the sum is over the quantum states of one molecule with appropriate
averaging for natural isotopic abundance. The experimental data needed to evaluate qint consist of the
energies of low-lying electronic energy levels, values of electronic degeneracies, fundamental vibra-
tional frequencies, rotational constants, and other spectroscopic parameters.

When the spectroscopic method is used to evaluate Sm with p set equal to the standard pressure p∘=1 bar, the
value is the standard molar entropy, Sm

∘ , of the substance in the gas phase. This value is useful for thermodynamic
calculations even if the substance is not an ideal gas at the standard pressure, as will be discussed in Sec. 7.9.

126 THE THIRD LAW AND CRYOGENICS

126



Sm
∘ /(J⋅K−1⋅mol−1)

Substance calorimetric spectroscopic6.2.1 Sm,0/(J⋅K−1⋅mol)
HCl 186.3±0.46.2.2 186.901 0.6±0.4
CO 193.4±0.46.2.3 197.65±0.04 4.3±0.4
NO 208.0±0.46.2.4 210.758 2.8±0.4

N2O (NNO) 215.3±0.46.2.5 219.957 4.7±0.4
H2O 185.4±0.26.2.6 188.834±0.042 3.4±0.2

Table 6.2.1. Standard molar entropies of several substances (ideal gases at T =298.15K and p=1bar) and molar residual entropies

6.2.3 Residual entropy
Ideally, the molar entropy values obtained by the calorimetric (third-law) method for a gas should agree closely with
the values calculated from spectroscopic data. Table 6.2.1 on page 127 shows that for some substances this agreement
is not present. The table lists values of Sm

∘ for ideal gases at 298.15K evaluated by both the calorimetric and spectro-
scopic methods. The quantity Sm,0 in the last column is the difference between the two Sm

∘ values, and is called the
molar residual entropy.

In the case of HCl, the experimental value of the residual entropy is comparable to its uncertainty, indicating
good agreement between the calorimetric and spectroscopic methods. This agreement is typical of most substances,
particularly those like HCl whose molecules are polar and asymmetric with a large energetic advantage of forming
perfectly-ordered crystals.

The other substances listed in Table 6.2.1 on page 127 have residual entropies that are greater than zero within the
uncertainty of the data. What is the meaning of this discrepancy between the calorimetric and spectroscopic results?
We can assume that the true values of Sm

∘ at 298.15K are the spectroscopic values, because their calculation assumes
the solid has only one microstate at 0K, with an entropy of zero, and takes into account all of the possible accessible
microstates of the ideal gas. The calorimetric values, on the other hand, are based on Eq. 6.2.2 which assumes the
solid becomes a perfectly-ordered crystal as the temperature approaches 0K.6.2.7

The conventional explanation of a nonzero residual entropy is the presence of random rotational orientations of
molecules in the solid at the lowest temperature at which the heat capacity can be measured, so that the crystals are not
perfectly ordered. The random structure is established as the crystals form from the liquid, and becomes frozen into the
crystals as the temperature is lowered below the freezing point. This tends to happen with almost-symmetric molecules
with small dipole moments which in the crystal can have random rotational orientations of practically equal energy.
In the case of solid H2O it is the arrangement of intermolecular hydrogen bonds that is random. Crystal imperfections
such as dislocations can also contribute to the residual entropy. If such crystal imperfection is present at the lowest
experimental temperature, the calorimetric value of Sm

∘ for the gas at 298.15K is the molar entropy increase for the
change at 1bar from the imperfectly-ordered solid at 0K to the ideal gas at 298.15K, and the residual entropy Sm,0 is
the molar entropy of this imperfectly-ordered solid.

6.3 Cryogenics
The field of cryogenics involves the production of very low temperatures, and the study of the behavior of matter at
these temperatures. These low temperatures are needed to evaluate third-law entropies using calorimetric measure-
ments. There are some additional interesting thermodynamic applications.

6.3.1 Joule–Thompson expansion
A gas can be cooled by expanding it adiabatically with a piston (Sec. 3.5.3), and a liquid can be cooled by pumping
on its vapor to cause evaporation (vaporization). An evaporation procedure with a refrigerant fluid is what produces
the cooling in an ordinary kitchen refrigerator.

6.2.7. The calorimetric values in Table 6.2.1 were calculated as follows. Measurements of heat capacities and heats of transition were used
in Eq. 6.2.2 to find the third-law value of Sm for the vapor at the boiling point of the substance at p=1atm. This calculated value for the gas was
corrected to that for the ideal gas at p=1bar and adjusted to T =298.15K with spectroscopic data.
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Figure 6.3.1. Joule–Thomson expansion of a gas through a porous plug. The shaded area represents a fixed-amount sample of the gas (a)
at time t1; (b) at a later time t2.

For further cooling of a fluid, a common procedure is to use a continuous throttling process in which the fluid
is forced to flow through a porous plug, valve, or other constriction that causes an abrupt drop in pressure. A slow
continuous adiabatic throttling of a gas is called the Joule--Thomson experiment, or Joule–Kelvin experiment, after
the two scientists who collaborated between 1852 and 1862 to design and analyze this procedure.6.3.1

The principle of the Joule–Thomson experiment is shown in Fig. 6.3.1 on page 128.
A tube with thermally insulated walls contains a gas maintained at a constant pressure p′ at the left side of a

porous plug and at a constant lower pressure p′′ at the right side. Because of the pressure difference, the gas flows
continuously from left to right through the plug. The flow is slow, and the pressure is essentially uniform throughout
the portion of the tube at each side of the plug, but has a large gradient within the pores of the plug.

After the gas has been allowed to flow for a period of time, a steady state develops in the tube. In this steady state,
the gas is assumed to have a uniform temperature T ′ at the left side of the plug and a uniform temperature T ′′ (not
necessarily equal to T ′) at the right side of the plug.

Consider the segment of gas whose position at times t1 and t2 is indicated by shading in Fig. 6.3.1. This segment
contains a fixed amount of gas and expands as it moves through the porous plug from higher to lower pressure. We
can treat this gas segment as a closed system. During the interval between times t1 and t2, the system passes through
a sequence of different states, none of which is an equilibrium state since the process is irreversible. The energy
transferred across the boundary by heat is zero, because the tube wall is insulated and there is no temperature gradient
at either end of the gas segment. We calculate the energy transferred by work at each end of the gas segment from
đw=−pb As dx, where pb is the pressure (either p′ or p′′) at the moving boundary, As is the cross-section area of the
tube, and x is the distance along the tube. The result is

w=−p′ (V2′−V1′)− p′′ (V2′′−V1′′) (6.3.1)

where the meaning of the volumes V1′, V2′, and so on is indicated in the figure.
The internal energy changeΔU of the gas segment must be equal to w, since q is zero. Now let us find the enthalpy

change ΔH. At each instant, a portion of the gas segment is in the pores of the plug, but this portion contributes an
unchanging contribution to both U and H because of the steady state. The rest of the gas segment is in the portions on
either side of the plug, with enthalpies U′+ p′V ′ at the left and U′′+ p′′V ′′ at the right. The overall enthalpy change
of the gas segment must be

ΔH=ΔU+(p′V2′+ p′′V2′′)− (p′V1′+ p′′V1′′) (6.3.2)

which, when combined with the expression of Eq. 6.3.1 for w=ΔU, shows that ΔH is zero. In other words, the gas
segment has the same enthalpy before and after it passes through the plug: the throttling process is isenthalpic.

The temperatures T ′ and T ′′ can be measured directly. When values of T ′′ versus p′′ are plotted for a series
of Joule–Thomson experiments having the same values of T ′ and p′ and different values of p′′, the curve drawn
through the points is a curve of constant enthalpy. The slope at any point on this curve is equal to the Joule–Thomson
coefficient (or Joule–Kelvin coefficient) defined by

𝜇JT =
def
�∂T
∂ p�H

(6.3.3)

6.3.1. William Thomson later became Lord Kelvin.
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Figure 6.3.3. Adiabatic demagnetization to achieve a low temperature in a paramagnetic solid.

For an ideal gas,𝜇JT is zero because the enthalpy of an ideal gas depends only on T (Prob. 5.9.1); T cannot change if H
is constant. For a nonideal gas, 𝜇JT is a function of T and p and the kind of gas.6.3.2 For most gases, at low to moderate
pressures and at temperatures not much greater than room temperature, 𝜇JK is positive. Under these conditions, a
Joule–Thomson expansion to a lower pressure has a cooling effect, because T will decrease as p decreases at constant
H. Hydrogen and helium, however, have negative values of 𝜇JK at room temperature and must be cooled by other
means to about 200K and 40K, respectively, in order for a Joule–Thomson expansion to cause further cooling.

The cooling effect of a Joule–Thomson expansion is often used to cool a gas down to its condensation temperature.
This procedure can be carried out continuously by pumping the gas through the throttle and recirculating the cooler
gas on the low-pressure side through a heat exchanger to help cool the gas on the high-pressure side. Starting at room
temperature, gaseous nitrogen can be condensed by this means to liquid nitrogen at 77.4K. The liquid nitrogen can
then be used as a cooling bath for gaseous hydrogen. At 77.4K, hydrogen has a positive Joule–Thomson coefficient,
so that it in turn can be converted by a throttling process to liquid hydrogen at 20.3K. Finally, gaseous helium, whose
Joule–Thomson coefficient is positive at 20.3K, can be converted to liquid helium at 4.2K. Further cooling of the
liquid helium to about 1K can be carried out by pumping to cause rapid evaporation.

6.3.2 Magnetization

The work of magnetization of an isotropic paramagnetic phase can be written đw′=Bdmmag, where B is the magni-
tude of the magnetic flux density and mmag is the magnitude of the magnetic dipole moment of the phase. The total
differential of the internal energy of a closed isotropic phase with magnetization is given by

dU=T dS − pdV +Bdmmag (6.3.4)

with S, V , and mmag as the independent variables.
The technique of adiabatic demagnetization can be used to obtain temperatures below 1K. This method, sug-

gested by Peter Debye in 1926 and independently by William Giauque in 1927, requires a paramagnetic solid in which
ions with unpaired electrons are sufficiently separated that at 1K the orientations of the magnetic dipoles are almost
completely random. Gadolinium(III) sulfate octahydrate, Gd2(SO4)3 ⋅ 8H2O, is commonly used.

./bio/giauque
Figure 6.3.2.

Figure 6.3.3 on page 129 illustrates the principle of the technique. The solid curve shows the temperature depen-
dence of the entropy of a paramagnetic solid in the absence of an applied magnetic field, and the dashed curve is for
the solid in a constant, finite magnetic field. The temperature range shown is from 0K to approximately 1K. At 0K,
the magnetic dipoles are perfectly ordered. The increase of S shown by the solid curve between 0K and 1K is due
almost entirely to increasing disorder in the orientations of the magnetic dipoles as heat enters the system.

6.3.2. See Sec. 7.5.2 for the relation of the Joule–Thomson coefficient to other properties of a gas.
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the process that occurs when the paramagnetic solid, surrounded by gaseous helium in thermal contact with liquid
helium that has been cooled to about 1K, is slowly moved into a strong magnetic field. The process is isothermal
magnetization, which partially orients the magnetic dipoles and reduces the entropy. During this process there is heat
transfer to the liquid helium, which partially boils away. In path B, the thermal contact between the solid and the liquid
helium has been broken by pumping away the gas surrounding the solid, and the sample is slowly moved away from
the magnetic field. This step is a reversible adiabatic demagnetization. Because the process is reversible and adiabatic,
the entropy change is zero, which brings the state of the solid to a lower temperature as shown.

The sign of (∂T /∂B)S,p is of interest because it tells us the sign of the temperature change during a reversible
adiabatic demagnetization (path B of Fig. 6.3.3 on page 129). To change the independent variables in Eq. 6.3.4 to S,
p, and B, we define the Legendre transform

H′ =
def

U+ pV −Bmmag (6.3.5)

(H′ is sometimes called the magnetic enthalpy.) From Eqs. 6.3.4 and 6.3.5 we obtain the total differential

dH′=TdS+Vdp−mmag dB (6.3.6)
From it we find the reciprocity relation

�∂T
∂B�S,p

=−�∂mmag
∂S �p,B

(6.3.7)

According to Curie's law of magnetization, the magnetic dipole moment mmag of a paramagnetic phase at constant
magnetic flux density B is proportional to 1/T . This law applies when B is small, but even if B is not small mmag
decreases with increasing T . To increase the temperature of a phase at constant B, we allow heat to enter the system,
and S then increases. Thus, (∂mmag/∂ S)p,B is negative and, according to Eq. 6.3.7, (∂T /∂B)S,p must be positive.
Adiabatic demagnetization is a constant-entropy process in which B decreases, and therefore the temperature also
decreases.

We can find the sign of the entropy change during the isothermal magnetization process shown as path A in Fig.
6.3.36.3.3 on page 129. In order to use T , p, and B as the independent variables, we define the Legendre transform
G′ =

def
H′−TS. Its total differential is

dG′=−S dT +V dp−mmag dB (6.3.8)

From this total differential, we obtain the reciprocity relation

�∂S
∂B�T ,p

=�∂mmag
∂T �

p,B
(6.3.9)

Since mmag at constant B decreases with increasing T , as explained above, we see that the entropy change during
isothermal magnetization is negative.

By repeatedly carrying out a procedure of isothermal magnetization and adiabatic demagnetization, starting each
stage at the temperature produced by the previous stage, it has been possible to attain a temperature as low as 0.0015K.
The temperature can be reduced still further, down to 16 microkelvins, by using adiabatic nuclear demagnetization.
However, as is evident from the figure, if in accordance with the third law both of the entropy curves come together
at the absolute zero of the kelvin scale, then it is not possible to attain a temperature of zero kelvins in a finite number
of stages of adiabatic demagnetization. This conclusion is called the principle of the unattainability of absolute zero.
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6.4 Problems
Problem 6.4.1. Calculate the molar entropy of carbon disulfide at 25.00 ∘C and 1bar from the heat capacity data for the solid in Table 6.4.1 on
page 131 and the following data for p=1bar. At the melting point, 161.11K, the molar enthalpy of fusion is ΔfusH =4.39×103 J⋅mol−1. The
molar heat capacity of the liquid in the range 161–300 K is described by Cp,m=a+bT , where the constants have the values a=74.6J⋅K−1⋅mol−1

and b=0.0034 J⋅K−2⋅mol−1.

T /K Cp,m/(J⋅K−1⋅mol−1)
15.05 6.9
20.15 12.0
29.76 20.8
42.22 29.2
57.52 35.6
75.54 40.0
94.21 45.0
108.93 48.5
131.54 52.6
156.83 56.6

Table 6.4.1. Molar heat capacity of CS2(s) at p=1bar6.4.1.

6.4.1Ref. [23]
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Chapter 7
Pure Substances in Single Phases

This chapter applies concepts introduced in earlier chapters to the simplest kind of system, one consisting of a pure
substance or a single component in a single phase. The system has three independent variables if it is open, and two
if it is closed. Relations among various properties of a single phase are derived, including temperature, pressure, and
volume. The important concepts of standard states and chemical potential are introduced.

7.1 Volume Properties

Two volume properties of a closed system are defined as follows:

cubicexpansioncoefficient 𝛼 =
def 1

V�
∂V
∂T�p

(7.1.1)

isothermalcompressibility 𝜅T =
def

−1V�
∂V
∂ p�T

(7.1.2)

The cubic expansion coefficient is also called the coefficient of thermal expansion and the expansivity
coefficient. Other symbols for the isothermal compressibility are 𝛽 and 𝛾T .

These definitions show that 𝛼 is the fractional volume increase per unit temperature increase at constant pressure,
and 𝜅T is the fractional volume decrease per unit pressure increase at constant temperature. Both quantities are inten-
sive properties. Most substances have positive values of 𝛼,7.1.1 and all substances have positive values of 𝜅T , because
a pressure increase at constant temperature requires a volume decrease.

If an amount n of a substance is in a single phase, we can divide the numerator and denominator of the right sides
of Eqs. 7.1.1 and 7.1.2 by n to obtain the alternative expressions

𝛼= 1Vm
�∂Vm
∂T �p

(7.1.3)
(pure substance, P=1)

𝜅T =− 1Vm
�∂Vm
∂ p �T

(7.1.4)
(pure substance, P=1)

where Vm is the molar volume. P in the conditions of validity is the number of phases. Note that only intensive
properties appear in Eqs. 7.1.3 and 7.1.4; the amount of the substance is irrelevant. Figures 7.1.1 and 7.1.2 show the
temperature variation of 𝛼 and 𝜅T for several substances.

7.1.1. The cubic expansion coefficient is not always positive. 𝛼 is negative for liquid water below its temperature of maximum density, 3.98 ∘C.
The crystalline ceramics zirconium tungstate (ZrW2O8) and hafnium tungstate (HfW2O8) have the remarkable behavior of contracting uniformly
and continuously in all three dimensions when they are heated from 0.3K to about 1050K; 𝛼 is negative throughout this very wide temperature
range (Ref. [92]). The intermetallic compound YbGaGe has been found to have a value of 𝛼 that is practically zero in the range 100--300K (Ref.
[huniniti]).
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Figure 7.1.1. The cubic expansion coefficient of several substances and an ideal gas as functions of temperature at p=1bar.7.1.2 Note that
because liquid water has a density maximum at 4 ∘C, 𝛼 is zero at that temperature.

7.1.2. Based on data in Ref. [42], p. 104; Ref. [60]; and Ref. [139], p. 28.

Figure 7.1.2. The isothermal compressibility of several substances as a function of temperature at p=1bar. (Based on data in Ref. [42];
Ref. [75]; and Ref. [139], p. 28.)

If we choose T and p as the independent variables of the closed system, the total differential of V is given by

dV =�∂V
∂T�p

dT +�∂V
∂ p�T

dp (7.1.5)

With the substitutions (∂V /∂T)p=𝛼V (from Eq.

7.1.1) and (∂V /∂ p)T =−𝜅TV (from Eq.
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7.1.2), the expression for the total differential of V becomes

dV =𝛼VdT −𝜅TVdp
(7.1.6)

(closed system,
C=1, P=1)

To find how p varies with T in a closed system kept at constant volume, we set dV equal to zero in Eq. 7.1.6:
0=𝛼VdT −𝜅T Vdp, or dp/dT =𝛼/𝜅T . Since dp/dT under the condition of constant volume is the partial derivative
(∂ p/∂T)V, we have the general relation

�∂ p
∂T�V

= 𝛼𝜅T

(7.1.7)
(closed system,
C=1,P=1)

7.2 Internal Pressure
The partial derivative (∂U/∂V)T applied to a fluid phase in a closed system is called the internal pressure. (Note
that U and pV have dimensions of energy; therefore, U/V has dimensions of pressure.)

To relate the internal pressure to other properties, we divide Eq.
5.2.2 by dV : dU/dV =T (dS/dV)− p. Then we impose a condition of constant T : (∂U/∂V)T =T(∂S/∂V)T − p.

When we make a substitution for (∂S/∂V)T from the Maxwell relation of Eq. 5.4.17, we obtain

�∂U
∂V�T

=T�∂ p
∂T�V

− p
(7.2.1)

(closed system,
fluid phase, C=1)

This equation is sometimes called the “thermodynamic equation of state” of the fluid.
For an ideal-gas phase, we can write p=nRT /V and then

�∂ p
∂T�V

= nR
V =

p
T (7.2.2)

Making this substitution in Eq. 7.2.1 gives us

�∂U
∂V�T

=0
(7.2.3)

(closed system
of an ideal gas)

showing that the internal pressure of an ideal gas is zero.

In Sec. 3.5.1, an ideal gas was defined as a gas (1) that obeys the ideal gas equation, and (2) for which
U in a closed system depends only on T . Equation 7.2.3, derived from the first part of this definition,
expresses the second part. It thus appears that the second part of the definition is redundant, and that we
could define an ideal gas simply as a gas obeying the ideal gas equation. This argument is valid only
if we assume the ideal-gas temperature is the same as the thermodynamic temperature (Secs. 2.3.6 and
4.3.4) since this assumption is required to derive Eq. 7.2.3. Without this assumption, we can't define
an ideal gas solely by pV =nRT , where T is the ideal gas temperature.

Here is a simplified interpretation of the significance of the internal pressure. When the volume of a fluid increases,
the average distance between molecules increases and the potential energy due to intermolecular forces changes. If
attractive forces dominate, as they usually do unless the fluid is highly compressed, expansion causes the potential
energy to increase. The internal energy is the sum of the potential energy and thermal energy. The internal pressure,
(∂U/∂V)T , is the rate at which the internal energy changes with volume at constant temperature. At constant temper-
ature, the thermal energy is constant so that the internal pressure is the rate at which just the potential energy changes
with volume. Thus, the internal pressure is a measure of the strength of the intermolecular forces and is positive if
attractive forces dominate.7.2.1 In an ideal gas, intermolecular forces are absent and therefore the internal pressure of
an ideal gas is zero.

7.2.1. These attractive intermolecular forces are the cohesive forces that can allow a negative pressure to exist in a liquid; see page huniniti.
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With the substitution (∂ p/∂T)V=𝛼/𝜅T (Eq. 7.1.7), Eq. 7.2.1 becomes

�∂U
∂V�T

= 𝛼T
𝜅T

− p
(7.2.4)

(closed system,
fluid phase, C=1)

The internal pressure of a liquid at p=1bar is typically much larger than 1bar (see Prob. 7.10.6). Equation 7.2.4 shows
that, in this situation, the internal pressure is approximately equal to 𝛼T /𝜅T .

7.3 Thermal Properties

For convenience in derivations to follow, expressions from Chap. 5 are repeated here that apply to processes in a
closed system in the absence of nonexpansion work (i.e., đw′=0). For a process at constant volume we have7.3.1

dU=đq CV=�
∂U
∂T �V

(7.3.1)

and for a process at constant pressure we have7.3.2

dH=đq Cp=�
∂H
∂T �p

(7.3.2)

A closed system of one component in a single phase has only two independent variables. In such a system, the
partial derivatives above are complete and unambiguous definitions of CV and Cp because they are expressed with two
independent variables—T and V for CV, and T and p for Cp. As mentioned on page 117, additional conditions would
have to be specified to define CV for a more complicated system; the same is true for Cp.

For a closed system of an ideal gas we have7.3.3

CV=
dU
dT Cp=

dH
dT (7.3.3)

7.3.1 The relation between CV ,m and Cp,m

The value of Cp,m for a substance is greater than CV,m. The derivation is simple in the case of a fixed amount of an
ideal gas. Using substitutions from Eq. 7.3.3, we write

Cp −CV=
dH
dT − dU

dT =
d(H −U)

dT = d(pV)
dT =nR (7.3.4)

Division by n to obtain molar quantities and rearrangement then gives

Cp,m=CV,m+R (7.3.5)
(ideal gas, pure substance)

For any phase in general, we proceed as follows. First we write

Cp=�
∂H
∂T �p

=�∂(U+ pV)
∂T �

p
=�∂U
∂T �p

+ p�∂V
∂T�p

(7.3.6)

Then we write the total differential of U with T and V as independent variables and identify one of the coefficients as
CV:

dU=�∂U
∂T �V

dT +�∂U
∂V�T

dV =CVdT +�∂U
∂V�T

dV (7.3.7)

7.3.1. Eqs. 5.3.9 and 5.6.1.
7.3.2. Eqs. 5.3.7 and 5.6.3.
7.3.3. Eqs. 5.6.2 and 5.6.4.
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When we divide both sides of the preceding equation by dT and impose a condition of constant p, we obtain

�∂U
∂T �p

=CV+�
∂U
∂V�T

�∂V
∂T�p

(7.3.8)

Substitution of this expression for (∂U/∂T)p in the equation for Cp yields

Cp=CV+��
∂U
∂V�T

+ p��∂V
∂T�p

(7.3.9)

Finally we set the partial derivative (∂U/∂V)T (the internal pressure) equal to (𝛼T /𝜅T)− p (Eq. 7.2.4) and (∂V /
∂T)p equal to 𝛼V to obtain

Cp=CV+
𝛼2TV
𝜅T

(7.3.10)

and divide by n to obtain molar quantities:

Cp,m=CV,m+
𝛼2TVm
𝜅T

(7.3.11)

Since the quantity 𝛼2TVm/𝜅T must be positive, Cp,m is greater than CV,m.

7.3.2 The measurement of heat capacities
The most accurate method of evaluating the heat capacity of a phase is by measuring the temperature change resulting
from heating with electrical work. The procedure in general is called calorimetry, and the apparatus containing the
phase of interest and the electric heater is a calorimeter. The principles of three commonly-used types of calorimeters
with electrical heating are described below.

7.3.2.1 Adiabatic calorimeters

An adiabatic calorimeter is designed to have negligible heat flow to or from its surroundings. The calorimeter contains
the phase of interest, kept at either constant volume or constant pressure, and also an electric heater and a temperature-
measuring device such as a platinum resistance thermometer, thermistor, or quartz crystal oscillator. The contents may
be stirred to ensure temperature uniformity.

To minimize conduction and convection, the calorimeter usually is surrounded by a jacket separated by an air
gap or an evacuated space. The outer surface of the calorimeter and inner surface of the jacket may be polished to
minimize radiation emission from these surfaces. These measures, however, are not sufficient to ensure a completely
adiabatic boundary, because energy can be transferred by heat along the mounting hardware and through the electrical
leads. Therefore, the temperature of the jacket, or of an outer metal shield, is adjusted throughout the course of the
experiment so as to be as close as possible to the varying temperature of the calorimeter. This goal is most easily
achieved when the temperature change is slow.

To make a heat capacity measurement, a constant electric current is passed through the heater circuit for a known
period of time. The system is the calorimeter and its contents. The electrical work wel performed on the system by the
heater circuit is calculated from the integrated form of Eq. 3.8.53.8.5 on page 74: wel= I2RelΔ t, where I is the electric
current, Rel is the electric resistance, and Δ t is the time interval. We assume the boundary is adiabatic and write the
first law in the form

dU=−pdV +đwel+đwcont (7.3.12)

where −pdV is expansion work and wcont is any continuous mechanical work from stirring (the subscript “cont” stands
for continuous). If electrical work is done on the system by a thermometer using an external electrical circuit, such as
a platinum resistance thermometer, this work is included in wcont.

Consider first an adiabatic calorimeter in which the heating process is carried out at constant volume. There is no
expansion work, and Eq. 7.3.12 becomes

dU=đwel+đwcont
(7.3.13)

(constant V )
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Figure 7.3.1. Typical heating curve of an adiabatic calorimeter.

An example of a measured heating curve (temperature T as a function of time t) is shown in Fig. 7.3.1.
We select two points on the heating curve, indicated in the figure by open circles. Time t1 is at or shortly before the

instant the heater circuit is closed and electrical heating begins, and time t2 is after the heater circuit has been opened
and the slope of the curve has become essentially constant.

In the time periods before t1 and after t2, the temperature may exhibit a slow rate of increase due to the continuous
work wcont from stirring and temperature measurement. If this work is performed at a constant rate throughout the
course of the experiment, the slope is constant and the same in both time periods as shown in the figure.

The relation between the slope and the rate of work is given by a quantity called the energy equivalent, 𝜖.The
energy equivalent is the heat capacity of the calorimeter under the conditions of an experiment. The heat capacity of
a constant-volume calorimeter is given by 𝜖=(∂U/∂T)V (Eq. 5.6.1). Thus, at times before t1 or after t2, when đwel
is zero and dU equals đwcont, the slope r of the heating curve is given by

r= dT
dt =

dT
dU

dU
dt =

1
𝜖

đwcont
dt (7.3.14)

The rate of the continuous work is therefore đwcont/dt=𝜖 r. This rate is constant throughout the experiment. In the
time interval from t1 to t2, the total quantity of continuous work is wcont=𝜖r (t2− t1), where r is the slope of the heating
curve measured outside this time interval.

To find the energy equivalent, we integrate Eq. 7.3.13 between the two points on the curve:

ΔU=wel+wcont=wel+𝜖 r (t2− t1)
(7.3.15)

(constant V )

Then the average heat capacity between temperatures T1 and T2 is

𝜖= ΔU
T2−T1

= wel+𝜖 r (t2− t1)
T2−T1

(7.3.16)
Solving for 𝜖, we obtain

𝜖= wel
T2−T1− r (t2− t1)

(7.3.17)

The value of the denominator on the right side is indicated by the vertical line in Fig. 7.3.1. It is the temperature change
that would have been observed if the same quantity of electrical work had been performed without the continuous
work.

Next, consider the heating process in a calorimeter at constant pressure. In this case the enthalpy change is given
by dH=dU+ pdV which, with substitution from Eq. 7.3.12, becomes

dH=đwel+đwhrsubjconti (7.3.18)
(constant p)

We follow the same procedure as for the constant-volume calorimeter, using Eq. 7.3.18 in place of Eq. 7.3.13 and
equating the energy equivalent 𝜖 to (∂H/∂T)p, the heat capacity of the calorimeter at constant pressure (Eq. 5.6.3).
We obtain the relation

ΔH=wel+wcont=wel+𝜖 r (t2− t1)
(7.3.19)

(constant p)
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Figure 7.3.2. Typical heating curve of an isothermal-jacket calorimeter.

in place of Eq. 7.3.15 and end up again with the expression of Eq. 7.3.17 for 𝜖.
The value of 𝜖 calculated from Eq. 7.3.17 is an average value for the temperature interval from T1 to T2, and we

can identify this value with the heat capacity at the temperature of the midpoint of the interval. By taking the difference
of values of 𝜖 measured with and without the phase of interest present in the calorimeter, we obtain CV or Cp for the
phase alone.

It may seem paradoxical that we can use an adiabatic process, one without heat, to evaluate a quantity defined by
heat (heat capacity=đq/dT ). The explanation is that energy transferred into the adiabatic calorimeter as electrical
work, and dissipated completely to thermal energy, substitutes for the heat that would be needed for the same change
of state without electrical work.

7.3.2.2 Isothermal–jacket calorimeters

A second common type of calorimeter is similar in construction to an adiabatic calorimeter, except that the sur-
rounding jacket is maintained at constant temperature. It is sometimes called an isoperibol calorimeter. A correction
is made for heat transfer resulting from the difference in temperature across the gap separating the jacket from the
outer surface of the calorimeter. It is important in making this correction that the outer surface have a uniform tem-
perature without “hot spots.”

Assume the outer surface of the calorimeter has a uniform temperature T that varies with time, the jacket temper-
ature has a constant value Text, and convection has been eliminated by evacuating the gap. Then heat transfer is by
conduction and radiation, and its rate is given by Newton's law of cooling

đq
dt =−k (T −Text) (7.3.20)

where k is a constant (the thermal conductance). Heat flows from a warmer to a cooler body, so đq/dt is positive if
T is less than Text and negative if T is greater than Text.

The possible kinds of work are the same as for the adiabatic calorimeter: expansion work −pdV , intermittent work
wel done by the heater circuit, and continuous work wcont. By combining the first law and Eq. 7.3.20, we obtain the
following relation for the rate at which the internal energy changes:

dU
dt =

đq
dt +

đw
dt =−k (T −Text)− p dV

dt +
đwel
dt +

đwcont
dt (7.3.21)

For heating at constant volume (dV /dt=0), this relation becomes

dU
dt =−k (T −Text)+

đwel
dt +

đwcont
dt

(7.3.22)
(cosntant V )

An example of a heating curve is shown in Fig. 7.3.2.
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In contrast to the curve of Fig. 7.3.1, the slopes are different before and after the heating interval due to the
changed rate of heat flow. Times t1 and t2 are before and after the heater circuit is closed. In any time interval before
time t1 or after time t2, the system behaves as if it is approaching a steady state of constant temperature T∞ (called
the convergence temperature), which it would eventually reach if the experiment were continued without closing
the heater circuit. T∞ is greater than Text because of the energy transferred to the system by stirring and electrical
temperature measurement. By setting dU/dt and đwel/dt equal to zero and T equal to T∞ in Eq. 7.3.22, we obtain
đwcont/dt= k (T∞− Text). We assume đwcont/dt is constant. Substituting this expression into Eq. 7.3.22 gives us a
general expression for the rate at which U changes in terms of the unknown quantities k and T∞:

dU
dt =−k (T −T∞)+

đwel
dt

(7.3.23)
(constant V )

This relation is valid throughout the experiment, not only while the heater circuit is closed. If we multiply by dt and
integrate from t1 to t2, we obtain the internal energy change in the time interval from t1 to t2:

ΔU=−k�
t1

t2
(T −T∞)dt+wel

(7.3.24)
(constant V )

All the intermittent work wel is performed in this time interval.

The derivation of Eq. 7.3.24 is a general one. The equation can be applied also to a isothermal-jacket
calorimeter in which a reaction is occurring. Section 11.5.2 will mention the use of this equation for
an internal energy correction of a reaction calorimeter with an isothermal jacket.

The average value of the energy equivalent in the temperature range T1 to T2 is

𝜖= ΔU
T2−T1

=
−𝜖(k/𝜖)∫t1

t2 (T −T∞)dt+wel

T2−T1
(7.3.25)

Solving for 𝜖, we obtain

𝜖= wel

(T2−T1)+(k/𝜖)∫t1
t2 (T −T∞)dt

(7.3.26)

The value of wel is known from wel= I 2RelΔ t, where Δ t is the time interval during which the heater circuit is closed.
The integral can be evaluated numerically once T∞ is known.

For heating at constant pressure, dH is equal to dU+ pdV , and we can write

dH
dt =

dU
dt + p dV

dt =−k (T −Text)+
đwel
dt +

đwcont
dt

(7.3.27)
(constant p)

which is analogous to Eq. 7.3.22. By the procedure described above for the case of constant V , we obtain

ΔH=−k�
t1

t2
(T −T∞)dt+wel

(7.3.28)
(constant p)

At constant p, the energy equivalent is equal to Cp=ΔH/(T2− T1), and the final expression for 𝜖 is the same as that
given by Eq. 7.3.26.

To obtain values of k/𝜖 and T∞ for use in Eq. 7.3.26, we need the slopes of the heating curve in time intervals
(rating periods) just before t1 and just after t2. Consider the case of constant volume. In these intervals, đwel/dt is zero
and dU/dt equals −k (T −T∞) (from Eq. 7.3.23). The heat capacity at constant volume is CV=dU/dT . The slope r
in general is then given by

r= dT
dt =

dT
dU

dU
dt =−(k/𝜖)(T −T∞) (7.3.29)
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Figure 7.3.3. Temperature dependence of molar heat capacity at constant pressure (p=1bar) of H2O, N2, and C(graphite).

Applying this relation to the points at times t1 and t2, we have the following simultaneous equations in the unknowns
k/𝜖 and T∞:

r1=−(k/𝜖) (T1−T∞) r2=−(k/𝜖)(T2−T∞) (7.3.30)

The solutions are

(k/𝜖)= r1− r2
T2−T1

T∞=
r1T2− r2T1

r1− r2
(7.3.31)

Finally, k is given by

k=(k/𝜖)𝜖=� r1− r2
T2−T1

�𝜖 (7.3.32)

When the pressure is constant, this procedure yields the same relations for k/𝜖, T∞, and k.

7.3.2.3 Continuous–flow calorimeters

A flow calorimeter is a third type of calorimeter used to measure the heat capacity of a fluid phase. The gas or liquid
flows through a tube at a known constant rate past an electrical heater of known constant power input. After a steady
state has been achieved in the tube, the temperature increase ΔT at the heater is measured.

If đwel/dt is the rate at which electrical work is performed (the electric power) and dm/dt is the mass flow rate,
then in time intervalΔ t a quantity w=(đwel/dt)Δ t of work is performed on an amount n=(dm/dt)Δ t/M of the fluid
(where M is the molar mass). If heat flow is negligible, the molar heat capacity of the substance is given by

Cp,m=
w

nΔT =
M (đwel/dt)
ΔT (dm/dt) (7.3.33)

To correct for the effects of heat flow, ΔT is usually measured over a range of flow rates and the results extrapolated
to infinite flow rate.

7.3.3 Typical values

Figure 7.3.3 on page 141 shows the temperature dependence of Cp,m for several substances. The discontinuities seen at
certain temperatures occur at equilibrium phase transitions. At these temperatures the heat capacity is in effect infinite,
since the phase transition of a pure substance involves finite heat with zero temperature change.
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7.4 Heating at Constant Volume or Pressure
Consider the process of changing the temperature of a phase at constant volume.7.4.1 The rate of change of internal
energy with T under these conditions is the heat capacity at constant volume: CV=(∂U/∂T)V (Eq. 7.3.1). Accord-
ingly, an infinitesimal change of U is given by

dU=CV dT
(7.4.1)

(closed system,
C=1, P=1, constant V )

and the finite change of U between temperatures T1 and T2 is

ΔU=�
T1

T2
CV dT

(7.4.2)
(closed system,
C=1, P=1, constant V )

Three comments, relevant to these and other equations in this chapter, are in order:

1. Equation 7.4.2 allows us to calculate the finite change of a state function, U, by integrating CV over T . The
equation was derived under the condition that V is constant during the process, and the use of the integration
variable T implies that the system has a single, uniform temperature at each instant during the process. The
integrand CV may depend on both V and T , and we should integrate with V held constant and CV treated as a
function only of T .

2. Suppose we want to evaluate ΔU for a process in which the volume is the same in the initial and final states
(V2=V1) but is different in some intermediate states, and the temperature is not uniform in some of the interme-
diate states. We know the change of a state function depends only on the initial and final states, so we can still
use Eq. 7.4.2 to evaluateΔU for this process. We integrate with V held constant, although V was not constant
during the actual process.

In general: A finite changeΔX of a state function, evaluated under the condition that another state function
Y is constant, is the same asΔX under the less stringent condition Y2=Y1. (Another application of this principle
was mentioned in Sec. 4.6.2.)

3. For a pure substance, we may convert an expression for an infinitesimal or finite change of an extensive prop-
erty to an expression for the change of the corresponding molar property by dividing by n. For instance, Eq.
7.4.1 becomes

dUm=CV,mdT (7.4.3)

and Eq. 7.4.2 becomes

ΔUm=�T1

T2
CV,mdT (7.4.4)

If, at a fixed volume and over the temperature range T1 to T2, the value of CV is essentially constant (i.e., independent
of T ), Eq. 7.4.2 becomes

ΔU=CV (T2−T1)
(7.4.5)

(closed system, C=1
P=1, constant V and CV)

An infinitesimal entropy change during a reversible process in a closed system is given according to the second law
by dS=đq/T . At constant volume, đq is equal to dU which in turn equals CVdT . Therefore, the entropy change is

dS= CV
T dT

(7.4.6)
(closed system,
C=1, P=1, constant V )

7.4.1. Keeping the volume exactly constant while increasing the temperature is not as simple as it may sound. Most solids expand when heated,
unless we arrange to increase the external pressure at the same time. If we use solid walls to contain a fluid phase, the container volume will change
with temperature. For practical purposes, these volume changes are usually negligible.
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Integration yields the finite change

ΔS=�
T1

T2 CV
T dT

(7.4.7)
(closed system
C=1, P=1, constant V )

If CV is treated as constant, Eq. 7.4.7 becomes

ΔS=CV ln
T2
T1

(7.4.8)
(closed system, C=1
P=1, constant V and CV)

(More general versions of the two preceding equations have already been given in Sec. 4.6.1.)
Since CV is positive, we see from Eqs. 7.4.2 and 7.4.7 that heating a phase at constant volume causes both U and

S to increase.
We may derive relations for a temperature change at constant pressure by the same methods. From Cp=(∂H/

∂T)p (Eq. 7.3.2), we obtain

ΔH=�
T1

T2
Cp dT

(7.4.9)
(closed system,
C=1, P=1, constant p)

If Cp is treated as constant, Eq. 7.4.9 becomes

ΔH=Cp (T2−T1)
(7.4.10)

(closed system, C=1
P=1, constant p and Cp)

From dS=đq/T and Eq. 7.3.2 we obtain for the entropy change at constant pressure

dS= Cp
T dT

(7.4.11)
(closed system,
C=1, P=1, constant p)

Integration gives

ΔS=�
T1

T2 Cp
T dT

(7.4.12)
(closed system,
C=1, P=1, constant p)

or, with Cp treated as constant,

ΔS=Cp ln
T2
T1

(7.4.13)
(closed system, C=1,
P=1, constant p and Cp)

Cp is positive, so heating a phase at constant pressure causes H and S to increase.
The Gibbs energy changes according to (∂G/∂T)p=−S (Eq. 5.4.11), so heating at constant pressure causes G to

decrease.

7.5 Partial Derivatives with Respect to T, p, and V

7.5.1 Tables of partial derivatives
The tables in this section collect useful expressions for partial derivatives of the eight state functions T , p, V , U, H, A,
G, and S in a closed, single-phase system. Each derivative is taken with respect to one of the three easily-controlled
variables T , p, or V while another of these variables is held constant. We have already seen some of these expressions,
and the derivations of the others are indicated below.

We can use these partial derivatives (1) for writing an expression for the total differential of any of the eight
quantities, and (2) for expressing the finite change in one of these quantities as an integral under conditions of constant
T , p, or V . For instance, given the expressions

�∂S
∂T�p

= Cp
T and �∂S

∂ p�T
=−𝛼V (7.5.1)
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Partial
derivative

General
expression

Ideal
gas

Partial
derivative

General
expression

Ideal
gas

�∂ p
∂V�T

− 1𝜅T V − p
V �∂ A

∂ p�T
𝜅T pV V

�∂V
∂ p�T

−𝜅T V −V
p �∂ A

∂V�T
−p −p

�∂U
∂ p�T

(−𝛼T +𝜅T p)V 0 �∂G
∂ p �T

V V

�∂U
∂V�T

𝛼T
𝜅T

− p 0 �∂G
∂V�T

− 1𝜅T
−p

�∂H
∂ p�T

(1−𝛼T)V 0 �∂S
∂ p�T

−𝛼V −V
T

�∂H
∂V�T

𝛼T −1
𝜅T

0 �∂S
∂V�T

𝛼
𝜅T

p
T

Table 7.5.1. Constant temperature: expressions for partial derivatives of state functions with respect to pressure and volume in a closed,
single-phase system

we may write the total differential of S, taking T and p as the independent variables, as

dS= Cp
T dT −𝛼V dp (7.5.2)

Furthermore, the first expression is equivalent to the differential form

dS= Cp
T dT (7.5.3)

provided p is constant; we can integrate this equation to obtain the finite change Δ S under isobaric conditions as
shown in Eq. 7.4.12.

Both general expressions and expressions valid for an ideal gas are given in Tables 7.5.1, 7.5.2, and 7.5.3.

Partial
derivative

General
expression

Ideal
gas

Partial
derivative

General
expression

Ideal
gas

�∂T
∂V�p

1
𝛼V

T
V �∂A

∂T�p
−𝛼pV −S −pV

T −S

�∂V
∂T�p

𝛼V V
T �∂A

∂V�p
−p− S

𝛼V −p− TS
V

�∂U
∂T �p

Cp −𝛼pV CV �∂G
∂T �p

−S −S

�∂U
∂V�p

Cp
𝛼V − p CV T

V �∂G
∂V�p

− S
𝛼V −TS

V

�∂H
∂T �p

Cp Cp �∂S
∂T�p

Cp
T

Cp
T

�∂H
∂V�p

Cp
𝛼V

CpT
V �∂S

∂V�p

Cp
𝛼TV

Cp
V

Table 7.5.2. Constant pressure: expressions for partial derivatives of state functions with respect to temperature and volume in a closed,
single-phase system

144 PURE SUBSTANCES IN SINGLE PHASES

144



Partial
derivative

General
expression

Ideal
gas

Partial
derivative

General
expression

Ideal
gas

�∂T
∂ p�V

−𝜅T
𝛼

T
p �∂ A

∂T�V
−S −S

�∂ p
∂T�V

𝛼
𝜅T

p
T �∂ A

∂ p�V
−𝜅T S
𝛼 −TS

p

�∂U
∂T �V

CV CV �∂G
∂T �V

𝛼V
𝜅T

−S pV
T −S

�∂U
∂ p �V

𝜅T Cp
𝛼 −𝛼TV TCV

p �∂G
∂ p �V

V − 𝜅T S
𝛼 V − TS

p

�∂H
∂T �V

Cp+
𝛼V
𝜅T
(1−𝛼T) Cp �∂S

∂T�V

CV
T

CV
T

�∂H
∂ p �V

𝜅T Cp
𝛼 +V (1−𝛼T) Cp T

p �∂S
∂ p�V

𝜅T Cp
𝛼T −𝛼V CV

p

Table 7.5.3. Constant volume: expressions for partial derivatives of state functions with respect to temperature and pressure in a closed,
single-phase system

We may derive the general expressions as follows. We are considering differentiation with respect
only to T , p, and V . Expressions for (∂V /∂T)p, (∂V /∂ p)T , and (∂ p/∂T)V come from Eqs. 7.1.1,
7.1.2, and 7.1.7 and are shown as functions of 𝛼 and 𝜅T . The reciprocal of each of these three expres-
sions provides the expression for another partial derivative from the general relation

(∂y/∂x)z=
1

(∂x/∂y)z
(7.5.4)

This procedure gives us expressions for the six partial derivatives of T , p, and V .

The remaining expressions are for partial derivatives of U, H, A, G, and S. We obtain the expression
for (∂U/∂T)V from Eq. 7.3.1, for (∂U/∂V)T from Eq. 7.2.4, for (∂H /∂T)p from Eq. 7.3.2, for
(∂ A/∂ T)V from Eq. 5.4.9, for (∂ A/∂V)T from Eq. 5.4.10, for (∂G/∂ p)T from Eq. 5.4.12, for
(∂G/∂T)p from Eq. 5.4.11, for (∂S/∂T)V from Eq. 7.4.6, for (∂S/∂T)p from Eq. 7.4.11, and for
(∂S/∂ p)T from Eq. 5.4.18.

We can transform each of these partial derivatives, and others derived in later steps, to two other par-
tial derivatives with the same variable held constant and the variable of differentiation changed. The
transformation involves multiplying by an appropriate partial derivative of T , p, or V . For instance,
from the partial derivative (∂U/∂V)T =(𝛼T /𝜅T)− p, we obtain

�∂U
∂ p �T

=�∂U
∂V�T

�∂V
∂ p�T

=�𝛼T
𝜅T

− p�(−𝜅TV)=(−𝛼T +𝜅Tp)V (7.5.5)

The remaining partial derivatives can be found by differentiating U =H − p V , H =U + p V , A=U −
TS, and G=H −TS and making appropriate substitutions. Whenever a partial derivative appears in a
derived expression, it is replaced with an expression derived in an earlier step. The expressions derived
by these steps constitute the full set shown in Tables 7.5.1, 7.5.2, and 7.5.3.

Bridgman7.5.1 devised a simple method to obtain expressions for these and many other partial deriva-
tives from a relatively small set of formulas.

7.5.1. Ref. [20]; Ref. [huniniti], p. 199--241.
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State function
change

General expression Ideal gas Approximate expression
for liquid or solid

ΔU �
p1

p2
(−𝛼T +𝜅T p)V dp 0 −𝛼TV Δ p

ΔH �
p1

p2
(1−𝛼T)V dp 0 (1−𝛼T)V Δ p

ΔA �
p1

p2
𝜅T pV dp nRT ln p2

p1
𝜅T V (p22− p12)/2

ΔG �
p1

p2
V dp nRT ln p2

p1
V Δ p

ΔS −�
p1

p2
𝛼V dp −nR ln p2

p1
−𝛼V Δ p

Table 7.6.1. Changes of state functions during an isothermal pressure change in a closed, single-phase system

7.5.2 The Joule–Thomson coefficient

The Joule–Thomson coefficient of a gas was defined in Eq. 6.3.3 on page 128 by 𝜇JT=(∂T /∂ p)H. It can be evaluated
with measurements of T and p during adiabatic throttling processes as described in Sec. 6.3.1.

To relate 𝜇JT to other properties of the gas, we write the total differential of the enthalpy of a closed, single-phase
system in the form

dH=�∂H
∂T �p

dT +�∂H
∂ p �T

dp (7.5.6)

and divide both sides by dp:
dH
dp =�

∂H
∂T �p

dT
dp +�

∂H
∂ p �T

(7.5.7)

Next we impose a condition of constant H; the ratio dT /dp becomes a partial derivative:

0=�∂H
∂T �p

�∂T
∂ p�H

+�∂H
∂ p �T

(7.5.8)

Rearrangement gives

�∂T
∂ p�H

=−(∂H/∂ p)T
(∂H/∂T)p

(7.5.9)

The left side of this equation is the Joule–Thomson coefficient. An expression for the partial derivative (∂H/∂ p)T is
given in Table 7.5.1, and the partial derivative (∂H/∂T)p is the heat capacity at constant pressure (Eq. 5.6.3). These
substitutions give us the desired relation

𝜇JT=
(𝛼T −1)V

Cp
= (𝛼T −1)Vm

Cp,m
(7.5.10)

7.6 Isothermal Pressure Changes

In various applications, we will need expressions for the effect of changing the pressure at constant temperature on the
internal energy, enthalpy, entropy, and Gibbs energy of a phase. We obtain the expressions by integrating expressions
found in Table 7.5.1. For example, ΔU is given by ∫(∂U/∂ p)Tdp. The results are listed in the second column of
Table 7.6.17.6.1 on page 146.
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7.6.1 Ideal gases

Simplifications result when the phase is an ideal gas. In this case, we can make the substitutions V =nRT /p, 𝛼=1/T ,
and 𝜅T =1/p, resulting in the expressions in the third column of Table 7.6.1.

The expressions in the third column of Table 7.6.1 may be summarized by the statement that, when an ideal gas
expands isothermally, the internal energy and enthalpy stay constant, the entropy increases, and the Helmholtz energy
and Gibbs energy decrease.

7.6.2 Condensed phases

Solids, and liquids under conditions of temperature and pressure not close to the critical point, are much less compress-
ible than gases. Typically the isothermal compressibility, 𝜅T , of a liquid or solid at room temperature and atmospheric
pressure is no greater than 1×10−4bar−1 (see Fig. 7.1.2 on page 134), whereas an ideal gas under these conditions has
𝜅T =1/p=1bar−1. Consequently, it is frequently valid to treat V for a liquid or solid as essentially constant during
a pressure change at constant temperature. Because 𝜅T is small, the product 𝜅Tp for a liquid or solid is usually much
smaller than the product𝛼T . Furthermore,𝜅T for liquids and solids does not change rapidly with p as it does for gases,
and neither does 𝛼.

With the approximations that V , 𝛼, and 𝜅T are constant during an isothermal pressure change, and that 𝜅Tp is
negligible compared with 𝛼T , we obtain the expressions in the last column of Table 7.6.1.

7.7 Standard States of Pure Substances

It is often useful to refer to a reference pressure, the standard pressure, denoted p∘. The standard pressure has
an arbitrary but constant value in any given application. Until 1982, chemists used a standard pressure of 1 atm
(1.01325×105Pa). The IUPAC now recommends the value p∘=1bar (exactly 105Pa).7.7.1 This book uses the latter
value unless stated otherwise. (Note that there is no defined standard temperature.)

A superscript degree symbol (∘) denotes a standard quantity or standard-state conditions. An alternative symbol
for this purpose, used extensively outside the U.S., is a superscript Plimsoll mark (⦵).7.7.2

A standard state of a pure substance is a particular reference state appropriate for the kind of phase and is
described by intensive variables. This book follows the recommendations of the IUPAC Green Book7.7.3 for var-
ious standard states.

• The standard state of a pure gas is the hypothetical state in which the gas is at pressure p∘ and the temperature
of interest, and the gas behaves as an ideal gas. The molar volume of a gas at 1bar may have a measurable
deviation from the molar volume predicted by the ideal gas equation due to intermolecular forces. We must
imagine the standard state in this case to consist of the gas with the intermolecular forces magically “turned
off” and the molar volume adjusted to the ideal-gas value RT /p∘.

• The standard state of a pure liquid or solid is the unstressed liquid or solid at pressure p∘ and the temperature
of interest. If the liquid or solid is stable under these conditions, this is a real (not hypothetical) state.

Section 9.7 will introduce additional standard states for constituents of mixtures.

7.7.1. See Ref. <!!!! doi:10.1351/goldbook.S05921 !!!!>
7.7.2. The Plimsoll mark is named after the British merchant Samuel Plimsoll, at whose instigation Parliament passed an act in 1875 requiring

the symbol to be placed on the hulls of cargo ships to indicate the maximum depth for safe loading. The unicode glyph U+29B5, CIRCLE
WITH HORIZONTAL BAR (⦵) approximates the appearance of this mark.

7.7.3. Ref. [30], p. 61--62.
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7.8 Chemical Potential and Fugacity

The chemical potential, 𝜇, of a pure substance has as one of its definitions (page 116)

𝜇 =
def

Gm=
G
n

(7.8.1)
(pure substance)

That is, 𝜇 is equal to the molar Gibbs energy of the substance at a given temperature and pressure. (Section 9.2.6 will
introduce a more general definition of chemical potential that applies also to a constituent of a mixture.) The chemical
potential is an intensive state function.

The total differential of the Gibbs energy of a fixed amount of a pure substance in a single phase, with T and p
as independent variables, is dG=−S dT +V dp (Eq. 5.4.4). Dividing both sides of this equation by n gives the total
differential of the chemical potential with these same independent variables:

d𝜇=−SmdT +Vm dp (7.8.2)
(pure substance, P=1)

(Since all quantities in this equation are intensive, it is not necessary to specify a closed system; the amount of the
substance in the system is irrelevant.)

We identify the coefficients of the terms on the right side of Eq. 7.8.2 as the partial derivatives

�∂𝜇∂T�p
=−Sm

(7.8.3)
(pure substance, P=1)

and

�∂𝜇∂ p�T
=Vm

(7.8.4)
(pure substance, P=1)

Since Vm is positive, Eq. 7.8.4 shows that the chemical potential increases with increasing pressure in an isothermal
process.

The standard chemical potential, 𝜇∘, of a pure substance in a given phase and at a given temperature is the
chemical potential of the substance when it is in the standard state of the phase at this temperature and the standard
pressure p∘.

There is no way we can evaluate the absolute value of 𝜇 at a given temperature and pressure, or of 𝜇∘ at the same
temperature,7.8.1 but we can measure or calculate the difference𝜇−𝜇∘. The general procedure is to integrate d𝜇=Vmdp
(Eq. 7.8.2 with dT set equal to zero) from the standard state at pressure p∘ to the experimental state at pressure p′:

𝜇(p′)−𝜇∘=�
p∘

p′
Vmdp (7.8.5)

(constant T )

7.8.1 Gases
For the standard chemical potential of a gas, this book will usually use the notation 𝜇∘ (g) to emphasize the choice of
a gas standard state.

An ideal gas is in its standard state at a given temperature when its pressure is the standard pressure. We find
the relation of the chemical potential of an ideal gas to its pressure and its standard chemical potential at the same
temperature by setting Vm equal to R T /p in Eq. 7.8.5: 𝜇(p′)−𝜇∘=∫p∘

p′ (R T /p) dp=R T ln (p′/p∘). The general
relation for 𝜇 as a function of p, then, is

𝜇=𝜇∘ (g)+RT ln p
p∘

(7.8.6)
(pure ideal gas, constant T )

This function is shown as the dashed curve in Fig. 7.8.1 on page 149.

7.8.1. At least not to any useful degree of precision. The values of 𝜇 and 𝜇∘ include the molar internal energy whose absolute value can only
be calculated from the Einstein relation; see Sec. 2.6.2.
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Figure 7.8.1. Chemical potential as a function of pressure at constant temperature, for a real gas (solid curve) and the same gas behaving
ideally (dashed curve). Point A is the gas standard state. Point B is a state of the real gas at pressure p′. The fugacity f (p′) of the real
gas at pressure p′ is equal to the pressure of the ideal gas having the same chemical potential as the real gas (point C).

If a gas is not an ideal gas, its standard state is a hypothetical state. The fugacity, f , of a real gas (a gas that is not
necessarily an ideal gas) is defined by an equation with the same form as Eq. 7.8.6:

𝜇=𝜇∘ (g)+RT ln f
p∘

(7.8.7)
(pure gas)

or

f =
def

p∘exp�𝜇−𝜇∘ (g)
RT � (7.8.8)

(pure gas)

Note that fugacity has the dimensions of pressure. Fugacity is a kind of effective pressure. Specifically, it is the
pressure that the hypothetical ideal gas (the gas with intermolecular forces “turned off”) would need to have in order
for its chemical potential at the given temperature to be the same as the chemical potential of the real gas (see point C
in Fig. 7.8.1). If the gas is an ideal gas, its fugacity is equal to its pressure.

To evaluate the fugacity of a real gas at a given T and p, we must relate the chemical potential to the pres-
sure–volume behavior. Let 𝜇′ be the chemical potential and f ′ be the fugacity at the pressure p′ of interest; let 𝜇′′ be
the chemical potential and f ′′ be the fugacity of the same gas at some low pressure p′′ (all at the same temperature).
Then we use Eq. 7.8.5 to write 𝜇′−𝜇∘ (g)=RT ln ( f ′/p∘) and 𝜇′′−𝜇∘ (g)=RT ln ( f ′′/p∘), from which we obtain

𝜇′−𝜇′′=RT ln f ′
f ′′ (7.8.9)

By integrating d𝜇=Vmdp from pressure p′′ to pressure p′, we obtain

𝜇′−𝜇′′=�
𝜇′′

𝜇′
d𝜇=�

p′′

p′
Vmdp (7.8.10)

Equating the two expressions for 𝜇′−𝜇′′ and dividing by RT gives

ln f ′
f ′′ =�p′′

p′ Vm
RTdp (7.8.11)

In principle, we could use the integral on the right side of Eq. 7.8.11 to evaluate f ′ by choosing the lower integration
limit p′′ to be such a low pressure that the gas behaves as an ideal gas and replacing f ′′ by p′′. However, because the
integrand Vm/RT becomes very large at low pressure, the integral is difficult to evaluate. We avoid this difficulty by
subtracting from the preceding equation the identity

ln p′
p′′
=�

p′′

p′ dp
p (7.8.12)
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which is simply the result of integrating the function 1/p from p′′ to p′. The result is

ln f ′p′′
f ′′p′

=�
p′′

p′
� Vm

RT − 1p�dp (7.8.13)

Now we take the limit of both sides of Eq. 7.8.13 as p′′ approaches zero. In this limit, the gas at pressure p′′
approaches ideal-gas behavior, f ′′ approaches p′′, and the ratio f ′p′′/ f ′′p′ approaches f ′/p′:

ln f ′
p′ =�0

p′
� Vm

RT − 1p�dp (7.8.14)

The integrand (Vm/R T − 1/p) of this integral approaches zero at low pressure, making it feasible to evaluate the
integral from experimental data.

The fugacity coefficient 𝜙 of a gas is defined by

𝜙 =
def f

p or f =𝜙p (7.8.15)
(pure gas)

The fugacity coefficient at pressure p′ is then given by Eq. 7.8.14:

ln𝜙(p′)=�
0

p′
� Vm

RT − 1p�dp (7.8.16)
(pure gas, constant T )

The isothermal behavior of real gases at low to moderate pressures (up to at least 1bar) is usually adequately described
by a two-term equation of state of the form given in Eq. 2.2.8:

Vm≈
RT
p +B (7.8.17)

Here B is the second virial coefficient, a function of T . With this equation of state, Eq. 7.8.16 becomes

ln𝜙≈ Bp
RT (7.8.18)

For a real gas at temperature T and pressure p, Eq. 7.8.16 or 7.8.18 allows us to evaluate the fugacity coefficient from
an experimental equation of state or a second virial coefficient. We can then find the fugacity from f =𝜙p.

As we will see in Sec. 9.7, the dimensionless ratio 𝜙= f /p is an example of an activity coefficient and
the dimensionless ratio f /p∘ is an example of an activity.

7.8.2 Liquids and solids
The dependence of the chemical potential on pressure at constant temperature is given by Eq. 7.8.5. With an approx-
imation of zero compressibility, this becomes

𝜇≈𝜇∘+Vm(p− p∘)
(7.8.19)

(pure liquid or solid,
constant T )

7.9 Standard Molar Quantities of a Gas
A standard molar quantity of a substance is the molar quantity in the standard state at the temperature of interest.
We have seen (Sec. 7.7) that the standard state of a pure liquid or solid is a real state, so any standard molar quantity
of a pure liquid or solid is simply the molar quantity evaluated at the standard pressure and the temperature of interest.

The standard state of a gas, however, is a hypothetical state in which the gas behaves ideally at the standard
pressure without influence of intermolecular forces. The properties of the gas in this standard state are those of an
ideal gas. We would like to be able to relate molar properties of the real gas at a given temperature and pressure to the
molar properties in the standard state at the same temperature.

150 PURE SUBSTANCES IN SINGLE PHASES

150



Difference General expression at pressure p
Equation of state
V =nRT /p+nB

Um −Um
∘ (g) �

0

p′
�Vm−T�∂Vm

∂T �p
�dp+RT − p′Vm −pT dB

dT

Hm −Hm
∘ (g) �

0

p′
�Vm−T�∂Vm

∂T �p
�dp p�B−T dB

dT�

Am− Am
∘ (g) RT ln p′

p∘ +�0
p′
�Vm − RT

p �dp+RT − p′Vm RT ln p
p∘

Gm−Gm
∘ (g) RT ln p′

p∘ +�0
p′
�Vm − RT

p �dp RT ln p
p∘ +Bp

Sm−Sm
∘ (g) −R ln p′

p∘ −�
0

p′
��∂Vm
∂T �p

− R
p �dp −R ln p

p∘ − p dB
dT

Cp,m−Cp,m
∘ (g) −�

0

p′
T((((((((((∂

2Vm

∂T 2 ))))))))))p dp −pT d2B
dT 2

Table 7.9.1. Real gases: expressions for differences between molar properties and standard molar values at the same temperature

We begin by using Eq. 7.8.7 to write an expression for the chemical potential of the real gas at pressure p′:

𝜇(p′) = 𝜇∘ (g)+RT ln f (p′)
p∘

= 𝜇∘ (g)+RT ln p′
p∘ +RT ln f (p′)

p′ (7.9.1)

We then substitute from Eq. 7.8.14 to obtain a relation between the chemical potential, the standard chemical poten-
tial, and measurable properties, all at the same temperature:

𝜇(p′)=𝜇∘ (g)+RT ln p′
p∘ +�0

p′
�Vm − RT

p �dp (7.9.2)
(pure gas)

Note that this expression for 𝜇 is not what we would obtain by simply integrating d𝜇=Vmdp from p∘ to p′, because
the real gas is not necessarily in its standard state of ideal-gas behavior at a pressure of 1bar.

Recall that the chemical potential 𝜇 of a pure substance is also its molar Gibbs energy Gm=G/n. The standard
chemical potential 𝜇∘ (g) of the gas is the standard molar Gibbs energy, Gm

∘ (g). Therefore Eq. 7.9.2 can be rewritten
in the form

Gm(p′)=Gm
∘ (g)+RT ln p′

p∘ +�0
p′
�Vm − RT

p �dp (7.9.3)

The middle column of Table 7.9.1 on page 151 contains an expression for Gm(p′)−Gm
∘ (g) taken from this equation.

This expression contains all the information needed to find a relation between any other molar property and its
standard molar value in terms of measurable properties. The way this can be done is as follows.

The relation between the chemical potential of a pure substance and its molar entropy is given by Eq. 7.8.3:

Sm=−�∂𝜇∂T�p
(7.9.4)

The standard molar entropy of the gas is found from Eq. 7.9.4 by changing 𝜇 to 𝜇∘ (g):

Sm
∘ (g)=−�∂𝜇

∘ (g)
∂T �

p
(7.9.5)
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By substituting the expression for 𝜇 given by Eq. 7.9.2 into Eq. 7.9.4 and comparing the result with Eq. 7.9.5, we
obtain

Sm(p′)=Sm
∘ (g)−R ln p′

p∘ −�
0

p′
��∂Vm
∂T �p

− R
p �dp (7.9.6)

The expression for Sm −Sm
∘ (g) in the middle column of Table 7.9.1 comes from this equation. The equation, together

with a value of Sm for a real gas obtained by the calorimetric method described in Sec. 6.2.1, can be used to evaluate
Sm
∘ (g).

Now we can use the expressions for Gm and Sm to find expressions for molar quantities such as Hm and Cp,m
relative to the respective standard molar quantities. The general procedure for a molar quantity Xm is to write an
expression for Xm as a function of Gm and Sm and an analogous expression for Xm

∘ (g) as a function of Gm
∘ (g) and

Sm
∘ (g). Substitutions for Gm and Sm from Eqs. 7.9.3 and 7.9.6 are then made in the expression for Xm, and the

difference Xm−Xm
∘ (g) taken.

For example, the expression for Um−Um
∘ (g) in the middle column Table 7.9.1 was derived as follows. The equa-

tion defining the Gibbs energy, G=U −TS+ pV , was divided by the amount n and rearranged to

Um=Gm+TSm − pVm (7.9.7)

The standard-state version of this relation is

Um
∘ (g)=Gm

∘ (g)+TSm
∘ (g)− p∘Vm

∘ (g) (7.9.8)

where from the ideal gas law p∘Vm
∘ (g) can be replaced by RT . Substitutions from Eqs. 7.9.3 and 7.9.6 were made in

Eq. 7.9.7 and the expression for Um
∘ (g) in Eq. 7.9.8 was subtracted, resulting in the expression in the table.

For a real gas at low to moderate pressures, we can approximate Vm by (RT /p)+B where B is the second virial
coefficient (Eq. 7.8.17). Equation 7.9.2 then becomes

𝜇≈𝜇∘ (g)+RT ln p
p∘ +Bp (7.9.9)

The expressions in the last column of Table 7.9.1 use this equation of state. We can see what the expressions look
like if the gas is ideal simply by setting B equal to zero. They show that when the pressure of an ideal gas increases at
constant temperature, Gm and Am increase, Sm decreases, and Um, Hm, and Cp,m are unaffected.
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7.10 Problems
Problem 7.10.1. Derive the following relations from the definitions of 𝛼, 𝜅T , and 𝜌:

𝛼=− 1𝜌�
∂𝜌
∂T�p

𝜅T =
1
𝜌�
∂𝜌
∂ p�T

Problem 7.10.2. Use equations in this chapter to derive the following expressions for an ideal gas:

𝛼=1/T 𝜅T =1/p

Problem 7.10.3. For a gas with the simple equation of state

Vm=
RT
p +B

(Eq. 2.2.8), where B is the second virial coefficient (a function of T ), find expressions for 𝛼, 𝜅T , and (∂Um/∂V )T in terms of dB/dT and
other state functions.

Problem 7.10.4. Show that when the virial equation pVm=RT (1+Bp p+Cp p2+ ⋅ ⋅ ⋅) (Eq. 2.2.3) adequately represents the equation of state
of a real gas, the Joule–Thomson coefficient is given by

𝜇JT=
RT 2 [dBp/dT +(dCp/dT) p+ ⋅ ⋅ ⋅]

Cp,m

Note that the limiting value at low pressure, RT 2(dBp/dT)/Cp,m, is not necessarily equal to zero even though the equation of state approaches
that of an ideal gas in this limit.

Problem 7.10.5. The quantity (∂T /∂V )U is called the Joule coefficient. James Joule attempted to evaluate this quantity by measuring the
temperature change accompanying the expansion of air into a vacuum—the “Joule experiment.” Write an expression for the total differential
of U with T and V as independent variables, and by a procedure similar to that used in Sec. 7.5.2 show that the Joule coefficient is equal to

p −𝛼T /𝜅T
CV

Problem 7.10.6. p–V–T data for several organic liquids were measured by Gibson and Loeffler.7.10.1 The following formulas describe the
results for aniline.

• Molar volume as a function of temperature at p=1bar (298–358K):

Vm=a+bT +c T 2+dT 3

where the parameters have the values

a =69.287cm3⋅mol−1 c =−1.0443×10−4cm3⋅K−2⋅mol−1

b =0.08852cm3⋅K−1⋅mol−1 d =1.940×10−7cm3⋅K−3⋅mol−1

• Molar volume as a function of pressure at T =298.15K (1–1000bar):

Vm=e − f ln(g+ p/bar)

where the parameter values are

e=156.812cm3⋅mol−1 f =8.5834cm3⋅mol−1 g=2006.6

a) Use these formulas to evaluate 𝛼, 𝜅T , (∂ p/∂T)V, and (∂U/∂V )T (the internal pressure) for aniline at T =298.15K and p=1.000bar.

b) Estimate the pressure increase if the temperature of a fixed amount of aniline is increased by 0.10K at constant volume.

Problem 7.10.7.

a) From the total differential of H with T and p as independent variables, derive the relation (∂Cp,m/∂ p)T =−T(∂2Vm/∂T 2)p.

b) Evaluate (∂Cp,m/∂ p)T for liquid aniline at 300.0K and 1bar using data in Prob. 7.10.6.

Problem 7.10.8.

a) From the total differential of V with T and p as independent variables, derive the relation (∂𝛼/∂ p)T =−(∂𝜅T /∂T)p.

b) Use this relation to estimate the value of 𝛼 for benzene at 25 ∘C and 500bar, given that the value of 𝛼 is 1.2×10−3K−1 at 25 ∘C and
1bar. (Use information from Fig. 7.1.2 on page 134.)

Problem 7.10.9. Certain equations of state supposed to be applicable to nonpolar liquids and gases are of the form p=Tf (Vm)−a/Vm
2, where

f (Vm) is a function of the molar volume only and a is a constant.

a) Show that the van der Waals equation of state (p+a/Vm
2) (Vm −b)=RT (where a and b are constants) is of this form.

7.10.1. Ref. [55].
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b) Show that any fluid with an equation of state of this form has an internal pressure equal to a/Vm
2.

Problem 7.10.10. Suppose that the molar heat capacity at constant pressure of a substance has a temperature dependence given by Cp,m=
a+bT + c T 2, where a, b, and c are constants. Consider the heating of an amount n of the substance from T1 to T2 at constant pressure. Find
expressions for ΔH and ΔS for this process in terms of a, b, c, n, T1, and T2.

Problem 7.10.11. At p=1atm, the molar heat capacity at constant pressure of aluminum is given by

Cp,m=a+bT

where the constants have the values

a=20.67 J⋅K−1⋅mol−1 b=0.01238J⋅K−2⋅mol−1

Calculate the quantity of electrical work needed to heat 2.000mol of aluminum from 300.00K to 400.00K at 1atm in an adiabatic enclosure.

Problem 7.10.12. The temperature dependence of the standard molar heat capacity of gaseous carbon dioxide in the temperature range
298K–2000K is given by

Cp,m
∘ =a+bT + c

T 2
where the constants have the values

a=44.2 J⋅K−1⋅mol−1 b=8.8×10−3 J⋅K−2⋅mol−1 c=−8.6×105 J⋅K⋅mol−1

Calculate the enthalpy and entropy changes when one mole of CO2 is heated at 1bar from 300.00K to 800.00K. You can assume that at this
pressure Cp,m is practically equal to Cp,m

∘ .

Problem 7.10.13. This problem concerns gaseous carbon dioxide. At 400K, the relation between p and Vm at pressures up to at least 100bar
is given to good accuracy by a virial equation of state truncated at the second virial coefficient, B. In the temperature range 300K–800K the
dependence of B on temperature is given by

B=a′+b′T + c′T 2+d′T 3

where the constants have the values

a′ = −521cm3⋅mol−1

b′ = 2.08cm3⋅K−1⋅mol−1

c′ = −2.89×10−3 cm3⋅K−2⋅mol−1

d′ = 1.397×10−6 cm3⋅K−3⋅mol−1

a) From information in Prob. 7.7.10.12, calculate the standard molar heat capacity at constant pressure, Cp,m
∘ , at T =400.0K.

b) Estimate the value of Cp,m under the conditions T =400.0K and p=100.0bar.

Problem 7.10.14. A chemist, needing to determine the specific heat capacity of a certain liquid but not having an electrically heated calorimeter
at her disposal, used the following simple procedure known as drop calorimetry. She placed 500.0g of the liquid in a thermally insulated
container equipped with a lid and a thermometer. After recording the initial temperature of the liquid, 24.80 ∘C, she removed a 60.17-g
block of aluminum metal from a boiling water bath at 100.00 ∘C and quickly immersed it in the liquid in the container. After the con-
tents of the container had become thermally equilibrated, she recorded a final temperature of 27.92 ∘C. She calculated the specific heat
capacity Cp/m of the liquid from these data, making use of the molar mass of aluminum (M = 26.9815 g⋅mol−1) and the formula for the
molar heat capacity of aluminum given in Prob. 7.7.10.11.

a) From these data, find the specific heat capacity of the liquid under the assumption that its value does not vary with temperature. Hint:
Treat the temperature equilibration process as adiabatic and isobaric (ΔH =0), and equate ΔH to the sum of the enthalpy changes in
the two phases.

b) Show that the value obtained in part (a) is actually an average value of Cp/m over the temperature range between the initial and final
temperatures of the liquid given by

�
T1

T2
(Cp/m)dT

T2− T1

Problem 7.10.15. Suppose a gas has the virial equation of state pVm=RT (1+Bp p+Cp p2), where Bp and Cp depend only on T , and higher
powers of p can be ignored.

a) Derive an expression for the fugacity coefficient, 𝜙, of this gas as a function of p.

b) For CO2(g) at 0.00 ∘C, the virial coefficients have the values Bp=−6.67×10−3bar−1 and Cp=−3.4×10−5bar−2. Evaluate the fugacity
f at 0.00 ∘C and p=20.0bar.

Problem 7.10.16. Table 7.10.1 on page 155 lists values of the molar volume of gaseous H2O at 400.00 ∘C and 12 pressures.

a) Evaluate the fugacity coefficient and fugacity of H2O(g) at 400.00 ∘C and 200bar.
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p/105Pa Vm/10−3m3⋅mol−1 p/105Pa Vm/10−3m3⋅mol−1

1 55.896 100 0.47575
10 5.5231 120 0.37976
20 2.7237 140 0.31020
40 1.3224 160 0.25699
60 0.85374 180 0.21447
80 0.61817 200 0.17918

Table 7.10.1. Molar volume of H2O(g) at 400.00 ∘C7.10.2.

7.10.2 based on data in Ref. [60]

b) Show that the second virial coefficient B in the virial equation of state, pVm=RT (1+B/Vm+C /Vm
2+ ⋅ ⋅ ⋅), is given by

B=RT lim
p→0
�Vm

RT − 1p�

where the limit is taken at constant T . Then evaluate B for H2O(g) at 400.00 ∘C.
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Chapter 8
Phase Transitions and Equilibria of Pure Substances

A system of two or more phases of a single substance, in the absence of internal constraints, is in an equilibrium state
when each phase has the same temperature, the same pressure, and the same chemical potential. This chapter describes
the derivation and consequences of this simple principle, the general appearance of phase diagrams of single-substance
systems, and quantitative aspects of the equilibrium phase transitions of these systems.

8.1 Phase Equilibria

8.1.1 Equilibrium conditions
d system is an equilibrium state, this state does not change over time (Sec. 2.4.4). We expect an isolated system that is
not in an equilibrium state to undergo a spontaneous, irreversible process and eventually to reach an equilibrium state.
Just how rapidly this process occurs is a matter of kinetics, not thermodynamics. During this irreversible adiabatic
process, the entropy increases until it reaches a maximum in the equilibrium state.

A general procedure will now be introduced for finding conditions for equilibrium with given constraints. The pro-
cedure is applied to phase equilibria of single-substance, multiphase systems in the next section, to transfer equilibria
in multicomponent, multiphase systems in Sec. 9.2.7, and to reaction equilibria in Sec. 11.7.3.

The procedure has five steps:

1. Write an expression for the total differential of the internal energy U consistent with any constraints and with
the number of independent variables of the system.

2. Impose conditions of isolation for the system, including dU=0, thereby reducing the number of independent
variables.

3. Designate a particular phase, α′, as a reference phase and make the substitution dS𝛼′=dS −∑α=/α′ dSα. (This
is valid because entropy is extensive: S=∑α Sα, dS=∑α dSα.)

4. Rearrange to obtain an expression for the total differential of the entropy consistent with the reduced number
of independent variables.

5. The conditions for an equilibrium state are those that make the infinitesimal entropy change, dS, equal to zero
for all infinitesimal changes of the independent variables of the isolated system.

8.1.2 Equilibrium in a multiphase system
In this section we consider a system of a single substance in two or more uniform phases with distinctly different
intensive properties. For instance, one phase might be a liquid and another a gas. We assume the phases are not
separated by internal partitions, so that there is no constraint preventing the transfer of matter and energy among the
phases. (A tall column of gas in a gravitational field is a different kind of system in which intensive properties of an
equilibrium state vary continuously with elevation; this case will be discussed in Sec. 8.1.4.)
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Phase α′ will be the reference phase. Since internal energy is extensive, we can write U =U𝛼′+∑α=/α′ U
α and

dU=dU𝛼′+∑α=/α′ dUα. We assume any changes are slow enough to allow each phase to be practically uniform at all
times. Treating each phase as an open subsystem with expansion work only, we use the relation dU =T dS − p dV +
𝜇dn (Eq. 5.2.5) to replace each dUα term:

dU = (T 𝛼′dS𝛼′− p𝛼′dV 𝛼′+𝜇𝛼′dn𝛼′)
+�

α=/α′

(T α dSα − pα dV α+𝜇α dnα) (8.1.1)

This is an expression for the total differential of U when there are no constraints.
We isolate the system by enclosing it in a rigid, stationary adiabatic container. The constraints needed to isolate

the system, then, are given by the relations

dU=0 (constant internal energy) (8.1.2)
dV 𝛼′+ �

α=/α′

dV α=0 (no expansion work) (8.1.3)

dn𝛼′+ �
α=/α′

dnα=0 (closed system) (8.1.4)

Each of these relations is an independent restriction that reduces the number of independent variables by one. When
we substitute expressions for dU, dV 𝛼′, and dn𝛼′ from these relations into Eq. huniniti, make the further substitution
dS𝛼′=dS −∑α=/α′ dSα, and collect term with the same differentials on the right side, we obtain

0 = T 𝛼′dS+ �
α=/α′
(T α −T 𝛼′)dSα − �

α=/α′
(pα − p𝛼′)dV α

+�
α=/α′

(𝜇α −𝜇𝛼′)dnα (8.1.5)

Solving for dS, we obtain

dS = �
α=/α′

T 𝛼′−T α

T 𝛼′
dSα − �

α=/α′

p𝛼′− pα

T 𝛼′
dV α

+�
α=/α′

𝜇𝛼′−𝜇α

T 𝛼′
dnα (8.1.6)

This is an expression for the total differential of S in the isolated system.
In an isolated system, an equilibrium state cannot change spontaneously to a different state. Once the isolated

system has reached an equilibrium state, an imagined finite change of any of the independent variables consistent
with the constraints (a so-called virtual displacement) corresponds to an impossible process with an entropy decrease.
Thus, the equilibrium state has the maximum entropy that is possible for the isolated system. In order for S to be a
maximum, dS must be zero for an infinitesimal change of any of the independent variables of the isolated system.

This requirement is satisfied in the case of the multiphase system only if the coefficient of each term in the sums
on the right side of Eq. 8.1.6 is zero. Therefore, in an equilibrium state the temperature of each phase is equal to the
temperature T 𝛼′ of the reference phase, the pressure of each phase is equal to p𝛼′, and the chemical potential in each
phase is equal to 𝜇𝛼′. That is, at equilibrium the temperature, pressure, and chemical potential are uniform throughout
the system. These are, respectively, the conditions described in Sec. 2.4.4 of thermal equilibrium, mechanical equi-
librium, and transfer equilibrium. These conditions must hold in order for a multiphase system of a pure substance
without internal partitions to be in an equilibrium state, regardless of the process by which the system attains that state.

8.1.3 Simple derivation of equilibrium conditions

Here is a simpler, less formal derivation of the three equilibrium conditions in a multiphase system of a single sub-
stance.
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Figure 8.1.1. Closed system of constant-volume slab-shaped fluid phases stacked in the vertical direction. The shaded phase is reference
phase α′.

It is intuitively obvious that, unless there are special constraints (such as internal partitions), an equilibrium state
must have thermal and mechanical equilibrium. A temperature difference between two phases would cause a spon-
taneous transfer of heat from the warmer to the cooler phase; a pressure difference would cause spontaneous flow of
matter.

When some of the substance is transferred from one phase to another under conditions of constant T and p, the
intensive properties of each phase remains the same including the chemical potential. The chemical potential of a
pure phase is the Gibbs energy per amount of substance in the phase. We know that in a closed system of constant
T and p with expansion work only, the total Gibbs energy decreases during a spontaneous process and is constant
during a reversible process (Eq. 5.8.6). The Gibbs energy will decrease only if there is a transfer of substance from
a phase of higher chemical potential to a phase of lower chemical potential, and this will be a spontaneous change.
No spontaneous transfer is possible if both phases have the same chemical potential, so this is a condition for an
equilibrium state.

8.1.4 Tall column of gas in a gravitational field
The earth's gravitational field is an example of an external force field that acts on a system placed in it. Usually we
ignore its effects on the state of the system. If, however, the system's vertical extent is considerable we must take the
presence of the field into account to explain, for example, why gas pressure varies with elevation in an equilibrium
state.

A tall column of gas whose intensive properties are a function of elevation may be treated as an infinite number of
uniform phases, each of infinitesimal vertical height. We can approximate this system with a vertical stack of many
slab-shaped gas phases, each thin enough to be practically uniform in its intensive properties, as depicted in Fig. 8.1.1.

The system can be isolated from the surroundings by confining the gas in a rigid adiabatic container. In order to
be able to associate each of the thin slab-shaped phases with a definite constant elevation, we specify that the volume
of each phase is constant so that in the rigid container the vertical thickness of a phase cannot change.

We can use the phase of lowest elevation as the reference phase α′, as indicated in the figure. We repeat the
derivation of Sec. 8.1.2 with one change: for each phase α the volume change dV α is set equal to zero. Then the second
sum on the right side of Eq. 8.1.6, with terms proportional to dV α, drops out and we are left with

dS= �
α=/α′

T 𝛼′−T α

T 𝛼′
dSα+ �

α=/α′

𝜇𝛼′−𝜇α

T 𝛼′
dnα (8.1.7)

In the equilibrium state of the isolated system, dS is equal to zero for an infinitesimal change of any of the independent
variables. In this state, therefore, the coefficient of each term in the sums on the right side of Eq. 8.1.7 must be zero.
We conclude that in an equilibrium state of a tall column of a pure gas, the temperature and chemical potential are
uniform throughout. The equation, however, gives us no information about pressure.

We will use this result to derive an expression for the dependence of the fugacity f on elevation in an equilibrium
state. We pick an arbitrary position such as the earth's surface for a reference elevation at which h is zero, and define
the standard chemical potential 𝜇∘ (g) as the chemical potential of the gas under standard state conditions at this
reference elevation. At h= 0, the chemical potential and fugacity are related by Eq. 7.8.7 which we write in the
following form, indicating the elevation in parentheses:

𝜇(0)=𝜇∘ (g)+RT ln f (0)
p∘ (8.1.8)
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Imagine a small sample of gas of mass m that is initially at elevation h=0. The vertical extent of this sample should
be small enough for the variation of the gravitational force field within the sample to be negligible. The gravitational
work needed to raise the gas to an arbitrary elevation h is w′=mgh (page 69). We assume this process is carried out
reversibly at constant volume and without heat, so that there is no change in T , p, V , S, or f . The internal energy U
of the gas must increase by mgh=nMgh, where M is the molar mass. Then, because the Gibbs energy G depends on
U according to G=U −TS+ pV , G must also increase by nMgh.

The chemical potential 𝜇 is the molar Gibbs energy G/n. During the elevation process, f remains the same and
𝜇 increases by Mgh:

𝜇(h)=𝜇(0)+Mgh (8.1.9)
( f (h)= f (0) )

From Eqs. 8.1.8 and 8.1.9, we can deduce the following general relation between chemical potential, fugacity, and
elevation:

𝜇(h)=𝜇∘ (g)+RT ln f (h)
p∘ +Mgh

(8.1.10)
(pure gas in
gravitational field)

Compare this relation with the equation that defines the fugacity when the effect of a gravitational field is negligible:
𝜇=𝜇∘ (g)+RT ln( f /p∘) (Eq. 7.8.7 on page 149). The additional term Mgh is needed when the vertical extent of the
gas is considerable.

Some thermodynamicists call the expression on the right side of Eq. 8.1.10 the “total chemical poten-
tial” or “gravitochemical potential” and reserve the term “chemical potential” for the function 𝜇∘ (g)+
RT ln ( f /p∘). With these definitions, in an equilibrium state the “total chemical potential” is the same
at all elevations and the “chemical potential” decreases with increasing elevation.

This book instead defines the chemical potential 𝜇 of a pure substance at any elevation as the molar
Gibbs energy at that elevation, as recommended in a 2001 IUPAC technical report.8.1.1 When the chem-
ical potential is defined in this way, it has the same value at all elevations in an equilibrium state.

We know that in the equilibrium state of the gas column, the chemical potential 𝜇(h) has the same value at each
elevation h. Equation 8.1.10 shows that in order for this to be possible, the fugacity must decrease with increasing
elevation. By equating expressions from Eq. 8.1.10 for 𝜇(h) at an arbitrary elevation h, and for 𝜇(0) at the reference
elevation, we obtain

𝜇∘ (g)+RT ln f (h)
p∘ +Mgh=𝜇∘ (g)+RT ln f (0)

p∘ (8.1.11)

Solving for f (h) gives

f (h)= f (0)e−Mgh/RT
(8.1.12)

(pure gas at equilibrium
in gravitational field)

If we treat the gas as ideal, so that the fugacity equals the pressure, this equation becomes

p(h)= p(0)e−Mgh/RT
(8.1.13)

(pure ideal gas at equilibrium
in gravitational field)

Equation 8.1.13 is the barometric formula for a pure ideal gas. It shows that in the equilibrium state of a tall column
of an ideal gas, the pressure decreases exponentially with increasing elevation.

8.1.1. Ref. [2].
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This derivation of the barometric formula has introduced a method that will be used in Sec. 9.8.1 for dealing
with mixtures in a gravitational field. There is, however, a shorter derivation based on Newton's second law and
not involving the chemical potential. Consider one of the thin slab-shaped phases of Fig. 8.1.1. Let the density of
the phase be 𝜌, the area of each horizontal face be As, and the thickness of the slab be δh. The mass of the phase is
then m=𝜌Asδh. The pressure difference between the top and bottom of the phase is δp. Three vertical forces act on
the phase: an upward force pAs at its lower face, a downward force −(p+δp)As at its upper face, and a downward
gravitational force −mg=−𝜌Asgδh. If the phase is at rest, the net vertical force is zero: pAs−(p+δp)As−𝜌Asgδh=0,
or δp=−𝜌 gδ h. In the limit as the number of phases becomes infinite and δ h and δp become infinitesimal, this
becomes

dp=−𝜌gdh
(8.1.14)

(fluid at equilibrium
in gravitational field)

Equation 8.1.14 is a general relation between changes in elevation and hydrostatic pressure in any fluid. To apply it to
an ideal gas, we replace the density by 𝜌=nM/V =M/Vm=Mp/RT and rearrange to dp/p=−(gM/RT)dh. Treating
g and T as constants, we integrate from h=0 to an arbitrary elevation h and obtain the same result as Eq. 8.1.13.

8.1.5 The pressure in a liquid droplet
The equilibrium shape of a small liquid droplet surrounded by vapor of the same substance, when the effects of gravity
and other external forces are negligible, is spherical. This is the result of the surface tension of the liquid–gas interface
which acts to minimize the ratio of surface to volume. The interface acts somewhat like the stretched membrane of an
inflated balloon, resulting in a greater pressure inside the droplet than the pressure of the vapor in equilibrium with it.

We can derive the pressure difference by considering a closed system containing a spherical liquid droplet and
surrounding vapor. We treat both phases as open subsystems. An infinitesimal change dU of the internal energy is the
sum of contributions from the liquid and gas phases and from the surface work 𝛾dAs, where 𝛾 is the surface tension
of the liquid–gas interface and As is the surface area of the droplet (Sec. 5.7):

dU = dU l+dU g+𝛾dAs

= T l dS l − pl dV l+𝜇ldnl

+T g dSg − pg dV g+𝜇g dng+𝛾dAs (8.1.15)

Note that Eq. 8.1.15 is not an expression for the total differential of U, because V l and As are not independent vari-
ables. A derivation by a procedure similar to the one used in Sec. 8.1.2 shows that at equilibrium the liquid and gas
have equal temperatures and equal chemical potentials, and the pressure in the droplet is greater than the gas pressure
by an amount that depends on r:

pl= pg+ 2𝛾r (8.1.16)

Equation 8.1.16 is the Laplace equation. The pressure difference is significant if r is small, and decreases as r increases.
The limit r→∞ represents the flat surface of bulk liquid with pl equal to pg.

The derivation of Eq. 8.1.16 is left as an exercise (Prob. 8.5.1). The Laplace equation is valid also for a liquid
droplet in which the liquid and the surrounding gas may both be mixtures (Prob. 9.9.3 on page 223).

The Laplace equation can also be applied to the pressure in a gas bubble surrounded by liquid. In this case the
liquid and gas phases switch roles, and the equation becomes pg= pl+2𝛾/r.

8.1.6 The number of independent variables
From this point on in this book, unless stated otherwise, the discussions of multiphase systems will implicitly assume
the existence of thermal, mechanical, and transfer equilibrium. Equations will not explicitly show these equilibria as
a condition of validity.

In the rest of this chapter, we shall assume the state of each phase can be described by the usual variables: tem-
perature, pressure, and amount. That is, variables such as elevation in a gravitational field, interface surface area, and
extent of stretching of a solid, are not relevant.
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How many of the usual variables of an open multiphase one-substance equilibrium system are independent? To
find out, we go through the following argument. In the absence of any kind of equilibrium, we could treat phase α
as having the three independent variables T α, pα, and nα, and likewise for every other phase. A system of P phases
without thermal, mechanical, or transfer equilibrium would then have 3P independent variables.

We must decide how to count the number of phases. It is usually of no thermodynamic significance
whether a phase, with particular values of its intensive properties, is contiguous. For instance, splitting
a crystal into several pieces is not usually considered to change the number of phases or the state of
the system, provided the increased surface area makes no significant contribution to properties such as
internal energy. Thus, the number of phases P refers to the number of different kinds of phases.

Each independent relation resulting from equilibrium imposes a restriction on the system and reduces the number
of independent variables by one. A two-phase system with thermal equilibrium has the single relation T β=T α. For
a three-phase system, there are two such relations that are independent, for instance T β=T α and T𝛾=T α. (The addi-
tional relation T𝛾=T β is not independent since we may deduce it from the other two.) In general, thermal equilibrium
gives P−1 independent relations among temperatures.

By the same reasoning, mechanical equilibrium involves P−1 independent relations among pressures, and transfer
equilibrium involves P−1 independent relations among chemical potentials.

The total number of independent relations for equilibrium is 3 (P−1), which we subtract from 3P (the number of
independent variables in the absence of equilibrium) to obtain the number of independent variables in the equilibrium
system: 3 P − 3 (P − 1)= 3. Thus, an open single-substance system with any number of phases has at equilibrium
three independent variables. For example, in equilibrium states of a two-phase system we may vary T , nα, and nβ

independently, in which case p is a dependent variable; for a given value of T , the value of p is the one that allows
both phases to have the same chemical potential.

8.1.7 The Gibbs phase rule for a pure substance
The complete description of the state of a system must include the value of an extensive variable of each phase (e.g., the
volume, mass, or amount) in order to specify how much of the phase is present. For an equilibrium system of P phases
with a total of 3 independent variables, we may choose the remaining 3−P variables to be intensive. The number of
these intensive independent variables is called the number of degrees of freedom or variance, F, of the system:

F=3−P (8.1.17)
(pure substance)

The application of the phase rule to multicomponent systems will be taken up in Sec. 13.1. Equation
8.1.17 is a special case, for C=1, of the more general Gibbs phase rule F=C −P+2.

We may interpret the variance F in either of two ways:
• F is the number of intensive variables needed to describe an equilibrium state, in addition to the amount of

each phase;
• F is the maximum number of intensive properties that we may vary independently while the phases remain in

equilibrium.
A system with two degrees of freedom is called bivariant, one with one degree of freedom is univariant, and one with
no degrees of freedom is invariant. For a system of a pure substance, these three cases correspond to one, two, and
three phases respectively. For instance, a system of liquid and gaseous H2O (and no other substances) is univariant
(F=3−P=3−2=1); we are able to independently vary only one intensive property, such as T , while the liquid and
gas remain in equilibrium.

8.2 Phase Diagrams of Pure Substances
A phase diagram is a two-dimensional map showing which phase or phases are able to exist in an equilibrium state
under given conditions. This chapter describes pressure–volume and pressure–temperature phase diagrams for a single
substance, and Chap. 13 will describe numerous types of phase diagrams for multicomponent systems.
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Figure 8.2.1. Relations among p, V /n, and T for carbon dioxide.8.2.1 Areas are labeled with the stable phase or phases (scf stands for
supercritical fluid). The open circle indicates the critical point.

(a) Three-dimensional p–(V /n)–T surface. The dashed curve is the critical isotherm at T =304.21K, and the dotted curve is a
portion of the critical isobar at p=73.8bar.

(b) Pressure–volume phase diagram (projection of the surface onto the p–(V /n) plane).
(c) Pressure–temperature phase diagram (projection of the surface onto the p–T plane).

8.2.1. Based on data in Refs. [105] and [3].

8.2.1 Features of phase diagrams
Two-dimensional phase diagrams for a single-substance system can be generated as projections of a three-dimen-
sional surface in a coordinate system with Cartesian axes p, V /n, and T . A point on the three-dimensional surface
corresponds to a physically-realizable combination of values, for an equilibrium state of the system containing a total
amount n of the substance, of the variables p, V /n, and T .

The concepts needed to interpret single-substance phase diagrams will be illustrated with carbon dioxide.
Three-dimensional surfaces for carbon dioxide are shown at two different scales in Fig. 8.2.1 on page 163
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Figure 8.2.2. Three-dimensional p–(V /n)–T surface for CO2, magnified along the V /n axis compared to Fig. 8.2.1. The open circle is
the critical point, the dashed curve is the critical isotherm, and the dotted curve is a portion of the critical isobar.

and in Fig. 8.2.2 on page 164.

In these figures, some areas of the surface are labeled with a single physical state: solid, liquid, gas, or supercritical
fluid. A point in one of these areas corresponds to an equilibrium state of the system containing a single phase of the
labeled physical state. The shape of the surface in this one-phase area gives the equation of state of the phase (i.e., the
dependence of one of the variables on the other two). A point in an area labeled with two physical states corresponds
to two coexisting phases. The triple line is the locus of points for all possible equilibrium systems of three coexisting
phases, which in this case are solid, liquid, and gas. A point on the triple line can also correspond to just one or two
phases (see the discussion on page 165).

The two-dimensional projections shown in Figs. 8.2.1(b) and 8.2.1(c) are pressure–volume and pressure–tem-
perature phase diagrams. Because all phases of a multiphase equilibrium system have the same temperature and
pressure,8.2.2 the projection of each two-phase area onto the pressure–temperature diagram is a curve, called a coexis-
tence curve or phase boundary, and the projection of the triple line is a point, called a triple point.

How may we use a phase diagram? The two axes represent values of two independent variables, such as p and V /n
or p and T . For given values of these variables, we place a point on the diagram at the intersection of the corresponding
coordinates; this is the system point. Then depending on whether the system point falls in an area or on a coexistence
curve, the diagram tells us the number and kinds of phases that can be present in the equilibrium system.

If the system point falls within an area labeled with the physical state of a single phase, only that one kind of phase
can be present in the equilibrium system. A system containing a pure substance in a single phase is bivariant (F =
3−1=2), so we may vary two intensive properties independently. That is, the system point may move independently
along two coordinates (p and V /n, or p and T ) and still remain in the one-phase area of the phase diagram. When V
and n refer to a single phase, the variable V /n is the molar volume Vm in the phase.

If the system point falls in an area of the pressure–volume phase diagram labeled with symbols for two phases,
these two phases coexist in equilibrium. The phases have the same pressure and different molar volumes. To find
the molar volumes of the individual phases, we draw a horizontal line of constant pressure, called a tie line, through
the system point and extending from one edge of the area to the other. The horizontal position of each end of the tie

8.2.2. This statement assumes there are no constraints such as internal adiabatic partitions.
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Figure 8.2.3. High-pressure pressure--temperature phase diagram of H2O.8.2.4 The roman numerals designate seven forms of ice.

8.2.4. Based on data in Refs. [42], Table 3.5, and [112].

line, where it terminates at the boundary with a one-phase area, gives the molar volume in that phase in the two-phase
system. For an example of a tie line, see Fig. 8.2.8 on page 169.

The triple line on the pressure–volume diagram represents the range of values of V /n in which three phases (solid,
liquid, and gas) can coexist at equilibrium.8.2.3 A three-phase one-component system is invariant (F=3−3=0); there
is only one temperature (the triple-point temperature Ttp) and one pressure (the triple-point pressure ptp) at which the
three phases can coexist. The values of Ttp and ptp are unique to each substance, and are shown by the position of the
triple point on the pressure–temperature phase diagram. The molar volumes in the three coexisting phases are given by
the values of V /n at the three points on the pressure–volume diagram where the triple line touches a one-phase area.
These points are at the two ends and an intermediate position of the triple line. Ifthe system point is at either end of
the triple line, only the one phase of corresponding molar volume at temperature Ttp and pressure ptp can be present.
When the system point is on the triple line anywhere between the two ends, either two or three phases can be present.
If the system point is at the position on the triple line corresponding to the phase of intermediate molar volume, there
might be only that one phase present.

At high pressures, a substance may have additional triple points for two solid phases and the liquid, or for three
solid phases. This is illustrated by the pressure–temperature phase diagram of H2O in Fig. 8.2.3 on page 165, which
extends to pressures up to 30kbar. (On this scale, the liquid–gas coexistence curve lies too close to the horizontal axis
to be visible.) The diagram shows seven different solid phases of H2O differing in crystal structure and designated ice
I, ice II, and so on. Ice I is the ordinary form of ice, stable below 2bar. On the diagram are four triple points for two
solids and the liquid and three triple points for three solids. Each triple point is invariant. Note how H2O can exist as
solid ice VI or ice VII above its standard melting point of 273K if the pressure is high enough (“hot ice”).

8.2.2 Two-phase equilibrium

A system containing two phases of a pure substance in equilibrium is univariant. Both phases have the same values
of T and of p, but these values are not independent because of the requirement that the phases have equal chemical
potentials. We may vary only one intensive variable of a pure substance (such as T or p) independently while two
phases coexist in equilibrium.

8.2.3. Helium is the only substance lacking a solid–liquid–gas triple line. When a system containing the coexisting liquid and gas of 4He is
cooled to 2.17K, a triple point is reached in which the third phase is a liquid called He-II, which has the unique property of superfluidity. It is only
at high pressures (10bar or greater) that solid helium can exist.
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Figure 8.2.4. An isoteniscope. The liquid to be investigated is placed in the vessel and U-tube, as indicated by shading, and maintained
at a fixed temperature in the bath. The pressure in the side tube is reduced until the liquid boils gently and its vapor sweeps out the air.
The pressure is adjusted until the liquid level is the same in both limbs of the U-tube; the vapor pressure of the liquid is then equal to the
pressure in the side tube, which can be measured with a manometer.

At a given temperature, the pressure at which solid and gas or liquid and gas are in equilibrium is called the vapor
pressure or saturation vapor pressure of the solid or liquid.8.2.5 The vapor pressure of a solid is sometimes called
the sublimation pressure. We may measure the vapor pressure of a liquid at a fixed temperature with a simple device
called an isoteniscope (Fig. 8.2.4 on page 166).

At a given pressure, the melting point or freezing point is the temperature at which solid and liquid are in equi-
librium, the boiling point or saturation temperature is the temperature at which liquid and gas are in equilibrium,
and the sublimation temperature or sublimation point is the temperature at which solid and gas are in equilibrium.

The relation between temperature and pressure in a system with two phases in equilibrium is shown by the coex-
istence curve separating the two one-phase areas on the pressure–temperature diagram (see Fig. 8.2.5 on page 166).

Consider the liquid–gas curve. If we think of T as the independent variable, the curve is a vapor-pressure curve
showing how the vapor pressure of the liquid varies with temperature. If, however, p is the independent variable, then
the curve is a boiling-point curve showing the dependence of the boiling point on pressure.

The normal melting point or boiling point refers to a pressure of one atmosphere, and the standard melting point or
boiling point refers to the standard pressure. Thus, the normal boiling point of water (99.97 ∘C) is the boiling point at
1atm; this temperature is also known as the steam point. The standard boiling point of water (99.61 ∘C) is the boiling
point at the slightly lower pressure of 1bar.

Figure 8.2.5. Pressure--temperature phase diagram of H2O. (Based on data in Ref. [105].)

8.2.5. In a system of more than one substance, vapor pressure can refer to the partial pressure of a substance in a gas mixture equilibrated with
a solid or liquid of that substance. The effect of total pressure on vapor pressure will be discussed in Sec. 12.8.1. This book refers to the saturation
vapor pressure of a liquid when it is necessary to indicate that it is the pure liquid and pure gas phases that are in equilibrium at the same pressure.
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Figure 8.2.6. Glass bulb filled with CO2 at a value of V /n close to the critical value, viewed at four different temperatures. The three
balls have densities less than, approximately equal to, and greater than the critical density.8.2.6

(a) Supercritical fluid at a temperature above the critical temperature.
(b) Intense opalescence just above the critical temperature.
(c) Meniscus formation slightly below the critical temperature; liquid and gas of nearly the same density.
(d) Temperature well below the critical temperature; liquid and gas of greatly different densities.

8.2.6. Ref. [126].

Coexistence curves will be discussed further in Sec. 8.4.

8.2.3 The critical point
Every substance has a certain temperature, the critical temperature, above which only one fluid phase can exist at
any volume and pressure (Sec. 2.2.3). The critical point is the point on a phase diagram corresponding to liquid–gas
coexistence at the critical temperature, and the critical pressure is the pressure at this point.

To observe the critical point of a substance experimentally, we can evacuate a glass vessel, introduce an amount of
the substance such that V /n is approximately equal to the molar volume at the critical point, seal the vessel, and raise
the temperature above the critical temperature. The vessel now contains a single fluid phase. When the substance is
slowly cooled to a temperature slightly above the critical temperature, it exhibits a cloudy appearance, a phenomenon
called critical opalescence (Fig. 8.2.6 on page 167).

The opalescence is the scattering of light caused by large local density fluctuations. At the critical temperature, a
meniscus forms between liquid and gas phases of practically the same density. With further cooling, the density of the
liquid increases and the density of the gas decreases.

At temperatures above the critical temperature and pressures above the critical pressure, the one existing fluid
phase is called a supercritical fluid. Thus, a supercritical fluid of a pure substance is a fluid that does not undergo a
phase transition to a different fluid phase when we change the pressure at constant temperature or change the temper-
ature at constant pressure.8.2.7

8.2.7. If, however, we increase p at constant T , the supercritical fluid will change to a solid. In the phase diagram of H2O, the coexistence
curve for ice VII and liquid shown in Fig. 8.2.3 extends to a higher temperature than the critical temperature of 647K. Thus, supercritical water
can be converted to ice VII by isothermal compression.
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Figure 8.2.7. Densities of coexisting gas and liquid phases close to the critical point as functions of temperature for (a) CO2;8.2.8 (b)
SF6.8.2.9 Experimental gas densities are shown by open squares and experimental liquid densities by open triangles. The mean density at
each experimental temperature is shown by an open circle. The open diamond is at the critical temperature and critical density.

8.2.8. Based on data in Ref. [97].
8.2.9. Data of Ref. [109], Table VII.

A fluid in the supercritical region can have a density comparable to that of the liquid, and can be more compressible
than the liquid. Under supercritical conditions, a substance is often an excellent solvent for solids and liquids. By
varying the pressure or temperature, the solvating power can be changed; by reducing the pressure isothermally, the
substance can be easily removed as a gas from dissolved solutes. These properties make supercritical fluids useful for
chromatography and solvent extraction.

The critical temperature of a substance can be measured quite accurately by observing the appearance or disap-
pearance of a liquid–gas meniscus, and the critical pressure can be measured at this temperature with a high-pressure
manometer. To evaluate the density at the critical point, it is best to extrapolate the mean density of the coexisting
liquid and gas phases, (𝜌l+𝜌g)/2, to the critical temperature as illustrated in Fig. 8.2.7 on page 168.

The observation that the mean density closely approximates a linear function of temperature, as shown in the
figure, is known as the law of rectilinear diameters, or the law of Cailletet and Matthias. This law is an approxima-
tion, as can be seen by the small deviation of the mean density of SF6 from a linear relation very close to the critical
point in Fig. 8.2.7(b). This failure of the law of rectilinear diameters is predicted by recent theoretical treatments.8.2.10

8.2.4 The lever rule

Consider a single-substance system whose system point is in a two-phase area of a pressure–volume phase diagram.
How can we determine the amounts in the two phases?

As an example, let the system contain a fixed amount n of a pure substance divided into liquid and gas phases, at
a temperature and pressure at which these phases can coexist in equilibrium. When heat is transferred into the system
at this T and p, some of the liquid vaporizes by a liquid–gas phase transition and V increases; withdrawal of heat
at this T and p causes gas to condense and V to decrease. The molar volumes and other intensive properties of the
individual liquid and gas phases remain constant during these changes at constant T and p. On the pressure–volume

8.2.10. Refs. [137] and [10].
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Figure 8.2.8. Tie line (dashed) at constant T and p in the liquid–gas area of a pressure–volume phase diagram. Points A and B are at the
ends of the tie line, and point S is a system point on the tie line. Ll and Lg are the lengths AS and SB, respectively.

phase diagram of Fig. 8.2.8 on page 169, the volume changes correspond to movement of the system point to the right
or left along the tie line AB.

When enough heat is transferred into the system to vaporize all of the liquid at the given T and p, the system point
moves to point B at the right end of the tie line. V /n at this point must be the same as the molar volume of the gas,
Vm

g. We can see this because the system point could have moved from within the one-phase gas area to this position
on the boundary without undergoing a phase transition.

When, on the other hand, enough heat is transferred out of the system to condense all of the gas, the system point
moves to point A at the left end of the tie line. V /n at this point is the molar volume of the liquid, Vm

l .
When the system point is at position S on the tie line, both liquid and gas are present. Their amounts must be such

that the total volume is the sum of the volumes of the individual phases, and the total amount is the sum of the amounts
in the two phases:

V =V l+V g=nlVm
l +ng Vm

g (8.2.1)

n=nl+ng (8.2.2)

The value of V /n at the system point is then given by the equation

V
n =

nlVm
l +ng Vm

g

nl+ng (8.2.3)

which can be rearranged to

nl�Vm
l − V

n�=ng�V
n −Vm

g� (8.2.4)

The quantities Vm
l − V /n and V /n −Vm

g are the lengths Ll and Lg, respectively, defined in the figure and measured in
units of V /n. This gives us the lever rule for liquid–gas equilibrium:8.2.11

nlLl=ng Lg or ng

nl =
Ll

Lg

(8.2.5)
(coexisting liquid and gas
phases of a pure substance)

In Fig. 8.2.8 the system point S is positioned on the tie line two thirds of the way from the left end, making length Ll

twice as long as Lg. The lever rule then gives the ratio of amounts: ng/nl=Ll/Lg=2. One-third of the total amount is
liquid and two-thirds is gas.

We cannot apply the lever rule to a point on the triple line, because we need more than the value of V /n to
determine the relative amounts present in three phases.

8.2.11. The relation is called the lever rule by analogy to a stationary mechanical lever, each end of which has the same value of the product
of applied force and distance from the fulcrum.
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Figure 8.2.9. Isotherms for the fluid phases of H2O.8.2.12 The open circle indicates the critical point, the dashed curve is the critical
isotherm at 373.95 ∘C, and the dotted curve encloses the two-phase area of the pressure–volume phase diagram. The triple line lies too
close to the bottom of the diagram to be visible on this scale.

8.2.12. Based on data in Ref. [105].

We can derive a more general form of the lever rule that will be needed in Chap. 13 for phase dia-
grams of multicomponent systems. This general form can be applied to any two-phase area of a two-
dimensional phase diagram in which a tie-line construction is valid, with the position of the system
point along the tie line given by the variable

F =
def a

b (8.2.6)

where a and b are extensive state functions. (In the pressure--volume phase diagram of Fig. 8.2.8, these
functions are a=V and b=n and the system point position is given by F=V /n.) We repeat the steps of
the derivation above, labeling the two phases by superscripts α and β instead of l and g. The relation
corresponding to Eq. 8.2.4 is

bα(Fα −F)=bβ(F −Fβ) (8.2.7)

If Lα and Lβ are lengths measured along the tie line from the system point to the ends of the tie line at
single phases α and β, respectively, Eq. 8.2.7 is equivalent to the general lever rule

bαLα=bβLβ or bβ

bα =
Lα

Lβ (8.2.8)

8.2.5 Volume properties
Figure 8.2.9 on page 170 is a pressure–volume phase diagram for H2O. On the diagram are drawn isotherms (curves
of constant T ). These isotherms define the shape of the three-dimensional p–(V /n)–T surface. The area containing
the horizontal isotherm segments is the two-phase area for coexisting liquid and gas phases. The boundary of this area
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Figure 8.2.10. Isobars for the fluid phases of H2O.8.2.13 The open circle indicates the critical point, the dashed curve is the critical isobar
at 220.64bar, and the dotted curve encloses the two-phase area of the temperature–volume phase diagram.

Solid curves: a, p=200bar; b, p=210bar; c, p=230bar; d, p=240bar.

8.2.13. Based on data in Ref. [105].

is defined by the dotted curve drawn through the ends of the horizontal segments. The one-phase liquid area lies to
the left of this curve, the one-phase gas area lies to the right, and the critical point lies at the top.

The diagram contains the information needed to evaluate the molar volume at any temperature and pressure in the
one-phase region and the derivatives of the molar volume with respect to temperature and pressure. At a system point
in the one-phase region, the slope of the isotherm passing through the point is the partial derivative (∂ p/∂Vm)T . Since
the isothermal compressibility is given by 𝜅T =−(1/Vm)(∂Vm/∂ p)T , we have

𝜅T =− 1
Vm×(slope of isotherm) (8.2.9)

We see from Fig. 8.2.9 that the slopes of the isotherms are large and negative in the liquid region, smaller and neg-
ative in the gas and supercritical fluid regions, and approach zero at the critical point. Accordingly, the isothermal
compressibility of the gas and the supercritical fluid is much greater than that of the liquid, approaching infinity at the
critical point. The critical opalescence seen in Fig. 8.2.6 is caused by local density fluctuations, which are large when
𝜅T is large.

Figure 8.2.10 on page 171 shows isobars for H2O instead of isotherms. At a system point in the one-phase region,
the slope of the isobar passing through the point is the partial derivative (∂T /∂Vm)p. The cubic expansion coefficient
𝛼 is equal to (1/Vm)(∂Vm/∂T)p, so we have

𝛼= 1
Vm×(slope of isobar) (8.2.10)

The figure shows that the slopes of the isobars are large and positive in the liquid region, smaller and negative in the
gas and supercritical fluid regions, and approach zero at the critical point. Thus the gas and the supercritical fluid
have much larger cubic expansion coefficients than the liquid. The value of 𝛼 approaches infinity at the critical point,
meaning that in the critical region the density distribution is greatly affected by temperature gradients. This may
account for the low position of the middle ball in Fig. 8.2.6(b).

8.3 Phase Transitions
Recall (Sec. 2.2.2) that an equilibrium phase transition of a pure substance is a process in which some or all of the
substance is transferred from one coexisting phase to another at constant temperature and pressure.
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8.3.1 Molar transition quantities
The quantity Δvap H is the molar enthalpy change for the reversible process in which liquid changes to gas at a
temperature and pressure at which the two phases coexist at equilibrium. This quantity is called the molar enthalpy
of vaporization.8.3.1 Since the pressure is constant during the process, Δvap H is equal to the heat per amount of
vaporization (Eq. 5.3.8). Hence, Δvap H is also called the molar heat of vaporization.

The first edition of this book used the notation Δvap Hm, with subscript m, in order to make it clear that
it refers to a molar enthalpy of vaporization. The most recent edition of the IUPAC Green Book8.3.2

recommends thatΔp be interpreted as an operator symbol:Δp =
def
∂/∂𝜉p, where “p” is the abbreviation

for a process at constant T and p (in this case “vap”) and 𝜉p is its advancement. ThusΔvapH is the same
as (∂H/∂𝜉vap)T ,p where 𝜉vap is the amount of liquid changed to gas.

Here is a list of symbols for the molar enthalpy changes of various equilibrium phase transitions:
Δvap H molar enthalpy of vaporization (liquid→gas)
Δsub H molar enthalpy of sublimation (solid→gas)
Δfus H molar enthalpy of fusion (solid→liquid)
Δtrs H molar enthalpy of a transition between any two phases in general
Molar enthalpies of vaporization, sublimation, and fusion are positive. The reverse processes of condensation
(gas→liquid), condensation or deposition (gas→solid), and freezing (liquid→solid) have negative enthalpy changes.

The subscripts in the list above are also used for other molar transition quantities. Thus, there is the molar entropy
of vaporization Δvap S, the molar internal energy of sublimation Δsub U, and so on.

A molar transition quantity of a pure substance is the change of an extensive property divided by the amount
transferred between the phases. For example, when an amount n in a liquid phase is allowed to vaporize to gas at
constant T and p, the enthalpy change is ΔH=nHm

g −nHm
l and the molar enthalpy of vaporization is

Δvap H= ΔH
n =Hm

g −Hm
l (8.3.1)

(pure substance)

In other words, Δvap H is the enthalpy change per amount vaporized and is also the difference between the molar
enthalpies of the two phases.

A molar property of a phase, being intensive, usually depends on two independent intensive variables such as T
and p. Despite the fact that Δvap H is the difference of the two molar properties Hm

g and Hm
l , its value depends on only

one intensive variable, because the two phases are in transfer equilibrium and the system is univariant. Thus, we may
treat Δvap H as a function of T only. The same is true of any other molar transition quantity.

The molar Gibbs energy of an equilibrium phase transition, ΔtrsG, is a special case. For the phase transition α→β,
we may write an equation analogous to Eq. 8.3.1 and equate the molar Gibbs energy in each phase to a chemical
potential (see Eq. 7.8.1):

Δtrs G=Gm
β −Gm

α=𝜇β −𝜇α (8.3.2)
(pure substance)

But the transition is between two phases at equilibrium, requiring both phases to have the same chemical potential:
𝜇β −𝜇α=0. Therefore, the molar Gibbs energy of any equilibrium phase transition is zero:

Δtrs G=0 (8.3.3)
(pure substance)

Since the Gibbs energy is defined by G=H −TS, in phase α we have Gm
α=Gα/nα=Hm

α −TSm
α. Similarly, in phase β

we have Gm
β =Hm

β −TSm
β . When we substitute these expressions in Δtrs G=Gm

β −Gm
α (Eq. 8.3.2) and set T equal to the

transition temperature Ttrs, we obtain

Δtrs G = (Hm
β −Hm

α)−Ttrs(Sm
β −Sm

α)
= Δtrs H −TtrsΔtrs S (8.3.4)

8.3.1. Because Δvap H is an enthalpy change per amount of vaporization, it would be more accurate to call it the “molar enthalpy change of
vaporization.”
8.3.2. Ref. [30], p. 58.
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Then, by settingΔtrsG equal to zero, we find the molar entropy and molar enthalpy of the equilibrium phase transition
are related by

Δtrs S= Δtrs H
Ttrs

(8.3.5)
(pure substance)

where Δtrs S and Δtrs H are evaluated at the transition temperature Ttrs.

We may obtain Eq. 8.3.5 directly from the second law. With the phases in equilibrium, the transition
process is reversible. The second law givesΔS=q/Ttrs=ΔH/Ttrs. Dividing by the amount transferred
between the phases gives Eq. 8.3.5.

8.3.2 Calorimetric measurement of transition enthalpies

The most precise measurement of the molar enthalpy of an equilibrium phase transition uses electrical work. A known
quantity of electrical work is performed on a system containing coexisting phases, in a constant-pressure adiabatic
calorimeter, and the resulting amount of substance transferred between the phases is measured. The first law shows
that the electrical work I 2RelΔ t equals the heat that would be needed to cause the same change of state. This heat, at
constant p, is the enthalpy change of the process.

The method is similar to that used to measure the heat capacity of a phase at constant pressure (Sec. 7.3.2), except
that now the temperature remains constant and there is no need to make a correction for the heat capacity of the
calorimeter.

8.3.3 Standard molar transition quantities

The standard molar enthalpy of vaporization, Δvap H∘, is the enthalpy change when pure liquid in its standard state at
a specified temperature changes to gas in its standard state at the same temperature, divided by the amount changed.

Note that the initial state of this process is a real one (the pure liquid at pressure p∘), but the final state (the gas
behaving ideally at pressure p∘) is hypothetical. The liquid and gas are not necessarily in equilibrium with one another
at pressure p∘ and the temperature of interest, and we cannot evaluate Δvap H∘ from a calorimetric measurement with
electrical work without further corrections. The same difficulty applies to the evaluation of Δsub H∘. In contrast,
ΔvapH andΔsubH (without the ∘ symbol), as well asΔfusH∘, all refer to reversible transitions between two real phases
coexisting in equilibrium.

Let X represent one of the thermodynamic potentials or the entropy of a phase. The standard molar transition
quantitiesΔvapX∘=Xm

∘ (g)−Xm(l) andΔsubX ∘=Xm
∘ (g)−Xm(s) are functions only of T . To evaluateΔvapX∘ orΔsubX ∘

at a given temperature, we must calculate the change of Xm for a path that connects the standard state of the liquid or
solid with that of the gas. The simplest choice of path is one of constant temperature T with the following steps:

1. Isothermal change of the pressure of the liquid or solid, starting with the standard state at pressure p∘ and
ending with the pressure equal to the vapor pressure pvap of the condensed phase at temperature T . The value
of ΔXm in this step can be obtained from an expression in the second column of Table 7.6.1, or from an
approximation in the last column of the table.

2. Reversible vaporization or sublimation to form the real gas at T and pvap. The change of Xm in this step is
either Δvap X or Δsub X, which can be evaluated experimentally.

3. Isothermal change of the real gas at pressure pvap to the hypothetical ideal gas at pressure p∘. Table 7.9.1 has
the relevant formulas relating molar quantities of a real gas to the corresponding standard molar quantities.

The sum of ΔXm for these three steps is the desired quantity Δvap X ∘ or Δsub X∘.
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Figure 8.4.1. Top: chemical potential surfaces of the liquid and gas phases of H2O; the two phases are at equilibrium along the intersection
(heavy curve). (The vertical scale for 𝜇 has an arbitrary zero.) Bottom: projection of the intersection onto the p--T plane, generating the
coexistence curve. (Based on data in Ref. [60].)

8.4 Coexistence Curves

A coexistence curve on a pressure–temperature phase diagram shows the conditions under which two phases can
coexist in equilibrium, as explained in Sec. 8.2.2.

8.4.1 Chemical potential surfaces

We may treat the chemical potential 𝜇 of a pure substance in a single phase as a function of the independent variables
T and p, and represent the function by a three-dimensional surface. Since the condition for equilibrium between two
phases of a pure substance is that both phases have the same T , p, and 𝜇, equilibrium in a two-phase system can exist
only along the intersection of the surfaces of the two phases as illustrated in Fig. 8.4.1 on page 174.

The shape of the surface for each phase is determined by the partial derivatives of the chemical potential with
respect to temperature and pressure as given by Eqs. 7.8.3 and 7.8.4:

�∂𝜇∂T�p
=−Sm �∂𝜇∂ p�T

=Vm (8.4.1)

Let us explore how 𝜇 varies with T at constant p for the different physical states of a substance. The stable phase at
each temperature is the one of lowest 𝜇, since transfer of a substance from a higher to a lower 𝜇 at constant T and p
is spontaneous.

From the relation (∂𝜇/∂ T)p=−Sm, we see that at constant p the slope of 𝜇 versus T is negative since molar
entropy is always positive. Furthermore, the magnitude of the slope increases on going from solid to liquid and from
liquid to gas, because the molar entropies of sublimation and vaporization are positive. This difference in slope is
illustrated by the curves for H2O in Fig. 8.4.2(a) on page 175.
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Figure 8.4.2. Phase stability of H2O.8.4.1

(a) Chemical potentials of different physical states as functions of temperature. (The scale for 𝜇 has an arbitrary zero.) Chemical
potentials of the gas are shown at 0.03bar and 0.003bar. The effect of pressure on the curves for the solid and liquid is negligible. At
p=0.03bar, solid and liquid coexist at T =273.16K (point A) and liquid and gas coexist at T =297.23K (point B). At p=0.003bar, solid
and gas coexist at T =264.77K (point C).

(b) Pressure--temperature phase diagram with points corresponding to those in (a).

8.4.1. Based on data in Refs. [60] and [74].

The triple-point pressure of H2O is 0.0062bar. At a pressure of 0.03bar, greater than the triple-point pressure, the
curves for solid and liquid intersect at a melting point (point A) and the curves for liquid and gas intersect at a boiling
point (point B).

From (∂𝜇/∂ p)T =Vm, we see that a pressure reduction at constant temperature lowers the chemical potential of
a phase. The result of a pressure reduction from 0.03 bar to 0.003 bar (below the triple-point pressure of H2O) is a
downward shift of each of the curves of Fig. 8.4.2(a) by a distance proportional to the molar volume of the phase. The
shifts of the solid and liquid curves are too small to see (Δ𝜇 is only −0.002kJ⋅mol−1). Because the gas has a large
molar volume, the gas curve shifts substantially to a position where it intersects with the solid curve at a sublimation
point (point C). At 0.003 bar, or any other pressure below the triple-point pressure, only a solid–gas equilibrium
is possible for H2O. The liquid phase is not stable at any pressure below the triple-point pressure, as shown by the
pressure–temperature phase diagram of H2O in Fig. 8.4.2(b).

8.4.2 The Clapeyron equation
If we start with two coexisting phases, α and β, of a pure substance and change the temperature of both phases equally
without changing the pressure, the phases will no longer be in equilibrium, because their chemical potentials change
unequally. In order for the phases to remain in equilibrium during the temperature change dT of both phases, there
must be a certain simultaneous change dp in the pressure of both phases. The changes dT and dp must be such that
the chemical potentials of both phases change equally so as to remain equal to one another: d𝜇α=d𝜇β.

The infinitesimal change of 𝜇 in a phase is given by d𝜇=−SmdT +Vmdp (Eq. 7.8.2). Thus, the two phases remain
in equilibrium if dT and dp satisfy the relation

−Sm
α dT +Vm

α dp=−Sm
β dT +Vm

β dp (8.4.2)
which we rearrange to

dp
dT =

Sm
β −Sm

α

Vm
β −Vm

α
(8.4.3)

or
dp
dT =

Δtrs S
Δtrs V

(8.4.4)
(pure substance)
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./bio/clapeyron
Figure 8.4.3.

Equation 8.4.4 is one form of the Clapeyron equation, which contains no approximations. We find an alternative
form by substituting Δtrs S=Δtrs H/Ttrs (Eq. 8.3.5):

dp
dT =

Δtrs H
TΔtrs V

(8.4.5)
(pure substance)

Equations 8.4.4 and 8.4.5 give the slope of the coexistence curve, dp/dT , as a function of quantities that can be mea-
sured. For the sublimation and vaporization processes, bothΔtrsH andΔtrsV are positive. Therefore, according to Eq.
8.4.5, the solid–gas and liquid–gas coexistence curves have positive slopes. For the fusion process, however, Δfus H
is positive, but Δfus V may be positive or negative depending on the substance, so that the slope of the solid–liquid
coexistence curve may be either positive or negative. The absolute value of Δfus V is small, causing the solid–liquid
coexistence curve to be relatively steep; see Fig. 8.4.2(b) for an example.

Most substances expand on melting, making the slope of the solid--liquid coexistence curve positive.
This is true of carbon dioxide, although in Fig. 8.2.1(c) the curve is so steep that it is difficult to see
the slope is positive. Exceptions at ordinary pressures, substances that contract on melting, are H2O,
rubidium nitrate, and the elements antimony, bismuth, and gallium.
The phase diagram for H2O in Fig. 8.2.3 on page 165 clearly shows that the coexistence curve for ice I
and liquid has a negative slope due to ordinary ice being less dense than liquid water. The high-pressure
forms of ice are more dense than the liquid, causing the slopes of the other solid--liquid coexistence
curves to be positive. The ice VII--ice VIII coexistence curve is vertical, because these two forms of
ice have identical crystal structures, except for the orientations of the H2O molecule; therefore, within
experimental uncertainty, the two forms have equal molar volumes.

We may rearrange Eq. 8.4.5 to give the variation of p with T along the coexistence curve:

dp= Δtrs H
Δtrs V

⋅ dT
T (8.4.6)

Consider the transition from solid to liquid (fusion). Because of the fact that the cubic expansion coefficient and
isothermal compressibility of a condensed phase are relatively small, Δfus V is approximately constant for small
changes of T and p. If Δfus H is also practically constant, integration of Eq. 8.4.6 yields the relation

p2− p1≈
Δfus H
Δfus V ln

T2
T1

(8.4.7)
or

T2≈T1exp�
Δfus V (p2− p1)
Δfus H

� (8.4.8)
(pure substance)

from which we may estimate the dependence of the melting point on pressure.

8.4.3 The Clausius–Clapeyron equation
When the gas phase of a substance coexists in equilibrium with the liquid or solid phase, and provided T and p are
not close to the critical point, the molar volume of the gas is much greater than that of the condensed phase. Thus, we
may write for the processes of vaporization and sublimation

Δvap V =Vm
g −Vm

l ≈Vm
g Δsub V =Vm

g −Vm
s ≈Vm

g (8.4.9)

The further approximation that the gas behaves as an ideal gas, Vm
g≈RT /p, then changes Eq. 8.4.5 to

dp
dT ≈

pΔtrs H
RT 2

(8.4.10)
(pure substance,
vaporization or sublimation)
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Equation 8.4.10 is the Clausius--Clapeyron equation. It gives an approximate expression for the slope of a liquid–gas
or solid–gas coexistence curve. The expression is not valid for coexisting solid and liquid phases, or for coexisting
liquid and gas phases close to the critical point.

At the temperature and pressure of the triple point, it is possible to carry out all three equilibrium phase transitions
of fusion, vaporization, and sublimation. When fusion is followed by vaporization, the net change is sublimation.
Therefore, the molar transition enthalpies at the triple point are related by

Δfus H+Δvap H=Δsub H (8.4.11)

Since all three of these transition enthalpies are positive, it follows thatΔsubH is greater thanΔvapH at the triple point.
Therefore, according to Eq. 8.4.10, the slope of the solid–gas coexistence curve at the triple point is slightly greater
than the slope of the liquid–gas coexistence curve.

We divide both sides of Eq. 8.4.10 by p∘ and rearrange to the form

d(p/p∘)
p/p∘ ≈

Δtrs H
R ⋅ dT

T 2
(8.4.12)

Then, using the mathematical identities d(p/p∘)/(p/p∘)=dln(p/p∘) and dT /T 2=−d(1/T), we can write Eq. 8.4.12
in three alternative forms:

dln (p/p∘)
dT ≈ Δtrs H

RT 2
(8.4.13)

(pure substance,
vaporization or sublimation)

dln (p/p∘)≈−Δtrs H
R d(1/T)

(8.4.14)
(pure substance,
vaporization or sublimation)

dln (p/p∘)
d(1/T) ≈−Δtrs H

R

(8.4.15)
(pure substance,
vaporization or sublimation)

Equation 8.4.15 shows that the curve of a plot of ln(p/p∘) versus 1/T (where p is the vapor pressure of a pure liquid
or solid) has a slope at each temperature equal, usually to a high degree of accuracy, to −ΔvapH/R or −ΔsubH/R at that
temperature. This kind of plot provides an alternative to calorimetry for evaluating molar enthalpies of vaporization
and sublimation.

If we use the recommended standard pressure of 1 bar, the ratio p/p∘ appearing in these equations
becomes p/bar. That is, p/p∘ is simply the numerical value of p when p is expressed in bars. For the
purpose of using Eq. 8.4.15 to evaluate Δtrs H, we can replace p∘ by any convenient value. Thus, the
curves of plots of ln (p/bar) versus 1/T , ln (p/Pa) versus 1/T , and ln (p/Torr) versus 1/T using the
same temperature and pressure data all have the same slope (but different intercepts) and yield the same
value of Δtrs H.

If we assumeΔvapH or Δsub H is essentially constant in a temperature range, we may integrate Eq. 8.4.14 from an
initial to a final state along the coexistence curve to obtain

ln p2
p1
≈−Δtrs H

R � 1T2
− 1T1
�

(8.4.16)
(pure substance,
vaporization or sublimation)

Equation 8.4.16 allows us to estimate any one of the quantities p1, p2, T1, T2, or Δtrs H, given values of the other four.
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8.5 Problems
Problem 8.5.1. Consider the system described in Sec. 8.1.5 containing a spherical liquid droplet of radius r surrounded by pure vapor. Starting
with Eq. 8.1.15, find an expression for the total differential of U. Then impose conditions of isolation and show that the equilibrium conditions
are T g=T l, 𝜇g=𝜇l, and pl= pg+2𝛾/r, where 𝛾 is the surface tension.

Problem 8.5.2. This problem concerns diethyl ether at T =298.15K. At this temperature, the standard molar entropy of the gas calculated
from spectroscopic data is Sm

∘ (g) = 342.2 J⋅K−1⋅mol−1. The saturation vapor pressure of the liquid at this temperature is 0.6691 bar, and
the molar enthalpy of vaporization is Δvap H = 27.10 kJ⋅mol−1. The second virial coefficient of the gas at this temperature has the value
B=−1.227×10−3m3⋅mol−1, and its variation with temperature is given by dB/dT =1.50×10−5m3⋅K−1⋅mol−1.

a) Use these data to calculate the standard molar entropy of liquid diethyl ether at 298.15K. A small pressure change has a negligible
effect on the molar entropy of a liquid, so that it is a good approximation to equate Sm

∘ (l) to Sm(l) at the saturation vapor pressure.

b) Calculate the standard molar entropy of vaporization and the standard molar enthalpy of vaporization of diethyl ether at 298.15K. It
is a good approximation to equate Hm

∘ (l) to Hm(l) at the saturation vapor pressure.

Problem 8.5.3. Explain why the chemical potential surfaces shown in Fig. 8.4.1 are concave downward; that is, why (∂𝜇/∂T)p becomes
more negative with increasing T and (∂𝜇/∂ p)T becomes less positive with increasing p.

Problem 8.5.4. Potassium has a standard boiling point of 773 ∘C and a molar enthalpy of vaporization Δvap H =84.9kJ⋅mol−1. Estimate the
saturation vapor pressure of liquid potassium at 400. ∘C.

Problem 8.5.5. Naphthalene has a melting point of 78.2 ∘C at 1bar and 81.7 ∘C at 100bar. The molar volume change on melting is Δfus V =
0.019cm3⋅mol−1. Calculate the molar enthalpy of fusion to two significant figures.

Problem 8.5.6. The dependence of the vapor pressure of a liquid on temperature, over a limited temperature range, is often represented by the
Antoine equation, log10(p/Torr)=A−B/(t+C), where t is the Celsius temperature and A, B, and C are constants determined by experiment.
A variation of this equation, using a natural logarithm and the thermodynamic temperature, is

ln (p/bar)=a − b
T + c

The vapor pressure of liquid benzene at temperatures close to 298K is adequately represented by the preceding equation with the following
values of the constants:

a=9.25092 b=2771.233K c=−53.262K

a) Find the standard boiling point of benzene.

b) Use the Clausius–Clapeyron equation to evaluate the molar enthalpy of vaporization of benzene at 298.15K.

Problem 8.5.7. At a pressure of one atmosphere, water and steam are in equilibrium at 99.97 ∘C (the normal boiling point of water). At this
pressure and temperature, the water density is 0.958g⋅cm−3, the steam density is 5.98×10−4g⋅cm−3, and the molar enthalpy of vaporization is
40.66kJ⋅mol−1.

a) Use the Clapeyron equation to calculate the slope dp/dT of the liquid--gas coexistence curve at this point.

b) Repeat the calculation using the Clausius--Clapeyron equation.

c) Use your results to estimate the standard boiling point of water. (Note: The experimental value is 99.61 ∘C.)

Problem 8.5.8. At the standard pressure of 1bar, liquid and gaseous H2O coexist in equilibrium at 372.76K, the standard boiling point of water.

a) Do you expect the standard molar enthalpy of vaporization to have the same value as the molar enthalpy of vaporization at this
temperature? Explain.

b) The molar enthalpy of vaporization at 372.76K has the valueΔvapH =40.67kJ⋅mol−1. Estimate the value ofΔvapH ∘ at this temperature
with the help of Table 7.9.1 and the following data for the second virial coefficient of gaseous H2O at 372.76K:

B=−4.60×10−4m3⋅mol−1 dB/dT =3.4×10−6m3⋅K−1⋅mol−1

c) Would you expect the values of Δfus H and Δfus H ∘ to be equal at the standard freezing point of water? Explain.

Problem 8.5.9. The standard boiling point of H2O is 99.61 ∘C. The molar enthalpy of vaporization at this temperature isΔvapH =40.67kJ⋅mol−1.
The molar heat capacity of the liquid at temperatures close to this value is given by

Cp,m=a+b (t − c)

where t is the Celsius temperature and the constants have the values

a=75.94 J⋅K−1⋅mol−1 b=0.022J⋅K−2⋅mol−1 c=99.61 ∘C
Suppose 100.00mol of liquid H2O is placed in a container maintained at a constant pressure of 1bar, and is carefully heated to a temperature
5.00 ∘C above the standard boiling point, resulting in an unstable phase of superheated water. If the container is enclosed with an adiabatic
boundary and the system subsequently changes spontaneously to an equilibrium state, what amount of water will vaporize? (Hint: The tem-
perature will drop to the standard boiling point, and the enthalpy change will be zero.)
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Chapter 9
Mixtures
A homogeneous mixture is a phase containing more than one substance. This chapter discusses composition variables
and partial molar quantities of mixtures in which no chemical reaction is occurring. The ideal mixture is defined.
Chemical potentials, activity coefficients, and activities of individual substances in both ideal and nonideal mixtures
are discussed.

Except for the use of fugacities to determine activity coefficients in condensed phases, a discussion of phase equi-
libria involving mixtures will be postponed to Chap. 13.

9.1 Composition Variables
A composition variable is an intensive property that indicates the relative amount of a particular species or substance
in a phase.

9.1.1 Species and substances
We sometimes need to make a distinction between a species and a substance. A species is any entity of definite
elemental composition and charge and can be described by a chemical formula, such as H2O, H3O+, NaCl, or Na+. A
substance is a species that can be prepared in a pure state (e.g., N2 and NaCl). Since we cannot prepare a macroscopic
amount of a single kind of ion by itself, a charged species such as H3O+ or Na+ is not a substance. Chap. 10 will
discuss the special features of mixtures containing charged species.

9.1.2 Mixtures in general
The mole fraction of species i is defined by

xi =
def ni
∑j nj

or yi =
def ni
∑j nj

(9.1.1)
(P=1)

where ni is the amount of species i and the sum is taken over all species in the mixture. The symbol xi is used for a
mixture in general, and yi is used when the mixture is a gas.

The mass fraction, or weight fraction, of species i is defined by

wi =
def m(i)

m = niMi
∑j nj Mj

(9.1.2)
(P=1)

where m(i) is the mass of species i and m is the total mass.
The concentration, or molarity, of species i in a mixture is defined by

ci =
def ni

V
(9.1.3)
(P=1)

The symbol M is often used to stand for units of mol⋅L−1, or mol dm−3. Thus, a concentration of 0.5M is 0.5 moles
per liter, or 0.5 molar.

Concentration is sometimes called “amount concentration” or “molar concentration” to avoid confu-
sion with number concentration (the number of particles per unit volume). An alternative notation for
cA is [A].
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A binary mixture is a mixture of two substances.

9.1.3 Solutions
A solution, strictly speaking, is a mixture in which one substance, the solvent, is treated in a special way. Each of the
other species comprising the mixture is then a solute. The solvent is denoted by A and the solute species by B, C, and
so on.9.1.1 Although in principle a solution can be a gas mixture, in this section we will consider only liquid and solid
solutions.

We can prepare a solution of varying composition by gradually mixing one or more solutes with the solvent so as
to continuously increase the solute mole fractions. During this mixing process, the physical state (liquid or solid) of
the solution remains the same as that of the pure solvent. When the sum of the solute mole fractions is small compared
to xA (i.e., xA is close to unity), the solution is called dilute. As the solute mole fractions increase, we say the solution
becomes more concentrated.

Mole fraction, mass fraction, and concentration can be used as composition variables for both solvent and solute,
just as they are for mixtures in general. A fourth composition variable, molality, is often used for a solute. The
molality of solute species B is defined by

mB =
def nB

m(A)
(9.1.4)

(solution)

where m(A)=nAMA is the mass of solvent. The symbol m is sometimes used to stand for units of mol⋅kg−1, although
this should be discouraged because m is also the symbol for meter. For example, a solute molality of 0.6m is 0.6moles
of solute per kilogram of solvent, or 0.6 molal.

9.1.4 Binary solutions
We may write simplified equations for a binary solution of two substances, solvent A and solute B. Equations
9.1.1–9.1.4 become

xB=
nB

nA+nB

(9.1.5)
(binary solution)

wB=
nBMB

nAMA+nBMB

(9.1.6)
(binary solution)

cB=
nB
V =

nB𝜌
nAMA+nBMB

(9.1.7)
(binary solution)

mB=
nB

nAMA

(9.1.8)
(binary solution)

The right sides of Eqs. 9.1.5–9.1.8 express the solute composition variables in terms of the amounts and molar masses
of the solvent and solute and the density 𝜌 of the solution.

To be able to relate the values of these composition variables to one another, we solve each equation for nB and
divide by nA to obtain an expression for the mole ratio nB/nA:

from Eq. 9.1.5 nB
nA
= xB
1−xB

(9.1.9)
(binarysolution)

from Eq. 9.1.6 nB
nA
= MAwB

MB (1−wB)
(9.1.10)

(binarysolution)

from Eq. 9.1.7 nB
nA
= MA cB
𝜌−MB cB

(9.1.11)
(binarysolution)

from Eq. 9.1.8 nB
nA
= MA mB

(9.1.12)
(binarysolution)

9.1.1. Some chemists denote the solvent by subscript 1 and use 2, 3, and so on for solutes.

180 MIXTURES

180



These expressions for nB/nA allow us to find one composition variable as a function of another. For example, to find
molality as a function of concentration, we equate the expressions for nB/nA on the right sides of Eqs. 9.1.11 and
9.1.12 and solve for mB to obtain

mB=
cB

𝜌−MBcB
(9.1.13)

A binary solution becomes more dilute as any of the solute composition variables becomes smaller. In the limit of
infinite dilution, the expressions for nB/nA become:

nB
nA
= xB

= MA
MB
⋅wB

= MA
𝜌A
∗ ⋅cB=Vm,A

∗ ⋅cB

= MA ⋅mB

(9.1.14)
(binary solution at

infinite dilution)

where a superscript asterisk (∗) denotes a pure phase. We see that, in the limit of infinite dilution, the composition
variables xB, wB, cB, and mB are proportional to one another. These expressions are also valid for solute B in a
multisolute solution in which each solute is very dilute; that is, in the limit xA→1.

The rule of thumb that the molarity and molality values of a dilute aqueous solution are approximately
equal is explained by the relation MA cB/𝜌A

∗=MA mB (from Eq. 9.1.14), or cB/𝜌A
∗=mB, and the fact

that the density 𝜌A
∗ of water is approximately 1kg⋅L−1. Hence, if the solvent is water and the solution

is dilute, the numerical value of cB expressed in mol⋅L−1 is approximately equal to the numerical value
of mB expressed in mol⋅kg−1.

9.1.5 The composition of a mixture
We can describe the composition of a phase with the amounts of each species, or with any of the composition variables
defined earlier: mole fraction, mass fraction, concentration, or molality. If we use mole fractions or mass fractions to
describe the composition, we need the values for all but one of the species, since the sum of all fractions is unity.

Other composition variables are sometimes used, such as volume fraction, mole ratio, and mole percent. To
describe the composition of a gas mixture, partial pressures can be used (Sec. 9.3.1).

When the composition of a mixture is said to be fixed or constant during changes of temperature, pressure, or
volume, this means there is no change in the relative amounts or masses of the various species. A mixture of fixed
composition has fixed values of mole fractions, mass fractions, and molalities, but not necessarily of concentrations
and partial pressures. Concentrations will change if the volume changes, and partial pressures in a gas mixture will
change if the pressure changes.

9.2 Partial Molar Quantities

The symbol Xi, where X is an extensive property of a homogeneous mixture and the subscript i identifies a constituent
species of the mixture, denotes the partial molar quantity of species i defined by

Xi =
def
�∂X
∂ni
�

T ,p,nj=/ i

(9.2.1)
(mixture)

This is the rate at which property X changes with the amount of species i added to the mixture as the temperature, the
pressure, and the amounts of all other species are kept constant. A partial molar quantity is an intensive state function.
Its value depends on the temperature, pressure, and composition of the mixture.
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Figure 9.2.1. Addition of pure methanol (substance B) to a water--methanol mixture at constant T and p.

a) 40.75cm3 (one mole) of methanol is placed in a narrow tube above a much greater volume of a mixture (shaded) of composition
xB=0.307. The dashed line indicates the level of the upper meniscus.

b) After the two liquid phases have mixed by diffusion, the volume of the mixture has increased by only 38.8cm3.

Keep in mind that as a practical matter, a macroscopic amount of a charged species (i.e., an ion) cannot be added
by itself to a phase because of the huge electric charge that would result. Thus if species i is charged, Xi as defined by
Eq. 9.2.1 is a theoretical concept whose value cannot be determined experimentally.

An older notation for a partial molar quantity uses an overbar: X̄i. The notation Xi′ was suggested in
the first edition of the IUPAC Green Book,9.2.1 but is not mentioned in later editions.

9.2.1 Partial molar volume

In order to gain insight into the significance of a partial molar quantity as defined by Eq. 9.2.1, let us first apply
the concept to the volume of an open single-phase system. Volume has the advantage for our example of being an
extensive property that is easily visualized. Let the system be a binary mixture of water (substance A) and methanol
(substance B), two liquids that mix in all proportions. The partial molar volume of the methanol, then, is the rate at
which the system volume changes with the amount of methanol added to the mixture at constant temperature and
pressure: VB=(∂V /∂nB)T ,p,nA.

At 25 ∘C and 1bar, the molar volume of pure water is Vm,A
∗ =18.07 cm3⋅mol−1 and that of pure methanol is Vm,B

∗ =
40.75 cm3⋅mol−1. If we mix 100.0 cm3 of water at 25 ∘C with 100.0 cm3 of methanol at 25 ∘C, we find the volume of
the resulting mixture at 25 ∘C is not the sum of the separate volumes, 200.0 cm3, but rather the slightly smaller value
193.1cm3.The difference is due to new intermolecular interactions in the mixture compared to the pure liquids.

Let us calculate the mole fraction composition of this mixture:

nA=
VA
∗

Vm,A
∗ =

100.0 cm3
18.07cm3⋅mol−1 =5.53mol (9.2.2)

nB=
VB

Vm,B
= 100.0 cm3
40.75cm3⋅mol−1 =2.45mol (9.2.3)

xB=
nB

nA+nB
= 2.45mol
5.53mol+2.45mol =0.307 (9.2.4)

Now suppose we prepare a large volume of a mixture of this composition (xB=0.307) and add an additional 40.75cm3

(one mole) of pure methanol, as shown in Fig. 9.2.1(a). If the initial volume of the mixture at 25 ∘C was 10,000.0cm3,
we find the volume of the new mixture at the same temperature is 10, 038.8 cm3, an increase of 38.8 cm3—see Fig.
9.2.1(b). The amount of methanol added is not infinitesimal, but it is small enough compared to the amount of initial
mixture to cause very little change in the mixture composition: xB increases by only 0.5%. Treating the mixture as an
open system, we see that the addition of one mole of methanol to the system at constant T , p, and nA causes the system
volume to increase by 38.8cm3. To a good approximation, then, the partial molar volume of methanol in the mixture,
VB=(∂V /∂nB)T ,p,nA, is given by ΔV /ΔnB=38.8cm3⋅mol−1.

9.2.1. Ref. [99], p. 44.
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The volume of the mixture to which we add the methanol does not matter as long as it is large. We would
have observed practically the same volume increase, 38.8 cm3, if we had mixed one mole of pure methanol with
100,000.0cm3 of the mixture instead of only 10,000.0 cm3.

Thus, we may interpret the partial molar volume of B as the volume change per amount of B added at constant T
and p when B is mixed with such a large volume of mixture that the composition is not appreciably affected. We may
also interpret the partial molar volume as the volume change per amount when an infinitesimal amount is mixed with
a finite volume of mixture.

The partial molar volume of B is an intensive property that is a function of the composition of the mixture, as well
as of T and p. The limiting value of VB as xB approaches 1 (pure B) is Vm,B

∗ , the molar volume of pure B. We can see
this by writing V =nBVm,B

∗ for pure B, giving us VB(xB1)=(∂nB Vm,B
∗ /∂nB)T ,p,nA=Vm,B

∗ .
If the mixture is a binary mixture of A and B, and xB is small, we may treat the mixture as a dilute solution of

solvent A and solute B. As xB approaches 0 in this solution, VB approaches a certain limiting value that is the volume
increase per amount of B mixed with a large amount of pure A. In the resulting mixture, each solute molecule is
surrounded only by solvent molecules. We denote this limiting value of VB by VB

∞, the partial molar volume of solute
B at infinite dilution.

It is possible for a partial molar volume to be negative. Magnesium sulfate, in aqueous solutions
of molality less than 0.07mol⋅kg−1, has a negative partial molar volume. Physically, this means that
when a small amount of crystalline MgSO4 dissolves at constant temperature in water, the liquid phase
contracts. This unusual behavior is due to strong attractive water--ion interactions.

9.2.2 The total differential of the volume in an open system
Consider an open single-phase system consisting of a mixture of nonreacting substances. How many independent
variables does this system have?

We can prepare the mixture with various amounts of each substance, and we are able to adjust the temperature and
pressure to whatever values we wish (within certain limits that prevent the formation of a second phase). Each choice
of temperature, pressure, and amounts results in a definite value of every other property, such as volume, density, and
mole fraction composition. Thus, an open single-phase system of C substances has 2+C independent variables.9.2.2

For a binary mixture (C=2), the number of independent variables is four. We may choose these variables to be
T , p, nA, and nB, and write the total differential of V in the general form

dV = �∂V
∂T�p,nA,nB

dT +�∂V
∂ p�T ,nA,nB

dp

+� ∂V
∂nA
�

T ,p,nB

dnA+�
∂V
∂nB
�

T ,p,nA

dnB
(9.2.5)

(binary mixture)

We know the first two partial derivatives on the right side are given by9.2.3

�∂V
∂T�p,nA,nB

=𝛼V �∂V
∂ p�T ,nA,nB

=−𝜅TV (9.2.6)

We identify the last two partial derivatives on the right side of Eq. 9.2.5 as the partial molar volumes VA and VB. Thus,
we may write the total differential of V for this open system in the compact form

dV =𝛼V dT −𝜅T V dp+VAdnA+VB dnB
(9.2.7)

(binary mixture)

9.2.2. C in this kind of system is actually the number of components. The number of components is usually the same as the number of
substances, but is less if certain constraints exist, such as reaction equilibrium or a fixed mixture composition. The general meaning of C will be
discussed in Sec. 13.1.

9.2.3. See Eqs. 7.1.1 and 7.1.2, which are for closed systems.
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Figure 9.2.2. Mixing of water (A) and methanol (B) in a 2:1 ratio of volumes to form a mixture of increasing volume and constant
composition. The system is the mixture.

If we compare this equation with the total differential of V for a one-component closed system, dV =𝛼V dT −𝜅TV dp
(Eq. 7.1.6), we see that an additional term is required for each constituent of the mixture to allow the system to be
open and the composition to vary.

When T and p are held constant, Eq. 9.2.7 becomes

dV =VAdnA+VB dnB

(9.2.8)
(binary mixture,
constant T and p)

We obtain an important relation between the mixture volume and the partial molar volumes by imagining the fol-
lowing process. Suppose we continuously pour pure water and pure methanol at constant but not necessarily equal
volume rates into a stirred, thermostatted container to form a mixture of increasing volume and constant composition,
as shown schematically in Fig. 9.2.2 on page 184. If this mixture remains at constant T and p as it is formed, none of
its intensive properties change during the process, and the partial molar volumes VA and VB remain constant. Under
these conditions, we can integrate Eq. 9.2.8 to obtain the additivity rule for volume:9.2.4

V =VAnA+VB nB
(9.2.9)

(binary mixture)

This equation allows us to calculate the mixture volume from the amounts of the constituents and the appropriate
partial molar volumes for the particular temperature, pressure, and composition.

For example, given that the partial molar volumes in a water–methanol mixture of composition xB=0.307 are
VA=17.74cm3⋅mol−1 and VB=38.76cm3⋅mol−1, we calculate the volume of the water–methanol mixture described at
the beginning of Sec. 9.2.1 as follows:

V=(17.74 cm3⋅mol−1)(5.53mol)+(38.76 cm3⋅mol−1)(2.45mol)
=193.1 cm3 (9.2.10)

We can differentiate Eq. 9.2.9 to obtain a general expression for dV under conditions of constant T and p:

dV =VAdnA+VB dnB+nA dVA+nB dVB (9.2.11)

But this expression for dV is consistent with Eq. 9.2.8 only if the sum of the last two terms on the right is zero:

nAdVA+nB dVB=0
(9.2.12)

(binary mixture,
constant T and p)

Equation 9.2.12 is the Gibbs–Duhem equation for a binary mixture, applied to partial molar volumes. (Section 9.2.4
will give a general version of this equation.) Dividing both sides of the equation by nA+nB gives the equivalent form

xAdVA+xB dVB=0
(9.2.13)

(binary mixture,
constant T and p)

9.2.4. The equation is an example of the result of applying Euler's theorem on homogeneous functions to V treated as a function of nA and nB.
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Figure 9.2.3. Mixtures of water (A) and methanol (B) at 25 ∘C and 1bar. 9.2.5

a) Mean molar volume as a function of xB. The dashed line is the tangent to the curve at xB=0.307.

b) Molar volume of mixing as a function of xB. The dashed line is the tangent to the curve at xB=0.307.

c) Partial molar volumes as functions of xB. The points at xB=0.307 (open circles) are obtained from the intercepts of the dashed
line in either (a) or (b).

9.2.5. Based on data in Ref. [12].

Equation 9.2.12 shows that changes in the values of VA and VB are related when the composition changes at constant
T and p. If we rearrange the equation to the form

dVA=−nB
nA

dVB

(9.2.14)
(binary mixture,
constant T and p)

we see that a composition change that increases VB (so that dVB is positive) must make VA decrease.

9.2.3 Evaluation of partial molar volumes in binary mixtures

The partial molar volumes VA and VB in a binary mixture can be evaluated by the method of intercepts. To use this
method, we plot experimental values of the quantity V /n (where n is nA+ nB) versus the mole fraction xB. V /n is
called the mean molar volume.

See Fig. 9.2.3(a) on page 185 for an example. In this figure, the tangent to the curve drawn at the point on the curve
at the composition of interest (the composition used as an illustration in Sec. 9.2.1) intercepts the vertical line where xB

equals 0 at V /n=VA=17.7cm3⋅mol−1, and intercepts the vertical line where xB equals 1 at V /n=VB=38.8cm3⋅mol−1.

To derive this property of a tangent line for the plot of V /n versus xB, we use Eq. 9.2.9 to write

(V /n) = VA nA+VB nB
n =VAxA+VB xB

= VA (1−xB)+VB xB=(VB −VA)xB+VA (9.2.15)
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When we differentiate this expression for V /n with respect to xB, keeping in mind that VA and VB are
functions of xB, we obtain

d(V /n)
dxB

= d[(VB −VA)xB+VA]
dxB

= VB −VA+�
dVB
dxB

− dVA
dxB
�xB+

dVA
dxB

= VB −VA+�
dVA
dxB
�(1−xB)+�

dVB
dxB
�xB

= VB −VA+�
dVA
dxB
�xA+�

dVB
dxB
�xB (9.2.16)

The differentials dVA and dVB are related to one another by the Gibbs–Duhem equation (Eq. 9.2.13):
xAdVA+xB dVB=0. We divide both sides of this equation by dxB to obtain

�dVA
dxB
�xA+�

dVB
dxB
�xB=0 (9.2.17)

and substitute in Eq. 9.2.16 to obtain

d(V /n)
dxB

=VB −VA (9.2.18)

Let the partial molar volumes of the constituents of a binary mixture of arbitrary composition xB′ be VA′
and VB′. Equation 9.2.15 shows that the value of V /n at the point on the curve of V /n versus xB where
the composition is xB′ is (VB′−VA′) xB′ +VA′. Equation 9.2.18 shows that the tangent to the curve at this
point has a slope of VB′−VA′. The equation of the line that passes through this point and has this slope,
and thus is the tangent to the curve at this point, is y=(VB′−VA′)xB+VA′, where y is the vertical ordinate
on the plot of (V /n) versus xB. The line has intercepts y=VA′ at xB0 and y=VB′ at xB1.

A variant of the method of interceptsis to plot the molar integral volume of mixing given by

ΔVm(mix)= ΔV(mix)
n = V −nAVm,A

∗ −nB Vm,B
∗

n (9.2.19)

versus xB, as illustrated in Fig. 9.2.3(b). ΔV(mix) is the integral volume of mixing—the volume change at constant
T and p when solvent and solute are mixed to form a mixture of volume V and total amount n (see Sec. 11.1.1). The
tangent to the curve at the composition of interest has intercepts VA −Vm,A

∗ at xB0 and VB −Vm,B
∗ at xB1.

To see this, we write

ΔVm(mix) = (V /n)−xAVm,A
∗ −xB Vm,B

∗

= (V /n)− (1−xB)Vm,A
∗ −xB Vm,B

∗ (9.2.20)

We make the substitution (V /n)=(VB −VA)xB+VA from Eq. 9.2.15 and rearrange:

ΔVm(mix)=[(VB −Vm,B
∗ )− (VA −Vm,A

∗ )]xB+(VA−Vm,A
∗ ) (9.2.21)

Differentiation with respect to xB yields

dΔVm(mix)
dxB

= (VB −Vm,B
∗ )− (VA−Vm,A

∗ )+�dVB
dxB

− dVA
dxB
�xB+

dVA
dxB

= (VB −Vm,B
∗ )− (VA−Vm,A

∗ )+�dVA
dxB
�(1−xB)+�

dVB
dxB
�xB

= (VB −Vm,B
∗ )− (VA−Vm,A

∗ )+�dVA
dxB
�xA+�

dVB
dxB
�xB (9.2.22)
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With a substitution from Eq. 9.2.17, this becomes

dΔVm(mix)
dxB

=(VB −Vm,B
∗ )− (VA−Vm,A

∗ ) (9.2.23)

Equations 9.2.21 and 9.2.23 are analogous to Eqs. 9.2.15 and 9.2.18, with V /n replaced byΔVm(mix),
VA by (VA−Vm,A

∗ ), and VB by (VB −Vm,B
∗ ). Using the same reasoning as for a plot of V /n versus xB, we

find the intercepts of the tangent to a point on the curve of ΔVm(mix) versus xB are at VA − Vm,A
∗ and

VB −Vm,B
∗ .

Figure 9.2.3 shows smoothed experimental data for water–methanol mixtures plotted in both kinds of graphs, and
the resulting partial molar volumes as functions of composition. Note in Fig. 9.2.3(c) how the VA curve mirrors the
VB curve as xB varies, as predicted by the Gibbs–Duhem equation. The minimum in VB at xB≈0.09 is mirrored by
a maximum in VA in agreement with Eq. 9.2.14; the maximum is much attenuated because nB/nA is much less than
unity.

Macroscopic measurements are unable to provide unambiguous information about molecular structure.
Nevertheless, it is interesting to speculate on the implications of the minimum observed for the partial
molar volume of methanol. One interpretation is that in a mostly aqueous environment, there is asso-
ciation of methanol molecules, perhaps involving the formation of dimers.

9.2.4 General relations
The discussion above of partial molar volumes used the notation Vm,A

∗ and Vm,B
∗ for the molar volumes of pure A and

B. The partial molar volume of a pure substance is the same as the molar volume, so we can simplify the notation by
using VA

∗ and VB
∗ instead. Hereafter, this book will denote molar quantities of pure substances by such symbols as VA

∗,
HB
∗, and Si

∗.
The relations derived above for the volume of a binary mixture may be generalized for any extensive property X

of a mixture of any number of constituents. The partial molar quantity of species i, defined by

Xi =
def
�∂X
∂ni
�

T ,p,nj=/ i

(9.2.24)

is an intensive property that depends on T , p, and the composition of the mixture. The additivity rule for property X is

X=�
i

niXi
(9.2.25)

(mixture)

and the Gibbs–Duhem equation applied to X can be written in the equivalent forms

�
i

nidXi=0
(9.2.26)

(constant T and p)
and

�
i

xidXi=0
(9.2.27)

(constant T and p)

These relations can be applied to a mixture in which each species i is a nonelectrolyte substance, an electrolyte sub-
stance that is dissociated into ions, or an individual ionic species. In Eq. 9.2.27, the mole fraction xi must be based
on the different species considered to be present in the mixture. For example, an aqueous solution of NaCl could be
treated as a mixture of components A=H2O and B=NaCl, with xB equal to nB/(nA+nB); or the constituents could be
taken as H2O, Na+, and Cl−, in which case the mole fraction of Na+ would be x+=n+/(nA+n++n−).

A general method to evaluate the partial molar quantities XA and XB in a binary mixture is based on the variant of
the method of intercepts described in Sec. huniniti. The molar mixing quantityΔX(mix)/n is plotted versus xB, where
ΔX(mix) is (X −nAXA

∗−nBXB
∗).On this plot, the tangent to the curve at the composition of interest has intercepts equal

to XAXA
∗ at xB0 and XB XB

∗ at xB1.
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We can obtain experimental values of such partial molar quantities of an uncharged species as Vi, Cp,i, and Si. It is
not possible, however, to evaluate the partial molar quantities Ui, Hi, Ai, and Gi because these quantities involve the
internal energy brought into the system by the species, and we cannot evaluate the absolute value of internal energy
(Sec. 2.6.2). For example, while we can evaluate the difference Hi−Hi

∗ from calorimetric measurements of enthalpies
of mixing, we cannot evaluate the partial molar enthalpy Hi itself. We can, however, include such quantities as Hi in
useful theoretical relations.

As mentioned on page 182, a partial molar quantity of a charged species is something else we cannot
evaluate. It is possible, however, to obtain values relative to a reference ion. Consider an aqueous
solution of a fully-dissociated electrolyte solute with the formula Mν+Xν- , where 𝜈+ and 𝜈− are the
numbers of cations and anions per solute formula unit. The partial molar volume VB of the solute,
which can be determined experimentally, is related to the (unmeasurable) partial molar volumes V+ and
V− of the constituent ions by

VB=𝜈+V++𝜈− V− (9.2.28)

For aqueous solutions, the usual reference ion is H+, and the partial molar volume of this ion at infinite
dilution is arbitrarily set equal to zero: VH+

∞=0.
For example, given the value (at 298.15K and 1bar) of the partial molar volume at infinite dilution of
aqueous hydrogen chloride

VHCl
∞ =17.82 cm3⋅mol−1 (9.2.29)

we can find the so-called “conventional” partial molar volume of Cl− ion:

VCl−∞ =VHCl
∞ −VH+

∞=17.82 cm3⋅mol−1 (9.2.30)

Going one step further, the measured value VNaCl
∞ =16.61 cm3⋅mol−1 gives, for Na+ ion, the conven-

tional value

VNa+
∞ =VNaCl

∞ −VCl−
∞ =(16.61−17.82)cm3⋅mol−1=−1.21 cm3⋅mol−1 (9.2.31)

9.2.5 Partial specific quantities

A partial specific quantity of a substance is the partial molar quantity divided by the molar mass, and has dimensions
of volume divided by mass. For example, the partial specific volume vB of solute B in a binary solution is given by

vB=
VB
MB
=� ∂V
∂m(B)�T ,p,m(A)

(9.2.32)

where m(A) and m(B) are the masses of solvent and solute.
Although this book makes little use of specific quantities and partial specific quantities, in some applications they

have an advantage over molar quantities and partial molar quantities because they can be evaluated without knowledge
of the molar mass. For instance, the value of a solute's partial specific volume is used to determine its molar mass by
the method of sedimentation equilibrium (Sec. 9.8.2).

The general relations in Sec. 9.2.4 involving partial molar quantities may be turned into relations involving partial
specific quantities by replacing amounts by masses, mole fractions by mass fractions, and partial molar quantities
by partial specific quantities. Using volume as an example, we can write an additivity relation V =∑i m(i) vi, and
Gibbs–Duhem relations∑i m(i)dvi=0 and ∑i wi dvi=0. For a binary mixture of A and B, we can plot the specific
volume v versus the mass fraction wB; then the tangent to the curve at a given composition has intercepts equal to vA

at wB0 and vB at wB1. A variant of this plot is (v−wAvA
∗ −wBvB

∗) versus wB; the intercepts are then equal to vA−vA
∗ and

vB −vB
∗ .
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9.2.6 The chemical potential of a species in a mixture
Just as the molar Gibbs energy of a pure substance is called the chemical potential and given the special symbol 𝜇,
the partial molar Gibbs energy Gi of species i in a mixture is called the chemical potential of species i, defined by

𝜇i =
def
�∂G
∂ni
�

T ,p,nj=/ i

(9.2.33)
(mixture)

If there are work coordinates for nonexpansion work, the partial derivative is taken at constant values of these coor-
dinates.

The chemical potential of a species in a phase plays a crucial role in equilibrium problems, because it is a measure
of the escaping tendency of the species from the phase. Although we cannot determine the absolute value of 𝜇i for a
given state of the system, we are usually able to evaluate the difference between the value in this state and the value
in a defined reference state.

In an open single-phase system containing a mixture of s different nonreacting species, we may in principle inde-
pendently vary T , p, and the amount of each species. This is a total of 2+s independent variables. The total differential
of the Gibbs energy of this system is given by Eq. 5.5.9 on page 116, often called the Gibbs fundamental equation:

dG=−S dT +V dp+�
i=1

s

𝜇idni
(9.2.34)

(mixture)

Consider the special case of a mixture containing charged species, for example an aqueous solution of the electrolyte
KCl. We could consider the constituents to be either the substances H2O and KCl, or else H2O and the species K+ and
Cl−. Any mixture we can prepare in the laboratory must remain electrically neutral, or virtually so. Thus, while we are
able to independently vary the amounts of H2O and KCl, we cannot in practice independently vary the amounts of K+

and Cl− in the mixture. The chemical potential of the K+ ion is defined as the rate at which the Gibbs energy changes
with the amount of K+ added at constant T and p while the amount of Cl− is kept constant. This is a hypothetical
process in which the net charge of the mixture increases. The chemical potential of a ion is therefore a valid but purely
theoretical concept. Let A stand for H2O, B for KCl, + for K+, and − for Cl−. Then it is theoretically valid to write
the total differential of G for the KCl solution either as

dG=−S dT +V dp+𝜇A dnA+𝜇B dnB (9.2.35)

or as

dG=−S dT +V dp+𝜇A dnA+𝜇+dn++𝜇− dn− (9.2.36)

9.2.7 Equilibrium conditions in a multiphase, multicomponent system
This section extends the derivation described in Sec. 8.1.2, which was for equilibrium conditions in a multiphase
system containing a single substance, to a more general kind of system: one with two or more homogeneous phases
containing mixtures of nonreacting species. The derivation assumes there are no internal partitions that could prevent
transfer of species and energy between the phases, and that effects of gravity and other external force fields are negli-
gible.

The system consists of a reference phase, α′, and other phases labeled by αα′. Species are labeled by subscript i.
Following the procedure of Sec. 8.1.1, we write for the total differential of the internal energy

dU = dU𝛼′+ �
α=/α′

dUα

= T 𝛼′dS𝛼′− p𝛼′dV 𝛼′+�
i
𝜇i
𝛼′dni

𝛼′

+�
α=/α′ ((((((((((((T

α dSα − pα dV α+�
i
𝜇i

α dni
α)))))))))))) (9.2.37)
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The conditions of isolation are

dU=0 (constant internal energy) (9.2.38)
dV 𝛼′+ �

α=/α′

dV α=0 (no expansion work) (9.2.39)

For each species i:
dni
𝛼′+�

α=/α'
dni

α=0 (closed system) (9.2.40)

We use these relations to substitute for dU, dV 𝛼′, and dni
𝛼′ in Eq. 9.2.37. After making the further substitution

dS𝛼′=dS −∑α=/α′ dSα and solving for dS, we obtain

dS = �
α=/α′

T 𝛼′−T α

T 𝛼′
dSα −�

α=/α′

p𝛼′− pα

T 𝛼′
dV α

+�
i
�

α=/α′

𝜇i
𝛼′−𝜇i

α

T 𝛼′
dni

α (9.2.41)

This equation is like Eq. 8.1.6 on page 158 with provision for more than one species.
In the equilibrium state of the isolated system, S has the maximum possible value, dS is equal to zero for an

infinitesimal change of any of the independent variables, and the coefficient of each term on the right side of Eq. 9.2.41
is zero. We find that in this state each phase has the same temperature and the same pressure, and for each species the
chemical potential is the same in each phase.

Suppose the system contains a species i′ that is effectively excluded from a particular phase, α′′. For instance,
sucrose molecules dissolved in an aqueous phase are not accommodated in the crystal structure of an ice phase, and
a nonpolar substance may be essentially insoluble in an aqueous phase. We can treat this kind of situation by setting
dni′

α′′ equal to zero. Consequently there is no equilibrium condition involving the chemical potential of this species in
phase α′′.

To summarize these conclusions: In an equilibrium state of a multiphase, multicomponent system without internal
partitions, the temperature and pressure are uniform throughout the system, and each species has a uniform chemical
potential except in phases where it is excluded.

This statement regarding the uniform chemical potential of a species applies to both a substance and
an ion, as the following argument explains. The derivation in this section begins with Eq. 9.2.37, an
expression for the total differential of U. Because it is a total differential, the expression requires the
amount ni of each species i in each phase to be an independent variable. Suppose one of the phases is
the aqueous solution of KCl used as an example at the end of the preceding section. In principle (but
not in practice), the amounts of the species H2O, K+, and Cl− can be varied independently, so that it
is valid to include these three species in the sums over i in Eq. 9.2.37. The derivation then leads to
the conclusion that K+ has the same chemical potential in phases that are in transfer equilibrium with
respect to K+, and likewise for Cl−. This kind of situation arises when we consider a Donnan membrane
equilibrium (Sec. 12.7.3) in which transfer equilibrium of ions exists between solutions of electrolytes
separated by a semipermeable membrane.

9.2.8 Relations involving partial molar quantities

Here we derive several useful relations involving partial molar quantities in a single-phase system that is a mixture.
The independent variables are T , p, and the amount ni of each constituent species i.
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From Eqs. 9.2.26 and 9.2.27, the Gibbs–Duhem equation applied to the chemical potentials can be written in the
equivalent forms

�
i

nid𝜇i=0
(9.2.42)

(constant T and p)
and

�
i

xid𝜇i=0
(9.2.43)

(constant T and p)

These equations show that the chemical potentials of different species cannot be varied independently at constant T
and p.

A more general version of the Gibbs–Duhem equation, without the restriction of constant T and p, is

SdT −Vdp+�
i

nid𝜇i=0 (9.2.44)

This version is derived by comparing the expression for dG given by Eq. 9.2.34 with the differential dG=∑i𝜇idni+
∑i nid𝜇i obtained from the additivity rule G=∑i 𝜇ini.

The Gibbs energy is defined by G=H − T S. Taking the partial derivatives of both sides of this equation with
respect to ni at constant T , p, and nj=/ i gives us

�∂G
∂ni
�

T ,p,nj=/ i

=�∂H
∂ni
�

T ,p,nj=/ i

−T� ∂S
∂ni
�

T ,p,nj=/ i

(9.2.45)

We recognize each partial derivative as a partial molar quantity and rewrite the equation as

𝜇i=Hi −TSi (9.2.46)

This is analogous to the relation 𝜇=G/n=Hm −TSm for a pure substance.
From the total differential of the Gibbs energy, dG=−SdT +V dp+∑i𝜇idni (Eq. 9.2.34), we obtain the following

reciprocity relations:

�∂𝜇i
∂T �p,{ni}

=−� ∂S
∂ni
�

T ,p,nj=/ i

�∂𝜇i
∂ p �T ,{ni}

=�∂V
∂ni
�

T ,p,nj=/ i

(9.2.47)

The symbol {ni} stands for the set of amounts of all species, and subscript {ni} on a partial derivative means the amount
of each species is constant—that is, the derivative is taken at constant composition of a closed system. Again we
recognize partial derivatives as partial molar quantities and rewrite these relations as follows:

�∂𝜇i
∂T �p,{ni}

=−Si (9.2.48)

�∂𝜇i
∂ p �T ,{ni}

=Vi (9.2.49)

These equations are the equivalent for a mixture of the relations (∂𝜇/∂T)p=−Sm and (∂𝜇/∂ p)T =Vm for a pure
phase (Eqs. 7.8.3 and 7.8.4).

Taking the partial derivatives of both sides of U=H − pV with respect to ni at constant T , p, and nj=/ i gives

Ui=Hi − pVi (9.2.50)

Finally, we can obtain a formula for Cp,i, the partial molar heat capacity at constant pressure of species i, by writing
the total differential of H in the form

dH = �∂H
∂T �p,{ni}

dT +�∂H
∂ p�T ,{ni}

dp+�
i
�∂H
∂ni
�

T ,p,nj=/ i

dni

= Cp dT +�∂H
∂ p �T ,{ni}

dp+�
i

Hidni (9.2.51)
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from which we have the reciprocity relation (∂Cp/∂ni)T ,p,nj=/ i=(∂Hi/∂T)p,{ni}, or

Cp,i=�
∂Hi
∂T �p,{ni}

(9.2.52)

9.3 Gas Mixtures

The gas mixtures described in this chapter are assumed to be mixtures of nonreacting gaseous substances.

9.3.1 Partial pressure
The partial pressure pi of substance i in a gas mixture is defined as the product of its mole fraction in the gas phase
and the pressure of the phase:

pi =
def

yi p
(9.3.1)

(gas mixture)

The sum of the partial pressures of all substances in a gas mixture is∑i pi=∑i yip= p∑i yi. Since the sum of the mole
fractions of all substances in a mixture is 1, this sum becomes

�
i

pi= p (9.3.2)
(gas mixture)

Thus, the sum of the partial pressures equals the pressure of the gas phase. This statement is known as Dalton's Law.
It is valid for any gas mixture, regardless of whether or not the gas obeys the ideal gas equation.

9.3.2 The ideal gas mixture
As discussed in Sec. 3.5.1, an ideal gas (whether pure or a mixture) is a gas with negligible intermolecular interactions.
It obeys the ideal gas equation p=nRT /V (where n in a mixture is the sum∑i ni) and its internal energy in a closed
system is a function only of temperature. The partial pressure of substance i in an ideal gas mixture is pi= yi p=
yi nRT /V ; but yin equals ni, giving

pi=
niRT

V
(9.3.3)

(ideal gas mixture)

Equation 9.3.3 is the ideal gas equation with the partial pressure of a constituent substance replacing the total pressure,
and the amount of the substance replacing the total amount. The equation shows that the partial pressure of a substance
in an ideal gas mixture is the pressure the substance by itself, with all others removed from the system, would have at
the same T and V as the mixture. Note that this statement is only true for an ideal gas mixture. The partial pressure
of a substance in a real gas mixture is in general different from the pressure of the pure substance at the same T and
V , because the intermolecular interactions are different.

9.3.3 Partial molar quantities in an ideal gas mixture
We need to relate the chemical potential of a constituent of a gas mixture to its partial pressure. We cannot measure
the absolute value of a chemical potential, but we can evaluate its value relative to the chemical potential in a particular
reference state called the standard state.

The standard state of substance i in a gas mixture is the same as the standard state of the pure gas described in
Sec. 7.7: It is the hypothetical state in which pure gaseous i has the same temperature as the mixture, is at the standard
pressure p∘, and behaves as an ideal gas. The standard chemical potential 𝜇i

∘ (g) of gaseous i is the chemical potential
of i in this gas standard state, and is a function of temperature.
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Figure 9.3.1. System with two gas phases, pure A and a mixture of A and B, separated by a semipermeable membrane through which
only A can pass. Both phases are ideal gases at the same temperature.

To derive an expression for 𝜇i in an ideal gas mixture relative to 𝜇i
∘ (g), we make an assumption based on the

following argument. Suppose we place pure A, an ideal gas, in a rigid box at pressure p′. We then slide a rigid
membrane into the box so as to divide the box into two compartments. The membrane is permeable to A; that is,
molecules of A pass freely through its pores. There is no reason to expect the membrane to affect the pressures on
either side,9.3.1 which remain equal to p′. Finally, without changing the volume of either compartment, we add a
second gaseous substance, B, to one side of the membrane to form an ideal gas mixture, as shown in Fig. 9.3.1 on
page 193. The membrane is impermeable to B, so the molecules of B stay in one compartment and cause a pressure
increase there. Since the mixture is an ideal gas, the molecules of A and B do not interact, and the addition of gas B
causes no change in the amounts of A on either side of the membrane. Thus, the pressure of A in the pure phase and
the partial pressure of A in the mixture are both equal to p′.

Our assumption, then, is that the partial pressure pA of gas A in an ideal gas mixture in equilibrium with pure ideal
gas A is equal to the pressure of the pure gas.

Because the system shown in Fig. 9.3.1 is in an equilibrium state, gas A must have the same chemical potential in
both phases. This is true even though the phases have different pressures (see Sec. 9.2.7). Since the chemical potential
of the pure ideal gas is given by 𝜇=𝜇∘ (g)+RT ln (p/p∘), and we assume that pA in the mixture is equal to p in the
pure gas, the chemical potential of A in the mixture is given by

𝜇A=𝜇A
∘ (g)+RT ln pA

p∘ (9.3.4)

In general, for each substance i in an ideal gas mixture, we have the relation

𝜇i=𝜇i
∘ (g)+RT ln pi

p∘
(9.3.5)

(ideal gas mixture)

where 𝜇i
∘ (g) is the chemical potential of i in the gas standard state at the same temperature as the mixture.

Equation 9.3.5 shows that if the partial pressure of a constituent of an ideal gas mixture is equal
to p∘, so that ln (pi/ p∘) is zero, the chemical potential is equal to the standard chemical potential.
Conceptually, a standard state should be a well-defined state of the system, which in the case of a gas is
the pure ideal gas at p= p∘. Thus, although a constituent of an ideal gas mixture with a partial pressure
of 1bar is not in its standard state, it has the same chemical potential as in its standard state.

Equation 9.3.5 will be taken as the thermodynamic definition of an ideal gas mixture. Any gas mixture in which
each constituent i obeys this relation between 𝜇i and pi at all compositions is by definition an ideal gas mixture. The
nonrigorous nature of the assumption used to obtain Eq. 9.3.5 presents no difficulty if we consider the equation to be
the basic definition.

By substituting the expression for 𝜇i into (∂𝜇i/∂T)p,{ni}=−Si (Eq. 9.2.48), we obtain an expression for the partial
molar entropy of substance i in an ideal gas mixture:

Si = −�∂𝜇i
∘ (g)
∂T �

p,{ni}
−R ln pi

p∘

= Si
∘−R ln pi

p∘
(9.3.6)

(ideal gas mixture)
The quantity Si

∘=−[∂𝜇i
∘ (g)/∂T]p,{ni} is the standard molar entropy of constituent i. It is the molar entropy of i in

its standard state of pure ideal gas at pressure p∘.

9.3.1. We assume the gas is not adsorbed to a significant extent on the surface of the membrane or in its pores.

9.3 GAS MIXTURES 193

193



Substitution of the expression for 𝜇i from Eq. 9.3.5 and the expression for Si from Eq. 9.3.6 into Hi=𝜇i+T Si

(from Eq. 9.2.46) yields Hi=𝜇i
∘ (g)+TSi

∘, which is equivalent to

Hi=Hi
∘ (9.3.7)

(ideal gas mixture)

This tells us that the partial molar enthalpy of a constituent of an ideal gas mixture at a given temperature is indepen-
dent of the partial pressure or mixture composition; it is a function only of T .

From (∂𝜇i/∂ p)T ,{ni}=Vi (Eq. 9.2.49), the partial molar volume of i in an ideal gas mixture is given by

Vi=�
∂𝜇i
∘ (g)
∂ p �

T ,{ni}
+RT�∂ ln (pi/p∘)

∂ p �
T ,{ni}

(9.3.8)

The first partial derivative on the right is zero because 𝜇i
∘(g) is a function only of T . For the second partial derivative,

we write pi/p∘=yi p/p∘. The mole fraction yi is constant when the amount of each substance is constant, so we have
[∂ ln (yi p/p∘)/∂ p]T ,{ni}=1/p. The partial molar volume is therefore given by

Vi=
RT
p

(9.3.9)
(ideal gas mixture)

which is what we would expect simply from the ideal gas equation. The partial molar volume is not necessarily equal
to the standard molar volume, which is Vi

∘=RT /p∘ for an ideal gas.
From Eqs. 9.2.50, 9.2.52, 9.3.7, and 9.3.9 we obtain the relations

Ui=Ui
∘ (9.3.10)

(ideal gas mixture)
and

Cp,i=Cp,i
∘ (9.3.11)

(ideal gas mixture)

Thus, in an ideal gas mixture the partial molar internal energy and the partial molar heat capacity at constant pressure,
like the partial molar enthalpy, are functions only of T .

The definition of an ideal gas mixture given by Eq. 9.3.5 is consistent with the criteria for an ideal
gas listed at the beginning of Sec. 3.5.1, as the following derivation shows. From Eq. 9.3.9 and the
additivity rule, we find the volume is given by V =∑i ni Vi=∑i ni RT /p=nRT /p, which is the ideal
gas equation. From Eq. 9.3.10 we have U =∑i ni Ui=∑i ni Ui

∘, showing that U is a function only of
T in a closed system. These properties apply to any gas mixture obeying Eq. 9.3.5, and they are the
properties that define an ideal gas according to Sec. 3.5.1.

9.3.4 Real gas mixtures

9.3.4.1 Fugacity

The fugacity f of a pure gas is defined by 𝜇=𝜇∘ (g)+R T ln ( f /p∘) (Eq. 7.8.7 on page 149). By analogy with this
equation, the fugacity fi of substance i in a real gas mixture is defined by the relation

𝜇i=𝜇i
∘ (g)+RT ln fi

p∘ or fi =
def

p∘exp�𝜇i−𝜇i
∘ (g)

RT � (9.3.12)
(gas mixture)

Just as the fugacity of a pure gas is a kind of effective pressure, the fugacity of a constituent of a gas mixture is a kind of
effective partial pressure. That is, fi is the partial pressure substance i would have in an ideal gas mixture that is at the
same temperature as the real gas mixture and in which the chemical potential of i is the same as in the real gas mixture.

To derive a relation allowing us to evaluate fi from the pressure–volume properties of the gaseous mixture, we
follow the steps described for a pure gas in Sec. 7.8.1. The temperature and composition are constant. From Eq.
9.3.12, the difference between the chemical potentials of substance i in the mixture at pressures p′ and p′′ is

𝜇i′−𝜇i′′=RT ln fi′
fi′′

(9.3.13)
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Difference General expression at pressure p′ Equation of state9.3.2

V =nRT /p+nB

𝜇i−𝜇i
∘ (g) RT ln pi′

p∘ +�0
p′
�Vi −

RT
p �dp RT ln pi

p∘ +Bi′ p

Si −Si
∘ (g) −R ln pi′

p∘ −�
0

p′
��∂Vi
∂T �p

− R
p �dp −R ln pi

p∘ − p dBi′
dT

Hi−Hi
∘ (g) �

0

p′
�Vi−T �∂Vi

∂T �p
�dp p((((((((((Bi′−T dBi′

dT ))))))))))
Ui −Ui

∘ (g) �
0

p′
�Vi−T �∂Vi

∂T �p
�dp+RT − p′Vi −pT dBi′

dT

Cp,i−Cp,i
∘ (g) −�

0

p′
T ((((((((((∂

2Vi

∂T 2))))))))))p dp −pT d2Bi′
dT 2

Table 9.3.1. Gas mixture: expressions for differences between partial molar and standard molar quantities of constituent i

9.3.2. B and Bi′ are defined by Eqs. 9.3.24 and 9.3.26

Integration of d𝜇i=Vidp (from Eq. 9.2.49) between these pressures yields

𝜇i′−𝜇i′′=�p′′

p′
Vi dp (9.3.14)

When we equate these two expressions for 𝜇i′−𝜇i′′, divide both sides by RT , subtract the identity

ln p′
p′′ =�p′′

p′ dp
p (9.3.15)

and take the ideal-gas behavior limits p′′→0 and fi′′→yi p′′=(pi′/p′) p′′, we obtain

ln fi′
pi′
=�
0

p′
� Vi

RT − 1p�dp (9.3.16)
(gas mixture, constant T )

The fugacity coefficient 𝜙i of constituent i is defined by

fi =
def
𝜙i pi

(9.3.17)
(gas mixture)

Accordingly, the fugacity coefficient at pressure p′ is given by

ln𝜙i(p′)=�0
p′
� Vi

RT − 1p�dp (9.3.18)
(gas mixture, constant T )

As p′ approaches zero, the integral in Eqs. 9.3.16 and 9.3.18 approaches zero, fi′ approaches pi′, and𝜙i(p′) approaches
unity.

9.3.4.2 Partial molar quantities

By combining Eqs. 9.3.12 and 9.3.16, we obtain

𝜇i(p′)=𝜇i
∘ (g)+RT ln pi′

p∘ +�0
p′
�Vi −

RT
p �dp

(9.3.19)
(gas mixture,
constant T )

which is the analogue for a gas mixture of Eq. 7.9.2 for a pure gas. Section 7.9 describes the procedure needed to
obtain formulas for various molar quantities of a pure gas from Eq. 7.9.2. By following a similar procedure with Eq.
9.3.19, we obtain the formulas for differences between partial molar and standard molar quantities of a constituent of
a gas mixture shown in the second column of Table 9.3.1 on page 195.
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These formulas are obtained with the help of Eqs. 9.2.46, 9.2.48, 9.2.50, and 9.2.52.

9.3.4.3 Equation of state

The equation of state of a real gas mixture can be written as the virial equation

pV /n=RT �1+ B
(V /n) +

C
(V /n)2 + ⋅ ⋅ ⋅� (9.3.20)

This equation is the same as Eq. 2.2.2 for a pure gas, except that the molar volume Vm is replaced by the mean molar
volume V /n, and the virial coefficients B,C, . . . depend on composition as well as temperature.

At low to moderate pressures, the simple equation of state

V /n= RT
p +B (9.3.21)

describes a gas mixture to a sufficiently high degree of accuracy (see Eq. 2.2.8 on page 27). This is equivalent to a
compression factor given by

Z =
def pV

nRT =1+
Bp
RT (9.3.22)

From statistical mechanical theory, the dependence of the second virial coefficient B of a binary gas mixture on the
mole fraction composition is given by

B=yA
2 BAA+2yAyB BAB+yB

2 BBB
(9.3.23)

(binary gas mixture)

where BAA and BBB are the second virial coefficients of pure A and B, and BAB is a mixed second virial coefficient. BAA,
BBB, and BAB are functions of T only. For a gas mixture with any number of constituents, the composition dependence
of B is given by

B=�
i
�

j
yi yj Bij

(9.3.24)
(gas mixture, Bij=Bji

Here Bij is the second virial of i if i and j are the same, or a mixed second virial coefficient if i and j are different.
If a gas mixture obeys the equation of state of Eq. 9.3.21, the partial molar volume of constituent i is given by

Vi=
RT
p +Bi′ (9.3.25)

where the quantity Bi′, in order to be consistent with Vi=(∂V /∂ni)T ,p,nj=/ i, is found to be given by

Bi′=2�
j

yj Bij −B (9.3.26)

For the constituents of a binary mixture of A and B, Eq. 9.3.26 becomes

BA′ =BAA+(−BAA+2BAB −BBB)yB
2 (9.3.27)

(binary gas mixture)

BB′ =BBB+(−BAA+2BAB −BBB)yA
2 (9.3.28)

(binary gas mixture)

When we substitute the expression of Eq. 9.3.25 for Vi in Eq. 9.3.18, we obtain a relation between the fugacity
coefficient of constituent i and the function Bi′:

ln𝜙i=
Bi′ p
RT (9.3.29)

The third column of Table 9.3.1 gives formulas for various partial molar quantities of constituent i in terms of Bi′ and
its temperature derivative. The formulas are the same as the approximate formulas in the third column of Table 7.9.1
for molar quantities of a pure gas, with Bi′ replacing the second virial coefficient B.
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Figure 9.4.1. Two systems with equilibrated liquid and gas phases.

9.4 Liquid and Solid Mixtures of Nonelectrolytes

Homogeneous liquid and solid mixtures are condensed phases of variable composition. Most of the discussion of
condensed-phase mixtures in this section focuses on liquids. The same principles, however, apply to homogeneous
solid mixtures, often called solid solutions. These solid mixtures include most metal alloys, many gemstones, and
doped semiconductors.

The relations derived in this section apply to mixtures of nonelectrolytes—substances that do not dissociate into
charged species. Solutions of electrolytes behave quite differently in many ways, and will be discussed in the next
chapter.

9.4.1 Raoult's law

In 1888, the French physical chemist François Raoult published his finding that when a dilute liquid solution of a
volatile solvent and a nonelectrolyte solute is equilibrated with a gas phase, the partial pressure pA of the solvent in
the gas phase is proportional to the mole fraction xA of the solvent in the solution:

pA=xA pA
∗ (9.4.1)

Here pA
∗ is the saturation vapor pressure of the pure solvent (the pressure at which the pure liquid and pure gas phases

are in equilibrium).
In order to place Raoult's law in a rigorous thermodynamic framework, consider the two systems depicted in Fig.

9.4.1 on page 197. The liquid phase of system 1 is a binary solution of solvent A and solute B, whereas the liquid
in system 2 is the pure solvent. In system 1, the partial pressure pA in the equilibrated gas phase depends on the
temperature and the solution composition. In system 2, pA

∗ depends on the temperature. Both pA and pA
∗ have a mild

dependence on the total pressure p, which can be varied with an inert gas constituent C of negligible solubility in the
liquid.

Suppose that we vary the composition of the solution in system 1 at constant temperature, while adjusting the
partial pressure of C so as to keep p constant. If we find that the partial pressure of the solvent over a range of
composition is given by pA=xA pA

∗ , where pA
∗ is the partial pressure of A in system 2 at the same T and p, we will say

that the solvent obeys Raoult's law for partial pressure in this range. This is the same as the original Raoult's law,
except that pA

∗ is now the vapor pressure of pure liquid A at the pressure p of the liquid mixture. Section 12.8.1 will
show that unless p is much greater than pA

∗ , pA
∗ is practically the same as the saturation vapor pressure of pure liquid

A, in which case Raoult's law for partial pressure becomes identical to the original law.
A form of Raoult's law with fugacities in place of partial pressures is often more useful: fA=xA fA∗, where fA∗ is the

fugacity of A in the gas phase of system 2 at the same T and p as the solution. If this relation is found to hold over a
given composition range, we will say the solvent in this range obeys Raoult's law for fugacity.

We can generalize the two forms of Raoult's law for any constituent i of a liquid mixture:
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pi=xi pi
∗ (9.4.2)

(Raoult's law for partial pressure)

fi=xifi∗
(9.4.3)

(Raoult's law for fugacity)

Here xi is the mole fraction of i in the liquid mixture, and pi
∗ and fi∗ are the partial pressure and fugacity in a gas phase

equilibrated with pure liquid i at the same T and p as the liquid mixture. Both pA
∗ and fi∗ are functions of T and p.

These two forms of Raoult's law are equivalent when the gas phases are ideal gas mixtures. When it is necessary
to make a distinction between the two forms, this book will refer specifically to Raoult's law for partial pressure or
Raoult's law for fugacity.

Raoult's law for fugacity can be recast in terms of chemical potential. Section 9.2.7 showed that if substance i
has transfer equilibrium between a liquid and a gas phase, its chemical potential 𝜇i is the same in both equilibrated
phases. The chemical potential in the gas phase is given by 𝜇i=𝜇i

∘(g)+RT ln fi/p∘ (Eq. 9.3.12). Replacing fi by xi fi∗

according to Raoult's law, and rearranging, we obtain

𝜇i=�𝜇i
∘ (g)+RT ln fi∗

p∘�+RT ln xi (9.4.4)

The expression in brackets is independent of the mixture composition. We replace this expression by a quantity 𝜇i
∗, a

function of T and p, and write

𝜇i=𝜇i
∗+RT lnxi (9.4.5)

Equation 9.4.5 is an expression for the chemical potential in the liquid phase when Raoult's law for fugacity is obeyed.
By setting xi equal to 1, we see that𝜇i

∗ represents the chemical potential of pure liquid i at the temperature and pressure
of the mixture. Because Eq. 9.4.5 is valid for any constituent whose fugacity obeys Eq. 9.4.3, it is equivalent to
Raoult's law for fugacity for that constituent.

9.4.2 Ideal mixtures
Depending on the temperature, pressure, and identity of the constituents of a liquid mixture, Raoult's law for fugacity
may hold for constituent i at all liquid compositions, or over only a limited composition range when xi is close to unity.

An ideal liquid mixture is defined as a liquid mixture in which, at a given temperature and pressure, each con-
stituent obeys Raoult's law for fugacity (Eq. 9.4.3 or 9.4.5) over the entire range of composition. Equation 9.4.3
applies only to a volatile constituent, whereas Eq. 9.4.5 applies regardless of whether the constituent is volatile.

Few liquid mixtures are found to approximate the behavior of an ideal liquid mixture. In order to do so, the
constituents must have similar molecular size and structure, and the pure liquids must be miscible in all proportions.
Benzene and toluene, for instance, satisfy these requirements, and liquid mixtures of benzene and toluene are found
to obey Raoult's law quite closely. In contrast, water and methanol, although miscible in all proportions, form liquid
mixtures that deviate considerably from Raoult's law. The most commonly encountered situation for mixtures of
organic liquids is that each constituent deviates from Raoult's law behavior by having a higher fugacity than predicted
by Eq. 9.4.3—a positive deviation from Raoult's law.

Similar statements apply to ideal solid mixtures. In addition, a relation with the same form as Eq. 9.4.5 describes
the chemical potential of each constituent of an ideal gas mixture, as the following derivation shows. In an ideal gas
mixture at a given T and p, the chemical potential of substance i is given by Eq. 9.3.5:

𝜇i=𝜇i
∘ (g)+RT ln pi

p∘ =𝜇i
∘ (g)+RT ln yi p

p∘ (9.4.6)

Here yi is the mole fraction of i in the gas. The chemical potential of the pure ideal gas (yi=1) is

𝜇i
∗=𝜇i

∘ (g)+RT ln p
p∘ (9.4.7)
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By eliminating 𝜇i
∘ (g) between these equations and rearranging, we obtain Eq. 9.4.5 with xi replaced by yi.

Thus, an ideal mixture, whether solid, liquid, or gas, is a mixture in which the chemical potential of each con-
stituent at a given T and p is a linear function of the logarithm of the mole fraction:

𝜇i=𝜇i
∗+RT ln xi

(9.4.8)
(ideal mixture)

9.4.3 Partial molar quantities in ideal mixtures
With the help of Eq. 9.4.8 for the chemical potential of a constituent of an ideal mixture, we will now be able to find
expressions for partial molar quantities. These expressions find their greatest use for ideal liquid and solid mixtures.

For the partial molar entropy of substance i, we have Si=−(∂𝜇i/∂ T)p,{ni} (from Eq. 9.2.48) or, for the ideal
mixture,

Si=−�∂𝜇i
∗

∂T �p
−R lnxi=Si

∗−R ln xi
(9.4.9)

(ideal mixture)

Since ln xi is negative in a mixture, the partial molar entropy of a constituent of an ideal mixture is greater than the
molar entropy of the pure substance at the same T and p.

For the partial molar enthalpy, we have Hi=𝜇i+TSi (from Eq. 9.2.46). Using the expressions for𝜇i and Si gives us

Hi=𝜇i
∗+TSi

∗=Hi
∗ (9.4.10)

(ideal mixture)

Thus, Hi in an ideal mixture is independent of the mixture composition and is equal to the molar enthalpy of pure i at
the same T and p as the mixture. In the case of an ideal gas mixture, Hi is also independent of p, because the molar
enthalpy of an ideal gas depends only on T .

The partial molar volume is given by Vi=(∂𝜇i/∂ p)T ,{ni} (Eq. 9.2.49), so we have

Vi=�
∂𝜇i
∗

∂ p �T
=Vi

∗ (9.4.11)
(ideal mixture)

Finally, from Eqs. 9.2.50 and 9.2.52 and the expressions above for Hi and Vi, we obtain

Ui=Hi
∗− pVi

∗=Ui
∗ (9.4.12)

(ideal mixture)
and

Cp,i=(∂Hi
∗/∂T)p,{ni}=Cp,i

∗ (9.4.13)
(ideal mixture)

Note that in an ideal mixture held at constant T and p, the partial molar quantities Hi, Vi, Ui, and Cp,i do not vary with
the composition.

9.4.4 Henry's law
Consider the system shown in Fig. 9.4.2 on page 200, in which a liquid mixture is equilibrated with a gas phase.
Transfer equilibrium exists for substance i, a constituent of both phases. Substance i is assumed to have the same
molecular form in both phases, and is not, for instance, an electrolyte. We can vary the mole fraction xi in the liquid
and evaluate the fugacity fi in the gas phase.

Suppose we allow xi to approach zero at constant T and p while the relative amounts of the other liquid con-
stituents remain constant. It is found experimentally that the fugacity fi becomes proportional to xi:

fi→ kH,i xi as xi→0
(9.4.14)

(constant T and p)
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Figure 9.4.2. Equilibrated liquid and gas mixtures. Substance i is present in both phases.

./bio/henry
.

This behavior is called Henry's law. The proportionality constant kH,i is the Henry's law constant of substance i. The
value of kH,i depends on the temperature and the total pressure, and also on the relative amounts of the constituents
other than i in the liquid mixture.

If the liquid phase happens to be an ideal liquid mixture, then by definition constituent i obeys Raoult's law for
fugacity at all values of xi. In that case, kH,i is equal to fi∗, the fugacity when the gas phase is equilibrated with pure
liquid i at the same temperature and pressure as the liquid mixture.

If we treat the liquid mixture as a binary solution in which solute B is a volatile nonelectrolyte, Henry's law
behavior occurs in the limit of infinite dilution:

fB→ kH,B xB as xB→0
(9.4.15)

(constant T and p)

An example of this behavior is shown in Fig. 9.4.3(a) on page 200. The limiting slope of the plot of fB versus xB is

Figure 9.4.3. Liquid solutions of 2,3-dimethylbutane (B) in cyclooctane at 298.15K and 1bar.9.4.1

a) Fugacity of B in an equilibrated gas phase as a function of solution composition. The dashed line, tangent to the curve at xB=0,
is Henry's law behavior, and its slope is kH,B.

b) Fugacity divided by mole fraction as a function of composition; the limiting value at xB=0 is the Henry's law constant kH,B.

9.4.1. Based on data in Ref. [91].

finite, not zero or infinite. (The fugacity of a volatile electrolyte, such as HCl dissolved in water, displays a much
different behavior, as will be shown in Chap. 10.)

Equation 9.4.15 can be applied to a solution of more than one solute if the combination of constituents
other than B is treated as the solvent, and the relative amounts of these constituents remain constant as
xB is varied.
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Since the mole fraction, concentration, and molality of a solute become proportional to one another in the limit
of infinite dilution (Eq. 9.1.14), in a very dilute solution the fugacity is proportional to all three of these composition
variables. This leads to three versions of Henry's law:

mole fraction basis fB = kH,B xB
(9.4.16)

(nonelectrolyte solute
at infinite dilution)

concentration basis fB = kc,B cB
(9.4.17)

(nonelectrolyte solute
at infinite dilution)

molality basis fB = km,B mB
(9.4.18)

(nonelectrolyte solute
at infinite dilution)

In these equations kH,B, kc,B, and km,B are Henry's law constants defined by

mole fraction basis kH,B =
def
lim
xB→0
� fB

xB
� (9.4.19)

concentration basis kc,B =
def
lim
cB→0
� fB

cB
� (9.4.20)

molality basis km,B =
def

lim
mB→0
� fB

mB
� (9.4.21)

Note that the Henry's law constants are not dimensionless, and are functions of T and p. To evaluate one of these
constants, we can plot fB divided by the appropriate composition variable as a function of the composition variable
and extrapolate to infinite dilution. The evaluation of kH,B by this procedure is illustrated in Fig. 9.4.3(b).

Relations between these Henry's law constants can be found with the use of Eqs. 9.1.14 and 9.4.16–9.4.18:

kc,B=VA
∗kH,B km,B=MA kH,B (9.4.22)

9.4.5 The ideal-dilute solution

An ideal-dilute solution is a real solution that is dilute enough for each solute to obey Henry's law. On the microscopic
level, the requirement is that solute molecules be sufficiently separated to make solute–solute interactions negligible.

Note that an ideal-dilute solution is not necessarily an ideal mixture. Few liquid mixtures behave as ideal mixtures,
but a solution of any nonelectrolyte solute becomes an ideal-dilute solution when sufficiently dilute.

Within the composition range that a solution effectively behaves as an ideal-dilute solution, then, the fugacity
of solute B in a gas phase equilibrated with the solution is proportional to its mole fraction xB in the solution. The
chemical potential of B in the gas phase, which is equal to that of B in the liquid, is related to the fugacity by 𝜇B=
𝜇B
∘ (g)+RT ln ( fB/p∘) (Eq. 9.3.12). Substituting fB=kH,B xB (Henry's law) into this equation, we obtain

𝜇B = 𝜇B
∘ (g)+RT ln kH,B xB

p∘

= �𝜇B
∘ (g)+RT ln kH,B

p∘ �+RT ln xB (9.4.23)

where the composition variable xB is segregated in the last term on the right side.
The expression in brackets in Eq. 9.4.23 is a function of T and p, but not of xB, and represents the chemical

potential of B in a hypothetical solute reference state. This chemical potential will be denoted by 𝜇x,B
ref , where the x in

the subscript reminds us that the reference state is based on mole fraction. The equation then becomes

𝜇B(T , p)=𝜇x,B
ref (T , p)+RT lnxB

(9.4.24)
(ideal–dilute solution,
of an electrolyte)

9.4 LIQUID AND SOLID MIXTURES OF NONELECTROLYTES 201

201



Here the notation emphasizes the fact that 𝜇B and 𝜇x,B
ref are functions of T and p.

Equation 9.4.24, derived using fugacity, is valid even if the solute has such low volatility that its
fugacity in an equilibrated gas phase is too low to measure. In principle, no solute is completely non-
volatile, and there is always a finite solute fugacity in the gas phase even if immeasurably small.
It is worthwhile to describe in detail the reference state to which 𝜇x,B

ref refers. The general concept is
also applicable to other solute reference states and solute standard states to be encountered presently.
Imagine a hypothetical solution with the same constituents as the real solution. This hypothetical solu-
tion has the magical property that it continues to exhibit the ideal-dilute behavior described by Eq.
9.4.24, even when xB increases beyond the ideal-dilute range of the real solution. The reference state
is the state of this hypothetical solution at xB1. It is a fictitious state in which the mole fraction of B is
unity and B behaves as in an ideal-dilute solution, and is sometimes called the ideal-dilute solution of
unit solute mole fraction.
By setting xB equal to unity in Eq. 9.4.24, so that lnxB is zero, we see that 𝜇x,B

ref is the chemical potential
of B in the reference state. In a gas phase equilibrated with the hypothetical solution, the solute fugacity
fB increases as a linear function of xB all the way to xB1, unlike the behavior of the real solution (unless
it happens to be an ideal mixture). In the reference state, fB is equal to the Henry's law constant kH,B;
an example is indicated by the filled circle in Fig. 9.4.3(a).

By similar steps, combining Henry's law based on concentration or molality (Eqs. 9.4.17 and 9.4.18) with the
relation 𝜇B=𝜇B

∘ (g)+RT ln( fB/p∘), we obtain for the solute chemical potential in the ideal-dilute range the equations

𝜇B = 𝜇B
∘ (g)+RT ln�kc,B cB

p∘ ⋅
c∘
c∘�

= �𝜇B
∘ (g)+RT ln kc,B c∘

p∘ �+RT ln cB
c∘ (9.4.25)

𝜇B = 𝜇B
∘ (g)+RT ln�km,B mB

p∘ ⋅ m
∘

m∘�

= �𝜇B
∘ (g)+RT ln km,B m∘

p∘ �+RT ln mB
m∘ (9.4.26)

Note how in each equation the argument of a logarithm is multiplied and divided by a constant, c∘ or m∘, in order to
make the arguments of the resulting logarithms dimensionless. These constants are called standard compositions with
the following values:

standard concentration. c∘=1mol⋅dm−3 (equal to one mole per liter, or one molar)

standard molality. m∘=1mol⋅kg−1 (equal to one molal)

Again in each of these equations, we replace the expression in brackets, which depends on T and p but not on com-
position, with the chemical potential of a solute reference state:

𝜇B(T , p)=𝜇c,B
ref (T , p)+RT ln cB

c∘
(9.4.27)

(ideal–dolute solution
of a nonelectrolyte)

𝜇B(T , p)=𝜇m,B
ref (T , p)+RT ln mB

m∘
(9.4.28)

(ideal–dilute solution
of a nonelectrolyte)

The quantities 𝜇c,B
ref and 𝜇m,B

ref are the chemical potentials of the solute in hypothetical reference states that are solutions
of standard concentration and standard molality, respectively, in which B behaves as in an ideal-dilute solution. Sec-
tion 9.7.1 will show that when the pressure is the standard pressure, these reference states are solute standard states.
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For consistency with Eqs. 9.4.27 and 9.4.28, we can rewrite Eq. 9.4.24 in the form

𝜇B(T , p)=𝜇x,B
ref (T , p)+RT ln xB

x∘ (9.4.29)

with x∘, the standard mole fraction, given by x∘=1.

9.4.6 Solvent behavior in the ideal-dilute solution

We now use the Gibbs–Duhem equation to investigate the behavior of the solvent in an ideal-dilute solution of one or
more nonelectrolyte solutes. The Gibbs–Duhem equation applied to chemical potentials at constant T and p can be
written∑i xid𝜇i=0 (Eq. 9.2.43). We use subscript A for the solvent, rewrite the equation as xAd𝜇A+∑i=/A xid𝜇i=0,
and rearrange to

d𝜇A=− 1xA
�
i=/A

xi d𝜇i
(9.4.30)

(constant T and p)

This equation shows how changes in the solute chemical potentials, due to a composition change at constant T and p,
affect the chemical potential of the solvent.

In an ideal-dilute solution, the chemical potential of each solute is given by 𝜇i=𝜇x,i
ref+RT lnxi and the differential

of 𝜇i at constant T and p is

d𝜇i=RT dln xi=RT dxi/xi (9.4.31)

(Here the fact has been used that 𝜇x,i
ref is a constant at a given T and p.) When we substitute this expression for d𝜇i in

Eq. 9.4.30, we obtain

d𝜇A=−RT
xA
�
i=/A

dxi (9.4.32)

Now since the sum of all mole fractions is 1, we have the relation∑i≠A xi=1−xA whose differential is∑i≠A dxi=−dxA.
Making this substitution in Eq. 9.4.32 gives us

d𝜇A=
RT
xA

dxA=RT dln xA

(9.4.33)
(ideal–dilute solution
of nonelectrolyte)

Consider a process in an open system in which we start with a fixed amount of pure solvent and continuously add the
solute or solutes at constant T and p. The solvent mole fraction decreases from unity to a value xA′ , and the solvent
chemical potential changes from 𝜇A

∗ to𝜇A′ . We assume the solution formed in this process is in the ideal-dilute solution
range, and integrate Eq. 9.4.33 over the path of the process:

�
𝜇A
∗

𝜇A′
d𝜇A=RT �

xA=1

xA=xA′
dln xA (9.4.34)

The result is 𝜇A′ −𝜇A
∗ =RT lnxA′ , or in general

𝜇A=𝜇A
∗ +RT lnxA (9.4.35)

Comparison with Eq. 9.4.5 on page 198 shows that Eq. 9.4.35 is equivalent to Raoult's law for fugacity.

Thus, in an ideal-dilute solution of nonelectrolytes each solute obeys Henry's law and the solvent obeys Raoult's
law.
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Figure 9.4.4. Fugacity of ethanol in a gas phase equilibrated with a binary liquid mixture of ethanol (A) and H2O at 25∘C and 1bar. Open
circles: experimental measurements. 9.4.3 The dashed lines show Henry's law behavior and Raoult's law behavior.

An equivalent statement is that a nonelectrolyte constituent of a liquid mixture approaches Henry's law behavior
as its mole fraction approaches zero, and approaches Raoult's law behavior as its mole fraction approaches unity. This
is illustrated in Fig. 9.4.4 on page 204, which shows the behavior of ethanol in ethanol-water mixtures. The ethanol
exhibits positive deviations from Raoult's law and negative deviations from Henry's law.

9.4.7 Partial molar quantities in the ideal-dilute solution

Consider the solvent, A, of a solution that is dilute enough to be in the ideal-dilute range. In this range, the solvent
fugacity obeys Raoult's law, and the partial molar quantities of the solvent are the same as those in an ideal mixture.
Formulas for these quantities were given in Eqs. 9.4.8–9.4.13 and are collected in the first column of Table 9.4.1 on
page 204.

The formulas show that the chemical potential and partial molar entropy of the solvent, at constant T and p,
vary with the solution composition and, in the limit of infinite dilution (xA→1), approach the values for the pure
solvent. The partial molar enthalpy, volume, internal energy, and heat capacity, on the other hand, are independent of
composition in the ideal-dilute region and are equal to the corresponding molar quantities for the pure solvent.

Solvent Solute

𝜇A=𝜇A
∗ +RT lnxA 𝜇B=𝜇x,B

ref +RT lnxB

=𝜇c,B
ref +RT ln (cB/c∘)

=𝜇m,B
ref +RT ln (mB/m∘)

SA=SA
∗ −R lnxA SB=Sx,B

ref −R lnxB

=Sc,B
ref −R ln (cB/c∘)

=Sm,B
ref −R ln (mB/m∘)

HA=HA
∗ HB=HB

∞

VA=VA
∗ VB=VB

∞

UA=UA
∗ UB=UB

∞

Cp,A=Cp,A
∗ Cp,B=Cp,B

∞

Table 9.4.1. Partial molar quantities of solvent and nonelectrolyte solute in an ideal-dilute solution
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Next consider a solute, B, of a binary ideal-dilute solution. The solute obeys Henry's law, and its chemical poten-
tial is given by 𝜇B=𝜇x,B

ref +RT lnxB (Eq. 9.4.24) where𝜇x,B
ref is a function of T and p, but not of composition. 𝜇B varies

with the composition and goes to −∞ as the solution becomes infinitely dilute (xA→1 and xB→0).
For the partial molar entropy of the solute, we use SB=−(∂𝜇B/∂T)p,{ni} (Eq. 9.2.48) and obtain

SB=−((((((((((((∂𝜇x,B
ref

∂T ))))))))))))p −R lnxB (9.4.36)

The term −(∂𝜇x,B
ref /∂T)p represents the partial molar entropy Sx,B

ref of B in the fictitious reference state of unit solute
mole fraction. Thus, we can write Eq. 9.4.36 in the form

SB=Sx,B
ref −R lnxB

(9.4.37)
(ideal–dilute solution
of a nonelectrolyte)

This equation shows that the partial molar entropy varies with composition and goes to +∞ in the limit of infinite
dilution. From the expressions of Eqs. 9.4.27 and 9.4.28, we can derive similar expressions for SB in terms of the
solute reference states on a concentration or molality basis.

The relation HB=𝜇B+TSB (from Eq. 9.2.46), combined with Eqs. 9.4.24 and 9.4.37, yields

HB=𝜇x,B
ref +TSx,B

ref =Hx,B
ref (9.4.38)

showing that at constant T and p, the partial molar enthalpy of the solute is constant throughout the ideal-dilute
solution range. Therefore, we can write

HB=HB
∞

(9.4.39)
(ideal–dilute solution
of a nonelectrolyte)

where HB
∞ is the partial molar enthalpy at infinite dilution. By similar reasoning, using Eqs. 9.2.49–9.2.52, we find

that the partial molar volume, internal energy, and heat capacity of the solute are constant in the ideal-dilute range and
equal to the values at infinite dilution. The expressions are listed in the second column of Table 9.4.1.

When the pressure is equal to the standard pressure p∘, the quantities HB
∞, VB

∞, UB
∞, and Cp,B

∞ are the same as the
standard values HB

∘, VB
∘, UB

∘, and Cp,B
∘ .

9.5 Activity Coefficients in Mixtures of Nonelectrolytes

An activity coefficient of a species is a kind of adjustment factor that relates the actual behavior to ideal behavior at
the same temperature and pressure. The ideal behavior is based on a reference state for the species.

We begin by describing reference states for nonelectrolytes. The thermodynamic behavior of an electrolyte solu-
tion is more complicated than that of a mixture of nonelectrolytes, and will be discussed in the next chapter.

9.5.1 Reference states and standard states
A reference state of a constituent of a mixture has the same temperature and pressure as the mixture. When species i
is in its reference state, its chemical potential 𝜇i

ref depends only on the temperature and pressure of the mixture.
If the pressure is the standard pressure p∘, the reference state of species i becomes its standard state. In the

standard state, the chemical potential is the standard chemical potential 𝜇i
∘, which is a function only of temperature.

Reference states are useful for derivations involving processes taking place at constant T and p when the pressure
is not necessarily the standard pressure.

Table 9.5.1 on page 206 describes the reference states of nonelectrolytes used in this book, and lists symbols for
chemical potentials of substances in these states. The symbols for solutes include x, c, or m in the subscript to indicate
the basis of the reference state.
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Constituent Reference state
Chemical
potential

Substance i in a gas mixture Pure i behaving as an ideal gasa 𝜇i
ref (g)

Substance i in a liquid or solid mixture Pure i in the same physical state as the mixture 𝜇i
∗

Solvent A of a solution Pure A in the same physical state as the solution 𝜇A
∗

Solute B, mole fraction basis B at mole fraction 1, behavior extrapolated from
infinite dilution on a mole fraction basisa 𝜇x,B

ref

Solute B, concentration basis B at concentration c ∘, behavior extrapolated from
infinite dilution on a concentration basisa 𝜇c,B

ref

Solute B, molality basis B at molality m∘, behavior extrapolated from infinite
dilution on a molality basisa 𝜇m,B

ref

Table 9.5.1. Reference states for nonelectrolyte constituents of mixtures. In each reference state, the temperature and pressure are the
same as those of the mixture.

aA hypothetical state.

9.5.2 Ideal mixtures

Since the activity coefficient of a species relates its actual behavior to its ideal behavior at the same T and p, let us
begin by examining behavior in ideal mixtures.

Consider first an ideal gas mixture at pressure p. The chemical potential of substance i in this ideal gas mixture is
given by Eq. 9.3.5 (the superscript “id” stands for ideal):

𝜇i(g)=𝜇i
∘ (g)+RT ln pi

p∘ (9.5.1)

The reference state of gaseous substance i is pure i acting as an ideal gas at pressure p. Its chemical potential is given
by

𝜇i
ref (g)=𝜇i

∘ (g)+RT ln p
p∘ (9.5.2)

Subtracting Eq. 9.5.2 from Eq. 9.5.1, we obtain

𝜇i(g)−𝜇i
ref (g)=RT ln pi

p (9.5.3)

Consider the following expressions for chemical potentials in ideal mixtures and ideal-dilute solutions of nonelec-
trolytes. The first equation is a rearrangement of Eq. 9.5.3, and the others are from earlier sections of this chapter.9.5.1

Constituent of an ideal gas mixture 𝜇i(g) = 𝜇i
ref (g)+RT ln pi

p (9.5.4)

Constituent of an ideal liquid or solid mixture 𝜇i = 𝜇i
∗+RT lnxi (9.5.5)

Solvent of an ideal–dilute solution 𝜇A = 𝜇A
∗ +RT ln xA (9.5.6)

Solute, ideal–dilute solution, mole fraction basis 𝜇B = 𝜇x,B
ref +RT ln xB (9.5.7)

Solute, ideal–dilute solution, concentration basis 𝜇B = 𝜇c,B
ref +RT ln cB

c∘ (9.5.8)

Solute, ideal–dilute solution, molality basis 𝜇B = 𝜇m,B
ref +RT ln mB

m∘ (9.5.9)

Note that the equations for the condensed phases have the general form

𝜇i=𝜇i
ref +RT ln� composition variable

standard composition� (9.5.10)

9.5.1. In order of occurrence, Eqs. 9.4.8, 9.4.35, 9.4.24, 9.4.27, and 9.4.28.
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where 𝜇i
ref is the chemical potential of component i in an appropriate reference state. (The standard composition on a

mole fraction basis is x∘=1.)

9.5.3 Real mixtures
If a mixture is not ideal, we can write an expression for the chemical potential of each component that includes
an activity coefficient. The expression is like one of those for the ideal case (Eqs. 9.5.4–9.5.9) with the activity
coefficient multiplying the quantity within the logarithm.

Consider constituent i of a gas mixture. If we eliminate 𝜇i
∘ (g) from Eqs. 9.3.12 and 9.5.2, we obtain

𝜇i = 𝜇i
ref (g)+RT ln fi

p

= 𝜇i
ref (g)+RT ln 𝜙i pi

p (9.5.11)

where fi is the fugacity of constituent i and 𝜙i is its fugacity coefficient. Here the activity coefficient is the fugacity
coefficient 𝜙i.

For components of a condensed-phase mixture, we write expressions for the chemical potential having a form
similar to that in Eq. 9.5.10, with the composition variable now multiplied by an activity coefficient:

𝜇i=𝜇i
ref+RT ln�(activity coefficient of i)×� composition variable

standard composition�� (9.5.12)

The activity coefficient of a species is a dimensionless quantity whose value depends on the temperature, the pressure,
the mixture composition, and the choice of the reference state for the species. Under conditions in which the mixture
behaves ideally, the activity coefficient is unity and the chemical potential is given by one of the expressions of Eqs.
9.5.4–9.5.9; otherwise, the activity coefficient has the value that gives the actual chemical potential.

This book will use various symbols for activity coefficients, as indicated in the following list of expressions for the
chemical potentials of nonelectrolytes:

Constituent of a gas mixture 𝜇i = 𝜇i
ref (g)+RT ln�𝜙i

pi
p � (9.5.13)

Constituent of a liquid or solid mixture 𝜇i = 𝜇i
∗+RT ln (𝛾ixi) (9.5.14)

Solvent of a solution 𝜇A = 𝜇A
∗ +RT ln (𝛾A xA) (9.5.15)

Solute of a solution, mole fraction basis 𝜇B = 𝜇x,B
ref +RT ln (𝛾x,B xB) (9.5.16)

Solute of a solution, concentration basis 𝜇B = 𝜇c,B
ref +RT ln�𝛾c,B

cB
c∘� (9.5.17)

Solute of a solution, molality basis 𝜇B = 𝜇m,B
ref +RT ln�𝛾m,B

mB
m∘ � (9.5.18)

Equation 9.5.14 refers to a component of a liquid or solid mixture of substances that mix in all proportions. Equation
9.5.15 refers to the solvent of a solution. The reference states of these components are the pure liquid or solid at the
temperature and pressure of the mixture. For the activity coefficients of these components, this book uses the symbols
𝛾i and 𝛾A.

The IUPAC Green Book (Ref. [30], p. 59) recommends the symbol fi for the activity coefficient of
component i when the reference state is the pure liquid or solid. This book instead uses symbols such
as 𝛾i and 𝛾A, in order to avoid confusion with the symbol usually used for fugacity, fi.

In Eqs. 9.5.16–9.5.18, the symbols 𝛾x,B, 𝛾c,B, and 𝛾m,B for activity coefficients of a nonelectrolyte solute include x,
c, or m in the subscript to indicate the choice of the solute reference state. Although three different expressions for 𝜇B
are shown, for a given solution composition they must all represent the same value of 𝜇B, equal to the rate at which
the Gibbs energy increases with the amount of substance B added to the solution at constant T and p. The value of a
solute activity coefficient, on the other hand, depends on the choice of the solute reference state.

You may find it helpful to interpret products appearing on the right sides of Eqs. 9.5.13–9.5.18 as follows.

• 𝜙i pi is an effective partial pressure.
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• 𝛾i xi, 𝛾A xA, and 𝛾x,B xB are effective mole fractions.

• 𝛾c,B cB is an effective concentration.

• 𝛾m,B mB is an effective molality.

In other words, the value of one of these products is the value of a partial pressure or composition variable that
would give the same chemical potential in an ideal mixture as the actual chemical potential in the real mixture. These
effective composition variables are an alternative way to express the escaping tendency of a substance from a phase;
they are related exponentially to the chemical potential, which is also a measure of escaping tendency.

A change in pressure or composition that causes a mixture to approach the behavior of an ideal mixture or ideal-
dilute solution must cause the activity coefficient of each mixture constituent to approach unity:

Constituent of a gas mixture 𝜙i → 1 as p→0 (9.5.19)
Constituent of a liquid or solid mixture 𝛾i → 1 as xi→1 (9.5.20)
Solvent of a solution 𝛾A → 1 as xA→1 (9.5.21)
Solute of a solution, mole fraction basis 𝛾x,B → 1 as xB→0 (9.5.22)
Solute of a solution, concentration basis 𝛾c,B → 1 as cB→0 (9.5.23)
Solute of a solution, molality basis 𝛾m,B → 1 as mB→0 (9.5.24)

9.5.4 Nonideal dilute solutions

How would we expect the activity coefficient of a nonelectrolyte solute to behave in a dilute solution as the solute mole
fraction increases beyond the range of ideal-dilute solution behavior?

The following argument is based on molecular properties at constant T and p.
We focus our attention on a single solute molecule. This molecule has interactions with nearby solute
molecules. Each interaction depends on the intermolecular distance and causes a change in the internal
energy compared to the interaction of the solute molecule with solvent at the same distance.9.5.2 The
number of solute molecules in a volume element at a given distance from the solute molecule we are
focusing on is proportional to the local solute concentration. If the solution is dilute and the interactions
weak, we expect the local solute concentration to be proportional to the macroscopic solute mole frac-
tion. Thus, the partial molar quantities UB and VB of the solute should be approximately linear functions
of xB in a dilute solution at constant T and p.
From Eqs. 9.2.46 and 9.2.50, the solute chemical potential is given by 𝜇B=UB+ p VB − T SB. In the
dilute solution, we assume UB and VB are linear functions of xB as explained above. We also assume
the dependence of SB on xB is approximately the same as in an ideal mixture; this is a prediction from
statistical mechanics for a mixture in which all molecules have similar sizes and shapes. Thus we
expect the deviation of the chemical potential from ideal-dilute behavior, 𝜇B=𝜇x,B

ref +RT lnxB, can be
described by adding a term proportional to xB: 𝜇B=𝜇x,B

ref +R T ln xB+ kx xB, where kx is a positive or
negative constant related to solute-solute interactions.
If we equate this expression for 𝜇B with the one that defines the activity coefficient, 𝜇B=𝜇x,B

ref +
R T ln (𝛾x,B xB) (Eq. 9.5.16), and solve for the activity coefficient, we obtain the relation9.5.3 𝛾x,B=
exp (kx xB/RT). An expansion of the exponential in powers of xB converts this to

𝛾x,B=1+(kx/RT)xB+ ⋅ ⋅ ⋅ (9.5.25)

9.5.2. In Sec. 11.1.5, it will be shown that roughly speaking the internal energy change is negative if the average of the attractive forces between
two solute molecules and two solvent molecules is greater than the attractive force between a solute molecule and a solvent molecule at the same
distance, and is positive for the opposite situation.
9.5.3. This is essentially the result of the McMillan–Mayer solution theory from statistical mechanics.
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Thus we predict that at constant T and p, 𝛾x,B is a linear function of xB at low xB. An ideal-dilute
solution, then, is one in which xB is much smaller than RT /kx so that 𝛾x,B is approximately 1. An ideal
mixture requires the interaction constant kx to be zero.
By similar reasoning, we reach analogous conclusions for solute activity coefficients on a concentration
or molality basis. For instance, at low mB the chemical potential of B should be approximately 𝜇m,B

ref +
R T ln (mB/m∘)+km mB, where km is a constant at a given T and p; then the activity coefficient at low
mB is given by

𝛾m,B=exp (km mB/RT)=1+(km/RT)mB+ ⋅ ⋅ ⋅ (9.5.26)

The prediction from the theoretical argument above, that a solute activity coefficient in a dilute solution is a linear
function of the composition variable, is borne out experimentally as illustrated in Fig. 9.6.29.6.2 on page 211. This
prediction applies only to a nonelectrolyte solute; for an electrolyte, the slope of activity coefficient versus molality
approaches −∞ at low molality (page 231).

9.6 Evaluation of Activity Coefficients

This section describes several methods by which activity coefficients of nonelectrolyte substances may be evaluated.
Section 9.6.3 describes an osmotic coefficient method that is also suitable for electrolyte solutes, as will be explained
in Sec. 10.6.

9.6.1 Activity coefficients from gas fugacities
Suppose we equilibrate a liquid mixture with a gas phase. If component i of the liquid mixture is a volatile nonelec-
trolyte, and we are able to evaluate its fugacity fi in the gas phase, we have a convenient way to evaluate the activity
coefficient 𝛾i in the liquid. The relation between 𝛾i and fi will now be derived.

When component i is in transfer equilibrium between two phases, its chemical potential is the same in both phases.
Equating expressions for 𝜇i in the liquid mixture and the equilibrated gas phase (from Eqs. 9.5.14 and 9.5.11, respec-
tively), and then solving for 𝛾i, we have

𝜇i
∗+RT ln (𝛾ixi)=𝜇i

ref (g)+RT ln ( fi/p) (9.6.1)

𝛾i=exp[[[[[[[[[[[[𝜇i
ref (g)−𝜇i

∗

RT ]]]]]]]]]]]]× fi
xi p

(9.6.2)

On the right side of Eq. 9.6.2, only fi and xi depend on the liquid composition. We can therefore write

𝛾i=Ci
fi
xi

(9.6.3)

where Ci is a factor whose value depends on T and p, but not on the liquid composition. Solving Eq. 9.6.3 for Ci gives
Ci=𝛾i xi/ fi.

Now consider Eq. 9.5.20 on page 208. It says that as xi approaches 1 at constant T and p, 𝛾i also approaches 1.
We can use this limit to evaluate Ci:

Ci= lim
xi→1

𝛾i xi
fi
= 1fi∗

(9.6.4)

Here fi∗ is the fugacity of i in a gas phase equilibrated with pure liquid i at the temperature and pressure of the mixture.
Then substitution of this value of Ci (which is independent of xi) in Eq. 9.6.3 gives us an expression for 𝛾i at any liquid
composition:

𝛾i=
fi

xi fi∗
(9.6.5)
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Figure 9.6.1. Liquid mixtures of ethanol (A) and H2O at 25∘C and 1bar.

a) Ethanol fugacity as a function of mixture composition. The dashed line is Raoult's law behavior, and the filled circle is the pure-
liquid reference state.

b) Ethanol activity coefficient as a function of mixture composition.

We can follow the same procedure for a solvent or solute of a liquid solution. We replace the left side of Eq. 9.6.1
with an expression from among Eqs. 9.5.15–9.5.18, then derive an expression analogous to Eq. 9.6.3 for the activity
coefficient with a composition-independent factor, and finally apply the limiting conditions that cause the activity
coefficient to approach unity (Eqs. 9.5.21–9.5.24) and allow us to evaluate the factor. When we take the limits that
cause the solute activity coefficients to approach unity, the ratios fB/xB, fB/cB, and fB/mB become Henry's law
constants (Eqs. 9.4.19–9.4.21). The resulting expressions for activity coefficients as functions of fugacity are listed in
Table 9.6.19.6.1 on page 210.

9.6.1.1 Examples

Ethanol and water at 25 ∘C mix in all proportions, so we can treat the liquid phase as a liquid mixture rather than a
solution. A plot of ethanol fugacity versus mole fraction at fixed T and p, shown earlier in Fig. 9.4.4, is repeated in
Fig. 9.6.1(a) on page 210.

Ethanol is component A. In the figure, the filled circle is the pure-liquid reference state at xA1 where fA is equal
to fA∗. The open circles at xA=0.4 indicate fA, the actual fugacity in a gas phase equilibrated with a liquid mixture of
this composition, and xA fA∗, the fugacity the ethanol would have if the mixture were ideal and component A obeyed
Raoult's law. The ratio of these two quantities is the activity coefficient 𝛾A.

Substance Activity coefficient

Substance i in gas mixture 𝜙i=
fi
pi

Substance i in a liquid or solid mixture 𝛾i=
fi

xi fi∗

Solvent A of a solution 𝛾A=
fA

xA fA∗

Solute B, mole fraction basis 𝛾x,B=
fB

kH,B xB

Solute B, concentration basis 𝛾c,B=
fB

kc,B cB

Solute B, molality basis 𝛾m,B=
fB

km,B mB

Table 9.6.1. Activity coefficients as functions of fugacity. For a constituent of a condensed-phase mixture, fi, fA, and fB refer to the
fugacity in a gas phase equilibrated with the condensed phase.
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Figure 9.6.2. Dilute aqueous solutions of 1-butanol (B) at 50.08 ∘C and 1bar.9.6.1

a) fB in an equilibrated gas phase as a function of xB, measured up to the solubility limit at xB=0.015. The dilute region is shown in
a magnified view. Dashed line: Henry's law behavior on a mole fraction basis. Filled circle: solute reference state based on mole
fraction.

b) fB as a function of mB, measured up to the solubility limit at mB=0.85mol⋅kg−1. Dashed line: Henry's law behavior on a molality
basis. Filled circle: solute reference state on this basis.

c) Activity coefficient on a mole fraction basis as a function of xB.

d) Activity coefficient on a molality basis as a function of mB.

9.6.1. Based on data in Ref. [51]

Figure 9.6.1(b) shows how 𝛾A varies with composition. The open circle is at xA=0.4 and 𝛾A= fA/(xA fA∗). Note
how 𝛾A approaches 1 as xA approaches 1, as it must according to Eq. 9.5.20.

Water and 1-butanol are two liquids that do not mix in all proportions; that is, 1-butanol has limited solubility in
water. Figures 9.6.2(a) and 9.6.2(b) on page 211. show the fugacity of 1-butanol plotted as functions of both mole
fraction and molality. The figures demonstrate how, treating 1-butanol as a solute, we locate the solute reference
state by a linear extrapolation of the fugacity to the standard composition. The fugacity fB is quite different in the two
reference states. At the reference state indicated by a filled circle in Fig. 9.6.2(a), fB equals the Henry's law constant
kH,B; at the reference state in Fig. 9.6.2(b), fB equals km,Bm∘. Note how the activity coefficients plotted in Figs. 9.6.2(c)
and 9.6.2(d) approach 1 at infinite dilution, in agreement with Eqs. 9.5.22 and 9.5.24, and how they vary as a linear
function of xB or mB in the dilute solution as predicted by the theoretical argument of Sec. 9.5.4.

9.6.2 Activity coefficients from the Gibbs–Duhem equation

If component B of a binary liquid mixture has low volatility, it is not practical to use its fugacity in a gas phase to
evaluate its activity coefficient. If, however, component A is volatile enough for fugacity measurements over a range
of liquid composition, we can instead use the Gibbs–Duhem equation for this purpose.
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Consider a binary mixture of two liquids that mix in all proportions. We assume that only component A is appre-
ciably volatile. By measuring the fugacity of A in a gas phase equilibrated with the binary mixture, we can evaluate
its activity coefficient based on a pure-liquid reference state: 𝛾A= fA/(xA fA∗) (Table 9.6.1). We wish to use the same
fugacity measurements to determine the activity coefficient of the nonvolatile component, B.

The Gibbs–Duhem equation for a binary liquid mixture in the form given by Eq. 9.2.43 is

xAd𝜇A+xB d𝜇B=0 (9.6.6)

where d𝜇A and d𝜇B are the chemical potential changes accompanying a change of composition at constant T and p.
Taking the differential at constant T and p of 𝜇A=𝜇A

∗ +RT ln (𝛾AxA) (Eq. 9.5.14), we obtain

d𝜇A=RT dln𝛾A+RT dlnxA=RT dln𝛾A+
RT
xA

dxA (9.6.7)

For component B, we obtain in the same way

d𝜇B=RT dln𝛾B+
RT
xB

dxB=RT dln𝛾B − RT
xB

dxA (9.6.8)

Substituting these expressions for d𝜇A and d𝜇B in Eq. 9.6.6 and solving for dln𝛾B, we obtain the following relation:

dln𝛾B=−xA
xB

dln𝛾A (9.6.9)

Integration from xB=1, where 𝛾B equals 1 and ln𝛾B equals 0, to composition xB′ gives

ln𝛾B(xB′)=−�
xB=1

xB=xB′ xA
xB

dln𝛾A

(9.6.10)
(binary mixture,
constant T and p)

Equation 9.6.10 allows us to evaluate the activity coefficient of the nonvolatile component, B, at any given liquid
composition from knowledge of the activity coefficient of the volatile component A as a function of composition.

Next consider a binary liquid mixture in which component B is neither volatile nor able to mix in all proportions
with A. In this case, it is appropriate to treat B as a solute and to base its activity coefficient on a solute reference state.
We could obtain an expression for ln𝛾x,B similar to Eq. 9.6.10, but the integration would have to start at xB0where the
integrand xA/xB would be infinite. Instead, it is convenient in this case to use the method described in the next section.

9.6.3 Activity coefficients from osmotic coefficients
It is customary to evaluate the activity coefficient of a nonvolatile solute with a function 𝜙m called the osmotic coef-
ficient, or osmotic coefficient on a molality basis. The osmotic coefficient of a solution of nonelectrolyte solutes is
defined by

𝜙m =
def 𝜇A

∗ −𝜇A
RTMA∑i=/A mi

(9.6.11)
(nonelectrolyte solution)

The definition of𝜙m in Eq. 9.6.11 has the following significance. The sum∑i=/A mi is the total molality
of all solute species. In an ideal-dilute solution, the solvent chemical potential is 𝜇A=𝜇A

∗ +R T ln xA.
The expansion of the function lnxA in powers of (1−xA) gives the power series lnxA=−(1−xA)− (1−
xA)2/2− (1− xA)3/3− ⋅ ⋅ ⋅. Thus, in a very dilute solution we have ln xA≈−(1−xA)=−∑i=/A xi. In the
limit of infinite dilution, the mole fraction of solute i becomes xi=MAmi (see Eq. 9.1.14). In the limit
of infinite dilution, therefore, we have

ln xA=−MA�
i=/A

mi
(9.6.12)

(infinite dilution)

and the solvent chemical potential is related to solute molalities by

𝜇A=𝜇A
∗ −RTMA�

i=/A
mi

(9.6.13)
(infinite dilution)
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The deviation of 𝜙m from unity is a measure of the deviation of 𝜇A from infinite-dilution behavior, as
we can see by comparing the preceding equation with a rearrangement of Eq. 9.6.11:

𝜇A=𝜇A
∗ −𝜙m RTMA�

i=/A
mi (9.6.14)

The reason 𝜙m is called the osmotic coefficient has to do with its relation to the osmotic pressure𝛱 of
the solution: The ratio𝛱/mB is equal to the product of 𝜙m and the limiting value of𝛱/mB at infinite
dilution (see Sec. 12.4.4).

9.6.3.1 Evaluation of ϕm

Any method that measures 𝜇A
∗ −𝜇A, the lowering of the solvent chemical potential caused by the presence of a solute

or solutes, allows us to evaluate 𝜙m through Eq. 9.6.11.
The chemical potential of the solvent in a solution is related to the fugacity in an equilibrated gas phase by 𝜇A=

𝜇A
ref (g)+RT ln ( fA/p) (from Eq. 9.5.11). For the pure solvent, this relation is 𝜇A

∗ =𝜇A
ref (g)+RT ln ( fA∗/p). Taking

the difference between these two equations, we obtain

𝜇A
∗ −𝜇A=RT ln fA∗

fA
(9.6.15)

which allows us to evaluate 𝜙m from fugacity measurements.
Osmotic coefficients can also be evaluated from freezing point and osmotic pressure measurements that will be

described in Sec. 12.2.

9.6.3.2 Use of ϕm

Suppose we have a solution of a nonelectrolyte solute B whose activity coefficient 𝛾m,B we wish to evaluate as a
function of mB. For a binary solution, Eq. 9.6.11 becomes

𝜙m=
𝜇A
∗ −𝜇A

RTMAmB

(9.6.16)
(binary nonelectrolyte solution)

Solving for 𝜇A and taking its differential at constant T and p, we obtain

d𝜇A=−RTMAd(𝜙m mB)=−RTMA (𝜙mdmB+mB d𝜙m) (9.6.17)

From 𝜇B=𝜇m,B
ref +RT ln (𝛾m,B mB/m∘) (Eq. 9.5.18), we obtain

d𝜇B=RT dln 𝛾m,B mB
m∘ =RT �dln𝛾m,B+

dmB
mB
� (9.6.18)

We substitute these expressions for d𝜇A and d𝜇B in the Gibbs–Duhem equation in the form given by Eq. 9.2.26,
nA d𝜇A+nB d𝜇B=0, make the substitution nA MA=nB/mB, and rearrange to

dln𝛾m,B=d𝜙m+
𝜙m−1

mB
dmB (9.6.19)

We integrate both sides of this equation for a composition change at constant T and p from mB=0 (where ln xB is 0
and 𝜙m is 1) to any desired molality mB′ , with the result

ln𝛾m,B(mB′ )=𝜙m(mB′ )−1+�0
mB′ 𝜙m −1

mB
dmB

(9.6.20)
(binary
nonelectrolyte solution)

When the solute is a nonelectrolyte, the integrand (𝜙m−1)/mB is found to be a slowly varying function of mB and to
approach a finite value as mB approaches zero.

Once 𝜙m has been measured as a function of molality from zero up to the molality of interest, Eq. 9.6.20 can be
used to evaluate the solute activity coefficient 𝛾m,B at that molality.
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Figure 9.6.3. Aqueous sucrose solutions at 25 ∘C.

a) Integrand of the integral in Eq. 9.6.20 as a function of solution composition.

b) Solute activity coefficient on a molality basis.

c) Product of activity coefficient and molality as a function of composition. The dashed line is the extrapolation of ideal-dilute
behavior.

9.6.2. Based on data in Ref. [120], Appendix 8.6.

Figure 9.6.3(a) on page 214 shows the function (𝜙m −1)/mB for aqueous sucrose solutions over a wide range of
molality. The dependence of the solute activity coefficient on molality, generated from Eq. 9.6.20, is shown in Fig.
9.6.3(b). Figure 9.6.3(c) is a plot of the effective sucrose molality 𝛾m,BmB as a function of composition. Note how the
activity coefficient becomes greater than unity beyond the ideal-dilute region, and how in consequence the effective
molality 𝛾m,BmB becomes considerably greater than the actual molality mB.

9.6.4 Fugacity measurements
Section 9.6.1 described the evaluation of the activity coefficient of a constituent of a liquid mixture from its fugacity
in a gas phase equilibrated with the mixture. Section 9.6.3 mentioned the use of solvent fugacities in gas phases
equilibrated with pure solvent and with a solution, in order to evaluate the osmotic coefficient of the solution.

Various experimental methods are available for measuring a partial pressure in a gas phase equilibrated with a
liquid mixture. A correction for gas nonideality, such as that given by Eq. 9.3.16, can be used to convert the partial
pressure to fugacity.

If the solute of a solution is nonvolatile, we may pump out the air above the solution and use a manometer to
measure the pressure, which is the partial pressure of the solvent. Dynamic methods involve passing a stream of inert
gas through a liquid mixture and analyzing the gas mixture to evaluate the partial pressures of volatile components.
For instance, we could pass dry air successively through an aqueous solution and a desiccant and measure the weight
gained by the desiccant.

The isopiestic vapor pressure technique is one of the most useful methods for determining the fugacity of H2O
in a gas phase equilibrated with an aqueous solution. This is a comparative method using a binary solution of the
solute of interest, B, and a nonvolatile reference solute of known properties. Some commonly used reference solutes
for which data are available are sucrose, NaCl, and CaCl2.

In this method, solute B can be either a nonelectrolyte or electrolyte. Dishes, each containing water and an accu-
rately weighed sample of one of the solutes, are placed in wells drilled in a block made of metal for good thermal
equilibration. The assembly is placed in a gas-tight chamber, the air is evacuated, and the apparatus is gently rocked in
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a thermostat for a period of up to several days, or even weeks. During this period, H2O is transferred among the dishes
through the vapor space until the chemical potential of the water becomes the same in each solution. The solutions are
then said to be isopiestic. Finally, the dishes are removed from the apparatus and weighed to establish the molality of
each solution. The H2O fugacity is known as a function of the molality of the reference solute, and is the same as the
H2O fugacity in equilibrium with the solution of solute B at its measured molality.

The isopiestic vapor pressure method can also be used for nonaqueous solutions.

9.7 Activity of an Uncharged Species
The activity ai of uncharged species i (i.e., a substance) is defined by the relation

ai =
def
exp�𝜇i−𝜇i

∘

RT �
(9.7.1)

(uncharged species)
or

𝜇i=𝜇i
∘+RT lnai

(9.7.2)
(uncharged species)

where 𝜇i
∘ is the standard chemical potential of the species.9.7.1 The activity of a species in a given phase is a dimen-

sionless quantity whose value depends on the choice of the standard state and on the intensive properties of the phase:
temperature, pressure, and composition.

The quantity ai is sometimes called the relative activity of i, because it depends on the chemical potential relative
to a standard chemical potential. An important application of the activity concept is the definition of equilibrium
constants (Sec. 11.8.1).

For convenience in later applications, we specify that the value of ai is the samein phases that have the same
temperature, pressure, and composition but are at different elevations in a gravitational field, or are at different electric
potentials. Section 9.8 10.1 will describe a modification of the defining equation 𝜇i=𝜇i

∘+RT lnai for a system with
phases of different elevations, and Sec. 10.1 will describe the modification needed for a charged species.

9.7.1 Standard states
The standard states of different kinds of mixture components have the same definitions as those for reference states
(Table 9.5.1), with the additional stipulation in each case that the pressure is equal to the standard pressure p∘.

When component i is in its standard state, its chemical potential is the standard chemical potential 𝜇i
∘. It is impor-

tant to note from Eq. 9.7.2 that when 𝜇i equals 𝜇i
∘, the logarithm of ai is zero and the activity in the standard state is

therefore unity.
The following equations in the form of Eq. 9.7.2 show the notation used in this book for the standard chemical

potentials and activities of various kinds of uncharged mixture components:

Substance i in a gas mixture 𝜇i = 𝜇i
∘ (g)+RT lnai (g) (9.7.3)

Substance i in a liquid or solid mixture 𝜇i = 𝜇i
∘+RT lnai (9.7.4)

Solvent A of a solution 𝜇A = 𝜇A
∘ +RT lnaA (9.7.5)

Solute B, mole fraction basis 𝜇B = 𝜇x,B
∘ +RT lnax,B (9.7.6)

Solute B, concentration basis 𝜇B = 𝜇c,B
∘ +RT lnac,B (9.7.7)

Solute B, molality basis 𝜇B = 𝜇m,B
∘ +RT lnam,B (9.7.8)

9.7.2 Activities and composition
We need to be able to relate the activity of component i to the mixture composition. We can do this by finding the
relation between the chemical potential of component i in its reference state and in its standard state, both at the same

9.7.1. Some chemists define the activity by 𝜇i=𝜇i
ref+RT lnai. The activity defined this way is not the same as the activity used in this book

unless the phase is at the standard pressure.
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Substance Activity

Pure gas a (g)=𝛤(g)𝜙= f
p∘

Pure liquid or solid a=𝛤

Substance i in a gas mixture ai(g)=𝛤i (g)𝜙i
pi
p =

fi
p∘

Substance i in a liquid or solid mixture ai=𝛤i𝛾i xi=𝛤i
fi
fi∗

Solvent A of a solution aA=𝛤A𝛾AxA=𝛤A
fA
fA∗

Solute B, mole fraction basis ax,B=𝛤x,B𝛾x,B xB=𝛤x,B
fB

kH,B

Solute B, concentration basis ac,B=𝛤c,B𝛾c,B
cB
c∘ =𝛤c,B

fB
kc,B c∘

Solute B, molality basis am,B=𝛤m,B𝛾m,B
mB
m∘ =𝛤m,B

fB
km,B m∘

Table 9.7.1. Expressions for activities of nonelectrolytes. For a constituent of a condensed-phase mixture, fi, fA, and fB refer to the
fugacity in a gas phase equilibrated with the condensed phase.

temperature. These two chemical potentials, 𝜇i
ref and 𝜇i

∘, are equal only if the mixture is at the standard pressure p∘.
It will be useful to define the following dimensionless quantity:

𝛤i =
def
exp((((((((((((𝜇i

ref −𝜇i
∘

RT )))))))))))) (9.7.9)

The symbol 𝛤i for this quantity was introduced by Pitzer and Brewer.9.7.2 They called it the activity in a reference
state. To see why, compare the definition of activity given by 𝜇i=𝜇i

∘+R T lnai with a rearrangement of Eq. 9.7.9:
𝜇i

ref =𝜇i
∘+RT ln𝛤i.

At a given temperature, the difference 𝜇i
ref −𝜇i

∘ depends only on the pressure p of the mixture, and is zero when p
is equal to p∘. Thus𝛤i is a function of p with a value of 1 when p is equal to p∘. This book will call𝛤i the pressure
factor of species i.

To understand how activity is related to composition, let us take as an example the activity am,B of solute B based
on molality. From Eqs. 9.5.18 and 9.7.8, we have

𝜇B = 𝜇m,B
ref +RT ln�𝛾m,B

mB
m∘ �

= 𝜇m,B
∘ +RT lnam,B (9.7.10)

The activity is then given by

lnam,B =
𝜇m,B

ref −𝜇m,B
∘

RT +ln�𝛾m,B
mB
m∘ �

= ln𝛤m,B+ln�𝛾m,B
mB
m∘ � (9.7.11)

am,B=𝛤m,B𝛾m,B
mB
m∘ (9.7.12)

The activity of a constituent of a condensed-phase mixture is in general equal to the product of the pressure factor, the
activity coefficient, and the composition variable divided by the standard composition.

Table 9.7.1 on page 216 gives explicit expressions for the activities of various kinds of nonelectrolyte substances.

9.7.3 Pressure factors and pressure
At a given temperature, the pressure factor𝛤i of component i of a mixture is a function only of pressure. To derive the
pressure dependence of𝛤i for various kinds of mixture components, we need expressions for (𝜇i

ref −𝜇i
∘) as functions

9.7.2. Ref. [86], p. 249.
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of pressure to substitute in the defining equation𝛤i=exp [ (𝜇i
ref −𝜇i

∘)/RT].
For component i of a gas mixture, the reference state is pure gas i at the pressure of the mixture, behaving as an

ideal gas. The chemical potential of a pure ideal gas depends on its pressure according to Eq. 7.8.6: 𝜇=𝜇∘ (g)+
RT ln (p/p∘). Thus the chemical potential of the reference state of gas component i is𝜇i

ref (g)=𝜇i
∘(g)+RT ln (p/p∘),

and 𝜇i
ref (g)𝜇i

∘ (g) is equal to RT ln (p/p∘). This gives us the following expression for the pressure dependence of the
pressure factor:

𝛤i(g)=
p
p∘ (9.7.13)

For a mixture in a condensed phase, we will make use of (∂𝜇i/∂ p)T ,{ni}=Vi (Eq. 9.2.49). The relation between
changes of 𝜇i and p at constant temperature and composition is therefore d𝜇i=Vidp. Recall (Sec. 9.1.5) that “constant
composition” means that the mole fraction or molality of each component, but not necessarily the concentration, is
constant.

Consider a process in which the system initially consists of a phase with component i in its standard state. We
change the pressure isothermally from p∘ to the pressure p′ of the mixture of interest. For a pure-liquid, pure-solid,
or solvent reference state, or a solute reference state based on mole fraction or molality, this process brings the system
to the reference state of component i at pressure p′. The change of 𝜇i in this case is given by integration of d𝜇i=Vidp:

𝜇i
ref(p′)−𝜇i

∘=�
p∘

p′
Vidp (9.7.14)

The appropriate partial molar volume Vi is the molar volume Vi
∗ or VA

∗ of the pure substance, or the partial molar
volume VB

∞ of solute B at infinite dilution.
Suppose we want to use a reference state for solute B based on concentration. Because the isothermal pressure

change involves a small change of volume, cB changes slightly during the process, so that the right side of Eq. 9.7.14
is not quite the correct expression for 𝜇c,B

ref (p′)−𝜇c,B
∘ .

We can derive a rigorous expression for 𝜇c,B
ref (p′)−𝜇c,B

∘ as follows. Consider an ideal-dilute solution of
solute B at an arbitrary pressure p, with solute chemical potential given by 𝜇B=𝜇c,B

ref +R T ln (cB/c∘)
(Table 9.4.1). From this equation we obtain

�∂𝜇B
∂ p �T ,{ni}

=((((((((((((((
∂𝜇c,B

ref

∂ p ))))))))))))))T +RT�∂ ln(cB/c∘)
∂ p �

T ,{ni}
(9.7.15)

The partial derivative (∂𝜇B/∂ p)T ,{ni} is equal to the partial molar volume VB (Eq. 9.2.49), which in
the ideal-dilute solution has its infinite-dilution value VB

∞. We rewrite the second partial derivative on
the right side of Eq. 9.7.15 as follows:

�∂ ln(cB/c∘)
∂ p �

T ,{ni}
= 1cB

�∂cB
∂ p �T ,{ni}

= 1
nB/V

�∂(nB/V)
∂ p �

T ,{ni}

= V �∂(1/V)∂ p �
T ,{ni}
=− 1V �

∂V
∂ p�T ,{ni}

= 𝜅T (9.7.16)

Here𝜅T is the isothermal compressibility of the solution, which at infinite dilution is𝜅T
∞, the isothermal

compressibility of the pure solvent. Equation 9.7.15 becomes

VB
∞=((((((((((((((

∂𝜇c,B
ref

∂ p ))))))))))))))T +RT 𝜅T
∞ (9.7.17)

Solving for d𝜇c,B
ref at constant T , and integrating from p∘ to p′, we obtain finally

𝜇c,B
ref (p′)−𝜇c,B

∘ =�
p∘

p′
(VB
∞−RT 𝜅T

∞)dp (9.7.18)
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Substance Pressure factor at pressure p′

Substance i in a gas mixture, or the pure gas 𝛤i (g)=
p′
p∘

Substance i in a liquid or solid mixture, or
the pure liquid or solid

𝛤i=exp��p∘

p′ Vi
∗

RT dp�≈exp[[[[[[[[[[Vi
∗(p′− p∘)

RT ]]]]]]]]]]
Solvent A of a solution 𝛤A=exp��p∘

p′ VA
∗

RT dp�≈exp[[[[[[[[[[VA
∗(p′− p∘)

RT ]]]]]]]]]]
Solute B, mole fraction or molality basis 𝛤x,B=𝛤m,B=exp��p∘

p′VB
∞

RT dp�≈exp[[[[[[[[[[VB
∞ (p′− p∘)

RT ]]]]]]]]]]
Solute B, concentration basis 𝛤c,B=exp��p∘

p′
�VB

∞

RT −𝜅T
∞�dp�≈exp[[[[[[[[[[VB

∞ (p′− p∘)
RT ]]]]]]]]]]

Table 9.7.2. Expressions for the dependence of pressure factors of nonelectrolytes on pressure. The approximate expressions assume the
phase is incompressible, or the solute partial molar volume is independent of pressure.

We are now able to write explicit formulas for 𝛤i for each kind of mixture component. They are collected in Table
9.7.2 on page 218.

Considering a constituent of a condensed-phase mixture, by how much is the pressure factor likely to differ from
unity? If we use the values p∘=1bar and T =300K, and assume the molar volume of pure i is Vi

∗=100 cm3⋅mol−1

at all pressures, we find that𝛤i is 0.996 in the limit of zero pressure, unity at 1bar, 1.004 at 2bar, 1.04 at 10bar, and
1.49 at 100bar. For a solution with VB

∞=100cm3⋅mol−1, we obtain the same values as these for𝛤x,B,𝛤m,B, and𝛤c,B.
These values demonstrate that it is only at high pressures that the pressure factor differs appreciably from unity. For
this reason, it is common to see expressions for activity in which this factor is omitted:ai=𝛾i xi, am,B=𝛾m,B mB/m∘,
and so on.

In principle, we can specify any convenient value for the standard pressure p∘. For a chemist making
measurements at high pressures, it would be convenient to specify a value of p∘ within the range of the
experimental pressures, for example p∘=1kbar, in order that the value of each pressure factor be close
to unity.

9.8 Mixtures in Gravitational and Centrifugal Fields

A tall column of a gas mixture in a gravitational field, and a liquid solution in the cell of a spinning centrifuge rotor,
are systems with equilibrium states that are nonuniform in pressure and composition. This section derives the ways in
which pressure and composition vary spatially within these kinds of systems at equilibrium.

9.8.1 Gas mixture in a gravitational field
Consider a tall column of a gas mixture in an earth-fixed lab frame. Our treatment will parallel that for a tall column
of a pure gas in Sec. 8.1.4. We imagine the gas to be divided into many thin slab-shaped phases at different elevations
in a rigid container, as in Fig. 8.1.1 on page 159. We want to find the equilibrium conditions reached spontaneously
when the system is isolated from its surroundings.

The derivation is the same as that in Sec. 9.2.7, with the additional constraint that for each phase α, dV α is zero in
order that each phase stays at a constant elevation. The result is the relation

dS= �
α=/α′

T 𝛼′−T α

T 𝛼′
dSα+�

i
�

α=/α′

𝜇i
𝛼′−𝜇i

α

T 𝛼′
dni

α (9.8.1)
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In an equilibrium state, S is at a maximum and dS is zero for an infinitesimal change of any of the independent
variables. This requires the coefficient of each term in the sums on the right side of Eq. 9.8.1 to be zero. The equa-
tion therefore tells that at equilibrium the temperature and the chemical potential of each constituent are uniform
throughout the gas mixture. The equation says nothing about the pressure.

Just as the chemical potential of a pure substance at a given elevation is defined in this book as the molar Gibbs
energy at that elevation (page 160), the chemical potential of substance i in a mixture at elevation h is the partial molar
Gibbs energy at that elevation.

We define the standard potential 𝜇i
∘ (g) of component i of the gas mixture as the chemical potential of i under

standard state conditions at the reference elevation h=0. At this elevation, the chemical potential and fugacity are
related by

𝜇i(0)=𝜇i
∘ (g)+RT ln fi(0)

p∘ (9.8.2)

If we reversibly raise a small sample of mass m of the gas mixture by an infinitesimal distance dh, without heat and at
constant T and V , the fugacity fi remains constant. The gravitational work during the elevation process is đw′=mgdh.
This work contributes to the internal energy change: dU=TdS − pdV +∑i 𝜇idni+mgdh. The total differential of the
Gibbs energy of the sample is

dG = d(U −TS+ pV)
= −S dT +V dp+�

i
𝜇idni+mgdh (9.8.3)

From this total differential, we write the reciprocity relation

�∂𝜇i
∂h �T ,p,{ni}

=�∂mg
∂ni
�

T ,p,nj=/ i,h
(9.8.4)

With the substitution m=∑i ni Mi in the partial derivative on the right side, the partial derivative becomes Mi g. At
constant T , p, and composition, therefore, we have d𝜇i=Migdh. Integrating over a finite elevation change from h=0
to h=h′, we obtain

𝜇i(h′)−𝜇i(0)=�0
h′
Mi gdh=Mi gh′ (9.8.5)

( fi(h′)= fi(0) )

The general relation between 𝜇i, fi, and h that agrees with Eqs. 9.8.2 and 9.8.5 is

𝜇i(h)=𝜇i
∘ (g)+RT ln fi(h)

p∘ +Migh (9.8.6)

In the equilibrium state of the tall column of gas,𝜇i(h) is equal to𝜇i(0). Equation 9.8.6 shows that this is only possible
if fi decreases as h increases. Equating the expressions given by this equation for 𝜇i(h) and 𝜇i(0), we have

𝜇i
∘ (g)+RT ln fi(h)

p∘ +Mi gh=𝜇i
∘ (g)+RT ln fi(0)

p∘ (9.8.7)

Solving for fi(h) gives

fi(h)= fi(0)e−Migh/RT (9.8.8)
(gas mixture at equilibrium)

If the gas is an ideal gas mixture, fi is the same as the partial pressure pi:

pi(h)= pi(0)e−Migh/RT (9.8.9)
(ideal gas mixture at equilibrium)

Equation 9.8.9 shows that each constituent of an ideal gas mixture individually obeys the barometric formula given
by Eq. 8.1.13 on page 160.

The pressure at elevation h is found from p(h)=∑i pi(h). If the constituents have different molar masses, the
mole fraction composition changes with elevation. For example, in a binary ideal gas mixture the mole fraction of
the constituent with the greater molar mass decreases with increasing elevation, and the mole fraction of the other
constituent increases.
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Figure 9.8.1.

a) Sample cell of a centrifuge rotor (schematic), with Cartesian axes x, y, z of a stationary lab frame and axes x′, y′, z of a local frame
fixed in the spinning rotor. (The rotor is not shown.) The axis of rotation is along the z axis. The angular velocity of the rotor is
𝜔=d𝜗/dt. The sample cell (heavy lines) is stationary in the local frame.

b) Thin slab-shaped volume elements in the sample cell.

9.8.2 Liquid solution in a centrifuge cell

This section derives equilibrium conditions of a dilute binary solution confined to a cell embedded in a spinning
centrifuge rotor.

The system is the solution. The rotor's angle of rotation with respect to a lab frame is not relevant to the state of
the system, so we use a local reference frame fixed in the rotor as shown in Fig. 9.8.1(a) on page 220 . The values of
heat, work, and energy changes measured in this rotating frame are different from those in a lab frame (Sec. G.9 in
Appendix G). Nevertheless, the laws of thermodynamics and the relations derived from them are obeyed in the local
frame when we measure the heat, work, and state functions in this frame (page 400).

Note that an equilibrium state can only exist relative to the rotating local frame; an observer fixed in this frame
would see no change in the state of the isolated solution over time. While the rotor rotates, however, there is no
equilibrium state relative to the lab frame, because the system's position in the frame constantly changes.

We assume the centrifuge rotor rotates about the vertical z axis at a constant angular velocity 𝜔. As shown in Fig.
9.8.1(a), the elevation of a point within the local frame is given by z and the radial distance from the axis of rotation
is given by r.

In the rotating local frame, a body of mass m has exerted on it a centrifugal force Fcentr=m𝜔2 r directed horizon-
tally in the outward +r radial direction (Sec. G.9).9.8.1 The gravitational force in this frame, directed in the downward
−z direction, is the same as the gravitational force in a lab frame. Because the height of a typical centrifuge cell
is usually no greater than about one centimeter, in an equilibrium state the variation of pressure and composition
between the top and bottom of the cell at any given distance from the axis of rotation is completely negligible—all the
measurable variation is along the radial direction.

To find conditions for equilibrium, we imagine the solution to be divided into many thin curved volume elements
at different distances from the axis of rotation as depicted in Fig. 9.8.1(b). We treat each volume element as a uniform
phase held at constant volume so that it is at a constant distance from the axis of rotation. The derivation is the same
as the one used in the preceding section to obtain Eq. 9.8.1, and leads to the same conclusion: in an equilibrium state
the temperature and the chemical potential of each substance (solvent and solute) are uniform throughout the solution.

9.8.1. There is also a Coriolis force that vanishes as the body's velocity in the rotating local frame approaches zero. The centrifugal and Coriolis
forces are apparent or fictitious forces, in the sense that they are caused by the acceleration of the rotating frame rather than by interactions between
particles. When we treat these forces as if they are real forces, we can use Newton's second law of motion to relate the net force on a body and the
body's acceleration in the rotating frame (see Sec. G.6).
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We find the dependence of pressure on r as follows. Consider one of the thin slab-shaped volume elements of Fig.
9.8.1(b). The volume element is located at radial position r and its faces are perpendicular to the direction of increasing
r. The thickness of the volume element is δ r, the surface area of each face is As, and the mass of the solution in the
volume element is m=𝜌Asδ r. Expressed as components in the direction of increasing r of the forces exerted on the
volume element, the force at the inner face is pAs, the force at the outer face is −(p+δp)As, and the centrifugal force
is m𝜔2 r=𝜌As𝜔2 rδ r. From Newton's second law, the sum of these components is zero at equilibrium:

pAs − (p+δp) As+𝜌As𝜔2 rδ r=0 (9.8.10)

or δp=𝜌𝜔2 rδ r. In the limit as δ r and δp are made infinitesimal, this becomes

dp=𝜌𝜔2 rdr (9.8.11)

We will assume the density 𝜌 is uniform throughout the solution.9.8.2 Then integration of Eq. 9.8.11 yields

p′′− p′=�
p′

p′′
dp=𝜌𝜔2�

r′

r′′
r dr= 𝜌𝜔

2

2 [(r′′)
2− (r′)2] (9.8.12)

where the superscripts ′ and ′′ denote positions at two different values of r in the cell. The pressure is seen to increase
with increasing distance from the axis of rotation.

Next we investigate the dependence of the solute concentration cB on r in the equilibrium state of the binary
solution. Consider a small sample of the solution of mass m. Assume the extent of this sample in the radial direction
is small enough for the variation of the centrifugal force field to be negligible. The reversible work in the local frame
needed to move this small sample an infinitesimal distance dr at constant z, T , and p, using an external force −Fcentr

that opposes the centrifugal force, is

đw′=F sur dr=(−Fcentr)dr=−m𝜔2 r dr (9.8.13)

This work is a contribution to the change dU of the internal energy. The Gibbs energy of the small sample in the local
frame is a function of the independent variables T , p, nA, nB, and r, and its total differential is

dG = d(U −TS+ pV)
= −S dT +V dp+𝜇AdnA+𝜇B dnB −m𝜔2 r dr (9.8.14)

We use Eq. 9.8.14 to write the reciprocity relation

�∂𝜇B
∂ r �T ,p,nA,nB

=−𝜔2 r� ∂m
∂nB
�

T ,p,nA,r
(9.8.15)

Then, using m=nA MA+nB MB, we obtain

�∂𝜇B
∂ r �T ,p,nA,nB

=−MB𝜔2 r (9.8.16)

Thus at constant T , p, and composition, which are the conditions that allow the activity ac,B to remain constant, 𝜇B for
the sample varies with r according to d𝜇B=−MB𝜔2 r dr. We integrate from radial position r′ to position r′′ to obtain

𝜇B(r′′)−𝜇B(r′) = −MB𝜔2�r ′

r ′′
r dr

= −12MB𝜔2 [(r′′)2− (r′)2]
(9.8.17)

(ac,B(r′′)=ac,B(r′) )

Let us take r′ as a reference position, such as the end of the centrifuge cell farthest from the axis of rotation. We define
the standard chemical potential𝜇c,B

∘ as the solute chemical potential under standard state conditions on a concentration
basis at this position. The solute chemical potential and activity at this position are related by

𝜇B(r′)=𝜇c,B
∘ +RT lnac,B(r′) (9.8.18)

9.8.2. In the centrifugal field, this assumption is strictly true only if the solution is incompressible and its density is independent of composition.
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From Eqs. 9.8.17 and 9.8.18, we obtain the following general relation between 𝜇B and ac,B at an arbitrary radial
position r′′:

𝜇B(r′′)=𝜇c,B
∘ +RT lnac,B(r′′)−

1
2MB𝜔2 [(r′′)2− (r′)2] (9.8.19)

We found earlier that when the solution is in an equilibrium state, 𝜇B is independent of r—that is, 𝜇B(r′′) is equal to
𝜇B(r′) for any value of r′′. When we equate expressions given by Eq. 9.8.19 for 𝜇B(r′′) and 𝜇B(r′) and rearrange,
we obtain the following relation between the activities at the two radial positions:

ln ac,B(r′′)
ac,B(r′)

=MB𝜔2
2RT [(r′′)

2− (r′)2]
(9.8.20)

(solution in centrifuge
cell at equilibrium)

The solute activity is related to the concentration cB by ac,B=𝛤c,B𝛾c,B cB/c∘. We assume the solution is sufficiently
dilute for the activity coefficient 𝛾c,B to be approximated by 1. The pressure factor is given by 𝛤c,B≈exp [VB

∞ (p −
p∘)/RT] (Table 9.7.2). These relations give us another expression for the logarithm of the ratio of activities:

ln ac,B(r′′)
ac,B(r′)

= VB
∞(p′′− p′)

RT +ln cB(r′′)
cB(r′)

(9.8.21)

We substitute for p′′− p′ from Eq. 9.8.12. It is also useful to make the substitution VB
∞=MBvB

∞, where vB
∞ is the partial

specific volume of the solute at infinite dilution (page 188).
When we equate the two expressions for ln [ac,B(r′′)/ac,B(r′)], we obtain finally

ln cB(r′′)
cB(r′)

=MB(1−vB
∞𝜌)𝜔2

2RT [(r′′)2− (r′)2]
(9.8.22)

(solution in centrifuge
cell at equilibrium)

This equation shows that if the solution density 𝜌 is less than the effective solute density 1/vB
∞, so that vB

∞𝜌 is less
than 1, the solute concentration increases with increasing distance from the axis of rotation in the equilibrium state.
If, however, 𝜌 is greater than 1/vB

∞, the concentration decreases with increasing r. The factor (1 − vB
∞𝜌) is like a

buoyancy factor for the effect of the centrifugal field on the solute.
Equation 9.8.22 is needed for sedimentation equilibrium, a method of determining the molar mass of a macro-

molecule. A dilute solution of the macromolecule is placed in the cell of an analytical ultracentrifuge, and the angular
velocity is selected to produce a measurable solute concentration gradient at equilibrium. The solute concentration is
measured optically as a function of r. The equation predicts that a plot of ln (cB/c∘) versus r2 will be linear, with a
slope equal to MB(1−vB

∞𝜌)𝜔2/2RT . The partial specific volume vB
∞ is found from measurements of solution density

as a function of solute mass fraction (page 188). By this means, the molar mass MB of the macromolecule is evaluated.
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xB [ΔV(mix)/n]/(cm3⋅mol−1) xB [ΔV(mix)/n]/(cm3⋅mol−1)
0 0 0.555 0.005
0.049 −0.027 0.597 0.011
0.097 −0.050 0.702 0.029
0.146 −0.063 0.716 0.035
0.199 −0.077 0.751 0.048
0.235 −0.073 0.803 0.056
0.284 −0.074 0.846 0.058
0.343 −0.065 0.897 0.057
0.388 −0.053 0.944 0.049
0.448 −0.032 1 0
0.491 −0.016

Table 9.9.1. Molar volumes of mixing of binary mixtures of 1-hexanol (A) and 1-octene (B) at 25 ∘C.9.9.1

9.9.1. Ref. [huniniti].

9.9 Problems

Problem 9.9.1. For a binary solution, find expressions for the mole fractions xB and xA as functions of the solute molality mB.

Problem 9.9.2. Consider a binary mixture of two liquids, A and B. The molar volume of mixing, ΔV (mix)/n, is given by Eq. 9.2.19.

a) Find a formula for calculating the value of ΔV (mix)/n of a binary mixture from values of xA, xB, MA, MB, 𝜌, 𝜌A
∗, and 𝜌B

∗.

b) The molar volumes of mixing for liquid binary mixtures of 1-hexanol (A) and 1-octene (B) at 25 ∘C have been calculated from their
measured densities. The data are in Table 9.9.1. The molar volumes of the pure constituents are VA

∗=125.31 cm3⋅mol−1 and VB
∗=

157.85cm3⋅mol−1. Use the method of intercepts to estimate the partial molar volumes of both constituents in an equimolar mixture
(xA= xB=0.5), and the partial molar volume VB

∞ of B at infinite dilution.

Problem 9.9.3. Extend the derivation of Prob. 8.8.5.1, concerning a liquid droplet of radius r suspended in a gas, to the case in which the
liquid and gas are both mixtures. Show that the equilibrium conditions are T g=T l, 𝜇i

g=𝜇i
l (for each species i that can equilibrate between the

two phases), and p l= pg+2𝛾/r, where 𝛾 is the surface tension. (As in Prob. 8.8.5.1, the last relation is the Laplace equation.)

Problem 9.9.4. Consider a gaseous mixture of 4.0000×10−2mol of N2 (A) and 4.0000×10−2mol of CO2 (B) in a volume of 1.0000×10−3m3

at a temperature of 298.15K. The second virial coefficients at this temperature have the values.9.9.2

BAA = −4.8×10−6m3⋅mol−1

BBB = −124.5×10−6m3⋅mol−1

BAB = −47.5×10−6m3⋅mol−1

Compare the pressure of the real gas mixture with that predicted by the ideal gas equation. See Eqs. 9.3.20 and 9.3.23.

Problem 9.9.5. At 25 ∘C and 1bar, the Henry's law constants of nitrogen and oxygen dissolved in water are kH,N2=8.64×104 bar and kH,O2=
4.41×104 bar.9.9.3 The vapor pressure of water at this temperature and pressure is pH2O=0.032 bar. Assume that dry air contains only N2 and O2
at mole fractions yN2=0.788 and yO2=0.212. Consider liquid–gas systems formed by equilibrating liquid water and air at 25 ∘C and 1.000 bar,
and assume that the gas phase behaves as an ideal gas mixture.

Hint: The sum of the partial pressures of N2 and O2 must be (1.000− 0.032) bar=0.968bar. If the volume of one of the phases is much
larger than that of the other, then almost all of the N2 and O2 will be in the predominant phase and the ratio of their amounts in this phase must
be practically the same as in dry air.

Determine the mole fractions of N2 and O2 in both phases in the following limiting cases:

a) A large volume of air is equilibrated with just enough water to leave a small drop of liquid.

b) A large volume of water is equilibrated with just enough air to leave a small bubble of gas.

Problem 9.9.6. Derive the expression for 𝛾m,B given in Table 9.6.1, starting with Eq. 9.5.18.

9.9.2. Refs. [3], [40], and [41].
9.9.3. Ref. [142].
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xA 𝛾A xA 𝛾A
0 2.09.9.4 0.7631 1.183

0.1334 1.915 0.8474 1.101
0.2381 1.809 0.9174 1.046
0.4131 1.594 0.9782 1.005
0.5805 1.370

Table 9.9.2. Activity coefficient of benzene (A) in mixtures of benzene and 1-octanol at 20 ∘C. The reference state is the pure liquid.

9.9.4. Extrapolated

Problem 9.9.7. Consider a nonideal binary gas mixture with the simple equation of state V =nRT /p+nB (Eq. 9.3.21).

a) The rule of Lewis and Randall states that the value of the mixed second virial coefficient BAB is the average of BAA and BBB. Show
that when this rule holds, the fugacity coefficient of A in a binary gas mixture of any composition is given by ln𝜙A=BAA ⋅ p/(RT).
By comparing this expression with Eq. 7.8.18 for a pure gas, express the fugacity of A in the mixture as a function of the fugacity of
pure A at the same temperature and pressure as the mixture.

b) The rule of Lewis and Randall is not accurately obeyed when constituents A and B are chemically dissimilar. For example, at 298.15K,
the second virial coefficients of H2O (A) and N2 (B) are BAA=−1158 cm3⋅mol−1 and BBB=−5 cm3⋅mol−1, respectively, whereas the
mixed second virial coefficient is BAB=−40cm3⋅mol−1

When liquid water is equilibrated with nitrogen at 298.15K and 1 bar, the partial pressure of H2O in the gas phase is pA=
0.03185bar. Use the given values of BAA, BBB, and BAB to calculate the fugacity of the gaseous H2O in this binary mixture. Com-
pare this fugacity with the fugacity calculated with the value of BAB predicted by the rule of Lewis and Randall.

Problem 9.9.8. Benzene and 1-octanol are two liquids that mix in all proportions. Benzene has a measurable vapor pressure, whereas 1-
octanol is practically nonvolatile. The data in Table 9.9.2 on page 224 were obtained by Platford9.9.5 using the isopiestic vapor pressure
method.

a) Use numerical integration to evaluate the integral on the right side of Eq. 9.6.10 at each of the values of xA listed in the table, and thus
find 𝛾B at these compositions.

b) Draw two curves on the same graph showing the effective mole fractions 𝛾A xA and 𝛾BxB as functions of xA. Are the deviations from
ideal-mixture behavior positive or negative?

Problem 9.9.9. Table 9.9.3 on page 224 lists measured values of gas-phase composition and total pressure for the binary two-phase
methanol–benzene system at constant temperature and varied liquid-phase composition. xA is the mole fraction of methanol in the liquid
mixture, and yA is the mole fraction of methanol in the equilibrated gas phase.

a) For each of the 16 different liquid-phase compositions, tabulate the partial pressures of A and B in the equilibrated gas phase.

xA yA p/kPa xA yA p/kPa
0 0 29.894 0.4201 0.5590 60.015
0.0207 0.2794 40.962 0.5420 0.5783 60.416
0.0314 0.3391 44.231 0.6164 0.5908 60.416
0.0431 0.3794 46.832 0.7259 0.6216 59.868
0.0613 0.4306 50.488 0.8171 0.6681 58.321
0.0854 0.4642 53.224 0.9033 0.7525 54.692
0.1811 0.5171 57.454 0.9497 0.8368 51.009
0.3217 0.5450 59.402 1 1 44.608

Table 9.9.3. Liquid and gas compositions in the two-phase system of methanol (A) and benzene (B) at 45 ∘C.9.9.6

9.9.6. Ref. [131]

9.9.5. Ref. [114].
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b) Plot pA and pB versus xA on the same graph. Notice that the behavior of the mixture is far from that of an ideal mixture. Are the
deviations from Raoult's law positive or negative?

c) Tabulate and plot the activity coefficient 𝛾B of the benzene as a function of xA using a pure-liquid reference state. Assume that the
fugacity fB is equal to pB, and ignore the effects of variable pressure.

d) Estimate the Henry's law constant kH,A of methanol in the benzene environment at 45 ∘C by the graphical method suggested in Fig.
9.4.3(b). Again assume that fA and pA are equal, and ignore the effects of variable pressure.

Problem 9.9.10. Consider a dilute binary nonelectrolyte solution in which the dependence of the chemical potential of solute B on composi-
tion is given by

𝜇B=𝜇m,B
ref +RT ln mB

m∘ +kmmB

where 𝜇m,B
ref and km are constants at a given T and p. (The derivation of this equation is sketched in Sec. 9.5.4.) Use the Gibbs–Duhem equation

in the form d𝜇A=−(nB/nA)d𝜇B to obtain an expression for 𝜇A−𝜇A
∗ as a function of mB in this solution.

Problem 9.9.11. By means of the isopiestic vapor pressure technique, the osmotic coefficients of aqueous solutions of urea at 25 ∘C have been
measured at molalities up to the saturation limit of about 20mol⋅kg−1.9.9.7 The experimental values are closely approximated by the function

𝜙m=1.00− 0.050 mB/m∘
1.00+0.179 mB/m∘

where m∘ is 1mol⋅kg−1. Calculate values of the solvent and solute activity coefficients 𝛾A and 𝛾m,B at various molalities in the range
0–20mol⋅kg−1, and plot them versus mB/m∘. Use enough points to be able to see the shapes of the curves. What are the limiting slopes
of these curves as mB approaches zero?

Problem 9.9.12. Use Eq. 9.2.49 to derive an expression for the rate at which the logarithm of the activity coefficient of component i of a liquid
mixture changes with pressure at constant temperature and composition: (∂ ln𝛾i/∂ p)T ,{ni}= ?

Problem 9.9.13. Assume that at sea level the atmosphere has a pressure of 1.00bar and a composition given by yN2=0.788 and yO2=0.212.
Find the partial pressures and mole fractions of N2 and O2, and the total pressure, at an altitude of 10.0km, making the (drastic) approximation
that the atmosphere is an ideal gas mixture in an equilibrium state at 0 ∘C. For g use the value of the standard acceleration of free fall listed in
Appendix huniniti.

Problem 9.9.14. Consider a tall column of a dilute binary liquid solution at equilibrium in a gravitational field.

a) Derive an expression for ln [ cB(h)/cB(0) ], where cB(h) and cB(0) are the solute concentrations at elevations h and 0. Your expression
should be a function of h, MB, T , 𝜌, and the partial specific volume of the solute at infinite dilution, vB

∞. For the dependence of pressure
on elevation, you may use the hydrostatic formula dp=−𝜌gdh (Eq. 8.1.14 on page 161) and assume the solution density 𝜌 is the same
at all elevations. Hint: use the derivation leading to Eq. 9.8.22 as a guide.

b) Suppose you have a tall vessel containing a dilute solution of a macromolecule solute of molar mass MB=10.0kg⋅mol−1 and partial
specific volume vB

∞=0.78cm3⋅g−1. The solution density is 𝜌=1.00g⋅cm−3 and the temperature is T =300K. Find the height h from
the bottom of the vessel at which, in the equilibrium state, the concentration cB has decreased to 99 percent of the concentration at the
bottom.

Problem 9.9.15. FhuA is a protein found in the outer membrane of the Escherichia coli bacterium. From the known amino acid sequence, its
molar mass is calculated to be 78.804kg⋅mol−1. In aqueous solution, molecules of the detergent dodecyl maltoside bind to a FhuA molecule to
form an aggregate that behaves as a single solute species. Figure 9.9.19.9.1 on page 226 shows data collected in a sedimentation equilibrium
experiment with a dilute solution of the aggregate.9.9.8 In the graph, A is the absorbance measured at a wavelength of 280nm (a property that is
a linear function of the aggregate concentration) and r is the radial distance from the axis of rotation of the centrifuge rotor. The experimental
points fall very close to the straight line shown in the graph. The sedimentation conditions were 𝜔=838s−1 and T =293K. The authors used
the values vB

∞=0.776cm3⋅g−1 and 𝜌=1.004g⋅cm−3.

a) The values of r at which the absorbance was measured range from 6.95cm to 7.20cm. Find the difference of pressure in the solution
between these two positions.

b) Find the molar mass of the aggregate solute species, and use it to estimate the mass binding ratio (the mass of bound detergent divided
by the mass of protein).

9.9.7. Ref. [123].
9.9.8. Ref. [17].
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Figure 9.9.1. Sedimentation equilibrium of a dilute solution of the FhuA-dodecyl maltoside aggregate.
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Chapter 10
Electrolyte Solutions

The thermodynamic properties of electrolyte solutions differ in significant ways from the properties of mixtures of
nonelectrolytes.

Here is an example. Pure HCl (hydrogen chloride) is a gas that is very soluble in water. A plot of the partial
pressure of gaseous HCl in equilibrium with aqueous HCl, as a function of the solution molality (Fig. 10.0.1 on page
227), shows that the limiting slope at infinite dilution is not finite, but zero. What is the reason for this non-Henry's
law behavior? It must be because HCl is an electrolyte—it dissociates (ionizes) in the aqueous environment.

It is customary to use a molality basis for the reference and standard states of electrolyte solutes. This is the only
basis used in this chapter, even when not explicitly indicated for ions. The symbol 𝜇+∘ , for instance, denotes the
chemical potential of a cation in a standard state based on molality.

In dealing with an electrolyte solute, we can refer to the solute (a substance) as a whole and to the individual
charged ions that result from dissociation. We can apply the same general definitions of chemical potential, activity
coefficient, and activity to these different species, but only the activity coefficient and activity of the solute as a whole
can be evaluated experimentally.

10.1 Single-ion Quantities

Consider a solution of an electrolyte solute that dissociates completely into a cation species and an anion species.
Subscripts + and − will be used to denote the cation and anion, respectively. The solute molality mB is defined as the
amount of solute formula unit divided by the mass of solvent.

We first need to investigate the relation between the chemical potential of an ion species and the electric potential
of the solution phase.

Figure 10.0.1. Partial pressure of HCl in a gas phase equilibrated with aqueous HCl at 25 ∘C and 1bar. Open circles: experimental data
from Ref. [5].
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The electric potential 𝜙 in the interior of a phase is called the inner electric potential, or Galvani potential. It is
defined as the work needed to reversibly move an infinitesimal test charge into the phase from a position infinitely far
from other charges, divided by the value of the test charge. The electrical potential energy of a charge in the phase is
the product of 𝜙 and the charge.

Consider a hypothetical process in which an infinitesimal amount dn+ of the cation is transferred into a solution
phase at constant T and p. The quantity of charge transferred is 𝛿Q= z+Fdn+, where z+ is the charge number (+1,
+2, etc.) of the cation, and F is the Faraday constant.10.1.1 If the phase is at zero electric potential, the process causes
no change in its electrical potential energy. However, if the phase has a finite electric potential 𝜙, the transfer process
changes its electrical potential energy by 𝜙 𝛿Q= z+F𝜙dn+. Consequently, the internal energy change depends on 𝜙
according to

dU(𝜙)=dU(0)+ z+F𝜙dn+ (10.1.1)

where the electric potential is indicated in parentheses. The change in the Gibbs energy of the phase is given by
dG=d(U −TS+ pV), where T , S, p, and V are unaffected by the value of 𝜙. The dependence of dG on 𝜙 is therefore

dG(𝜙)=dG(0)+ z+F𝜙dn+ (10.1.2)

The Gibbs fundamental equation for an open system, dG=−SdT +Vdp+∑i 𝜇idni (Eq. 9.2.34), assumes the electric
potential is zero. From this equation and Eq. 10.1.2, the Gibbs energy change during the transfer process at constant
T and p is found to depend on 𝜙 according to

dG(𝜙)=[𝜇+(0)+ z+F𝜙]dn+ (10.1.3)

The chemical potential of the cation in a phase of electric potential 𝜙, defined by the partial molar Gibbs energy
[∂G(𝜙)/∂n+]T ,p, is therefore given by

𝜇+(𝜙)=𝜇+(0)+ z+F𝜙 (10.1.4)

The corresponding relation for an anion is
𝜇−(𝜙)=𝜇−(0)+ z− F𝜙 (10.1.5)

where z− is the charge number of the anion (−1, −2, etc.). For a charged species in general, we have

𝜇i(𝜙)=𝜇i(0)+ zi F𝜙 (10.1.6)

We define the standard state of an ion on a molality basis in the same way as for a nonelectrolyte solute, with the
additional stipulation that the ion is in a phase of zero electric potential. Thus, the standard state is a hypothetical state
in which the ion is at molality m∘ with behavior extrapolated from infinite dilution on a molality basis, in a phase of
pressure p= p∘ and electric potential 𝜙=0.

The standard chemical potential 𝜇+∘ or 𝜇−
∘ of a cation or anion is the chemical potential of the ion in its standard

state. Single-ion activities a+ and a− in a phase of zero electric potential are defined by relations having the form of
Eq. 9.7.8:

𝜇+(0)=𝜇+∘ +RT lna+ 𝜇−(0)=𝜇−
∘ +RT lna− (10.1.7)

As explained on page huniniti, a+ and a− should depend on the temperature, pressure, and composition of the phase,
and not on the value of 𝜙.

From Eqs. 10.1.4, 10.1.5, and 10.1.7, the relations between the chemical potential of a cation or anion, its activity,
and the electric potential of its phase, are found to be

𝜇+=𝜇+∘ +RT lna++ z+F𝜙 𝜇−=𝜇−
∘ +RT lna−+ ziF𝜙 (10.1.8)

These relations are definitions of single-ion activities in a phase of electric potential 𝜙.
For a charged species in general, we can write10.1.2

𝜇i=𝜇i
∘+RT lnai+ zi F𝜙 (10.1.9)

10.1.1. The Faraday constant (page 357) is the charge per amount of protons.
10.1.2. Some thermodynamicists call the quantity (𝜇i

∘+RT lnai), which depends only on T , p, and composition, the chemical potential of ion
i, and the quantity (𝜇i

∘+RT lnai+ zi F𝜙) the electrochemical potential with symbol �̃�i.
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Note that we can also apply this equation to an uncharged species, because the charge number zi is then zero and Eq.
10.1.9 becomes the same as Eq. 9.7.2huniniti on page huniniti.

Of course there is no experimental way to evaluate either 𝜇+ or 𝜇− relative to a reference state or standard state,
because it is impossible to add cations or anions by themselves to a solution. We can nevertheless write some theoret-
ical relations involving 𝜇+ and 𝜇−.

For a given temperature and pressure, we can write the dependence of the chemical potentials of the ions on their
molalities in the same form as that given by Eq. 9.5.18 for a nonelectrolyte solute:

𝜇+=𝜇+ref +RT ln�𝛾+
m+
m∘ � 𝜇−=𝜇−

ref +RT ln�𝛾−
m−
m∘� (10.1.10)

Here 𝜇+ref and 𝜇−
ref are the chemical potentials of the cation and anion in solute reference states. Each reference state

is defined as a hypothetical solution with the same temperature, pressure, and electric potential as the solution under
consideration; in this solution, the molality of the ion has the standard value m∘, and the ion behaves according to
Henry's law based on molality. 𝛾+ and 𝛾− are single-ion activity coefficients on a molality basis.

The single-ion activity coefficients approach unity in the limit of infinite dilution:

𝛾+→1 and 𝛾−→1 as mB→0
(10.1.11)

(constant T , p, and 𝜙)

In other words, we assume that in an extremely dilute electrolyte solution each individual ion behaves like a nonelec-
trolyte solute species in an ideal-dilute solution. At a finite solute molality, the values of 𝛾+ and 𝛾− are the ones that
allow Eq. 10.1.10 to give the correct values of the quantities (𝜇+−𝜇+ref) and (𝜇− −𝜇−

ref). We have no way to actually
measure these quantities experimentally, so we cannot evaluate either 𝛾+ or 𝛾−.

We can define single-ion pressure factors𝛤+ and𝛤− as follows:

𝛤+ =
def
exp((((((((((((𝜇+

ref −𝜇+∘
RT ))))))))))))≈exp�V+

∞ (p− p∘)
RT � (10.1.12)

𝛤− =
def
exp((((((((((((𝜇−

ref −𝜇−∘

RT ))))))))))))≈exp�V−
∞ (p− p∘)

RT � (10.1.13)

The approximations in these equations are like those in Table 9.7.2 for nonelectrolyte solutes; they are based on the
assumption that the partial molar volumes V+ and V− are independent of pressure.

From Eqs. 10.1.7, 10.1.10, 10.1.12, and 10.1.13, the single-ion activities are related to the solution composition by

a+=𝛤+𝛾+
m+
m∘ a−=𝛤−𝛾−

m−
m∘ (10.1.14)

Then, from Eq. 10.1.9, we have the following relations between the chemical potentials and molalities of the ions:

𝜇+=𝜇+∘ +RT ln (𝛤+𝛾+m+/m∘)+ z+F𝜙 (10.1.15)

𝜇−=𝜇−
∘ +RT ln (𝛤−𝛾−m−/m∘)+ z− F𝜙 (10.1.16)

Like the values of 𝛾+ and 𝛾−, values of the single-ion quantities a+, a−, 𝛤+, and 𝛤− cannot be determined by experi-
ment.

10.2 Solution of a Symmetrical Electrolyte

Let us consider properties of an electrolyte solute as a whole. The simplest case is that of a binary solution in which
the solute is a symmetrical strong electrolyte—a substance whose formula unit has one cation and one anion that
dissociate completely. This condition will be indicated by 𝜈=2, where 𝜈 is the number of ions per formula unit. In an
aqueous solution, the solute with 𝜈 equal to 2 might be a 1:1 salt such as NaCl, a 2:2 salt such as MgSO4, or a strong
monoprotic acid such as HCl.
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In this binary solution, the chemical potential of the solute as a whole is defined in the usual way as the partial
molar Gibbs energy

𝜇B =
def
� ∂G
∂nB
�

T ,p,nA

(10.2.1)

and is a function of T , p, and the solute molality mB. Although 𝜇B under given conditions must in principle have a
definite value, we are not able to actually evaluate it because we have no way to measure precisely the energy brought
into the system by the solute. This energy contributes to the internal energy and thus to G. We can, however, evaluate
the differences 𝜇B −𝜇m,B

ref and 𝜇B −𝜇m,B
∘ .

We can write the additivity rule (Eq. 9.2.25) for G as either
G=nA𝜇A+nB𝜇B (10.2.2)

or
G=nA𝜇A+n+𝜇++n−𝜇− (10.2.3)

A comparison of these equations for a symmetrical electrolyte (nB=n+=n−) gives us the relation

𝜇B=𝜇++𝜇−
(10.2.4)
(v=2)

We see that the solute chemical potential in this case is the sum of the single-ion chemical potentials.
The solution is a phase of electric potential 𝜙. From Eqs. 10.1.4 and 10.1.5, the sum 𝜇++𝜇− appearing in Eq.

10.2.4 is
𝜇+(𝜙)+𝜇−(𝜙)=𝜇+(0)+𝜇−(0)+(z++ z−)F𝜙 (10.2.5)

For the symmetrical electrolyte, the sum (z++ z−) is zero, so that 𝜇B is equal to 𝜇+(0) +𝜇−(0). We substitute the
expressions of Eq. 10.1.10, use the relation 𝜇m,B

ref =𝜇+ref +𝜇−
ref with reference states at 𝜙=0, set the ion molalities m+

and m− equal to mB, and obtain

𝜇B=𝜇m,B
ref +RT ln �𝛾+𝛾−�

mB
m∘ �

2� (10.2.6)
(v=2)

The important feature of this relation is the appearance of the second power of mB/m∘, instead of the first power as in
the case of a nonelectrolyte. Also note that 𝜇B does not depend on 𝜙, unlike 𝜇+ and 𝜇−.

Although we cannot evaluate 𝛾+ or 𝛾− individually, we can evaluate the product 𝛾+𝛾−. This product is the square
of the mean ionic activity coefficient 𝛾±, defined for a symmetrical electrolyte by

𝛾± =
def
𝛾+𝛾−� (10.2.7)

(v=2)
With this definition, Eq. 10.2.6 becomes

𝜇B=𝜇m,B
ref +RT ln �(𝛾±)2�

mB
m∘ �

2� (10.2.8)
(v=2)

Since it is possible to determine the value of 𝜇B −𝜇m,B
ref for a solution of known molality, 𝛾± is a measurable quantity.

If the electrolyte (e.g., HCl) is sufficiently volatile, its mean ionic activity coefficient in a solution
can be evaluated from partial pressure measurements of an equilibrated gas phase. Section 10.6 will
describe a general method by which 𝛾± can be found from osmotic coefficients. Section 14.5 describes
how, in favorable cases, it is possible to evaluate 𝛾± from the equilibrium cell potential of a galvanic
cell.

The activity am,B of a solute substance on a molality basis is defined by Eq. 9.7.8 on page 215:

𝜇B=𝜇m,B
∘ +RT lnam,B (10.2.9)

Here 𝜇m,B
∘ is the chemical potential of the solute in its standard state, which is the solute reference state at the standard

pressure. By equating the expressions for 𝜇B given by Eqs. 10.2.8 and 10.2.9 and solving for the activity, we obtain

am,B=𝛤m,B(𝛾±)2�
mB
m∘ �

2 (10.2.10)
(v=2)
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Figure 10.2.1. Aqueous HCl at 25 ∘C and 1bar.10.2.1

a) HCl activity on a molality basis as a function of molality squared. The dashed line is the extrapolation of the ideal-dilute behavior.

b) Same as (a) at a greatly reduced scale; the filled circle indicates the solute reference state.

c) Mean ionic activity coefficient of HCl as a function of molality.

10.2.1. Curves based on experimental parameter values in Ref. [65], Table 11-5-1.

where𝛤m,B is the pressure factor defined by

𝛤m,B =
def
exp((((((((((((𝜇m,B

ref −𝜇m,B
∘

RT )))))))))))) (10.2.11)

We can use the appropriate expression in Table 9.7.2 on page 218 to evaluate𝛤m,B at an arbitrary pressure p′:

𝛤m,B(p′)=exp��p∘

p′ VB
∞

RT dp�≈exp[[[[[[[[[[VB
∞(p′− p∘)

RT ]]]]]]]]]] (10.2.12)

The value of 𝛤m,B is 1 at the standard pressure, and close to 1 at any reasonably low pressure (page 218). For this
reason it is common to see Eq. 10.2.10 written as am,B=𝛾±2(mB/m∘)2, with𝛤m,B omitted.

Equation 10.2.10 predicts that the activity of HCl in aqueous solutions is proportional, in the limit of infinite
dilution, to the square of the HCl molality. In contrast, the activity of a nonelectrolyte solute is proportional to the first
power of the molality in this limit. This predicted behavior of aqueous HCl is consistent with the data plotted in Fig.
10.0.110.0.1 on page 227, and is confirmed by the data for dilute HCl solutions shown in Fig. 10.2.1(a). The dashed
line in Fig. 10.2.1(a) is the extrapolation of the ideal-dilute behavior given by am,B=(mB/m∘)2. The extension of this
line to mB=m∘ establishes the hypothetical solute reference state based on molality, indicated by a filled circle in Fig.
10.2.1(b). (Since the data are for solutions at the standard pressure of 1 bar, the solute reference state shown in the
figure is also the solute standard state.)

The solid curve of Fig. 10.2.1(c) shows how the mean ionic activity coefficient of HCl varies with molality in
approximately the same range of molalities as the data shown in Fig. 10.2.1(b). In the limit of infinite dilution, 𝛾±
approaches unity. The slope of the curve approaches −∞ in this limit, quite unlike the behavior described in Sec. 9.5.4
for the activity coefficient of a nonelectrolyte solute.

For a symmetrical strong electrolyte, 𝛾± is the geometric average of the single-ion activity coefficients 𝛾+ and 𝛾−.
We have no way of evaluating 𝛾+ or 𝛾− individually, even if we know the value of 𝛾±. For instance, we cannot assume
that 𝛾+ and 𝛾− are equal.

10.3 Electrolytes in General
The formula unit of a nonsymmetrical electrolyte solute has more than two ions. General formulas for the solute as a
whole are more complicated than those for the symmetrical case treated in the preceding section, but are derived by
the same reasoning.
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Again we assume the solute dissociates completely into its constituent ions. We define the following symbols:
𝜈+ = the number of cations per solute formula unit
𝜈− = the number of anions per solute formula unit
𝜈 = the sum 𝜈++𝜈−

For example, if the solute formula is Al2(SO4)3, the values are 𝜈+=2, 𝜈−=3, and 𝜈=5.

10.3.1 Solution of a single electrolyte
In a solution of a single electrolyte solute that is not necessarily symmetrical, the ion molalities are related to the
overall solute molality by

m+=𝜈+mB m−=𝜈− mB (10.3.1)

From the additivity rule for the Gibbs energy, we have

G = nA𝜇A+nB𝜇B

= nA𝜇A+𝜈+nB𝜇++𝜈− nB𝜇− (10.3.2)

giving the relation

𝜇B=𝜈+𝜇++𝜈−𝜇− (10.3.3)

in place of Eq. 10.2.4. The cations and anions are in the same phase of electric potential 𝜙. We use Eqs. 10.1.4 and
10.1.5 to obtain

𝜈+𝜇+(𝜙)+𝜈−𝜇−(𝜙)=𝜈+𝜇+(0)+𝜈−𝜇−(0)+(𝜈+ z++𝜈− z−)F𝜙 (10.3.4)

Electrical neutrality requires that (𝜈+ z++𝜈− z−) be zero, giving

𝜇B=𝜈+𝜇+(0)+𝜈−𝜇−(0) (10.3.5)

By combining Eq. 10.3.5 with Eqs. 10.1.10, 10.3.1, and 10.3.3, we obtain

𝜇B=𝜇B
ref +RT ln �(𝜈+𝜈+𝜈−

𝜈−)(𝛾+𝜈+)(𝛾−
𝜈−)�mB

m∘ �
𝜈
� (10.3.6)

where 𝜇B
ref=𝜈+𝜇+ref+𝜈−𝜇−

ref is the chemical potential of the solute in the hypothetical reference state at 𝜙=0 in which
B is at the standard molality and behaves as at infinite dilution. Equation 10.3.6 is the generalization of Eq. 10.2.6. It
shows that although 𝜇+ and 𝜇− depend on 𝜙, 𝜇B does not.

The mean ionic activity coefficient 𝛾± is defined in general by

𝛾±𝜈=(𝛾+𝜈+)(𝛾−
𝜈−) (10.3.7)

or

𝛾±=(𝛾+𝜈+𝛾−
𝜈−)1/𝜈 (10.3.8)

Thus 𝛾± is a geometric average of 𝛾+ and 𝛾− weighted by the numbers of the cations and anions in the solute formula
unit. With a substitution from Eq. 10.3.7, Eq. 10.3.6 becomes

𝜇B=𝜇B
ref+RT ln�(𝜈+𝜈+𝜈−

𝜈−)𝛾±𝜈�
mB
m∘ �

𝜈
� (10.3.9)

Since 𝜇B −𝜇B
ref is a measurable quantity, so also is 𝛾±.

The solute activity, defined by 𝜇B=𝜇m,B
∘ +RT lnam,B, is

am,B=(𝜈+𝜈+𝜈−
𝜈−)𝛤m,B𝛾±𝜈�

mB
m∘ �

𝜈
(10.3.10)

where𝛤m,B is the pressure factor that we can evaluate with Eq. 10.2.12. Equation 10.3.10 is the generalization of Eq.
10.2.10. From Eqs. 10.1.12, 10.1.13, and 10.2.11 and the relations 𝜇B

ref=𝜈+𝜇+ref+𝜈−𝜇−
ref and 𝜇B

∘ =𝜈+𝜇+∘ +𝜈−𝜇−
∘ , we

obtain the relation

𝛤m,B=𝛤+𝜈+𝛤−
𝜈− (10.3.11)
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10.3.2 Multisolute solution
Equation 10.3.3 relates the chemical potential of electrolyte B in a binary solution to the single-ion chemical potentials
of its constituent ions:

𝜇B=𝜈+𝜇++𝜈−𝜇− (10.3.12)

This relation is valid for each individual solute substance in a multisolute solution, even when two or more of the
electrolyte solutes have an ion species in common.

As an illustration of this principle, consider a solution prepared by dissolving amounts nB of BaI2 and nC of CsI
in an amount nA of H2O. Assume the dissolved salts are completely dissociated into ions, with the I− ion common to
both. The additivity rule for the Gibbs energy of this solution can be written in the form

G=nA𝜇A+nB𝜇B+nC𝜇C (10.3.13)

and also, using single-ion quantities, in the form

G=nA𝜇A+nB𝜇(Ba2+)+2nB𝜇(I−)+nC𝜇(Cs+)+nC𝜇(I−) (10.3.14)

Comparing Eqs. 10.3.13 and 10.3.14, we find the following relations must exist between the chemical potentials of
the solute substances and the ion species:

𝜇B=𝜇(Ba2+)+2𝜇(I−) 𝜇C=𝜇(Cs+)+𝜇(I−) (10.3.15)

These relations agree with Eq. 10.3.12. Note that 𝜇(I−), the chemical potential of the ion common to both salts,
appears in both relations.

The solute activity am,B is defined by the relation 𝜇B=𝜇B
∘ +R T lnam,B (Eq. 10.2.9). Using this relation together

with Eqs. 10.1.7 and 10.1.14, we find that the solute activity is related to ion molalities by

am,B=𝛤m,B𝛾±𝜈�
m+
m∘ �

𝜈+
�m−

m∘�
𝜈−

(10.3.16)

where the pressure factor𝛤m,B is defined in Eq. 10.2.11. The ion molalities in this expression refer to the constituent
ions of solute B, which in a multisolute solution are not necessarily present in the same stoichiometric ratio as in the
solute substance.

For instance, suppose we apply Eq. 10.3.16 to the solution of BaI2 and CsI used above as an illustration of a
multisolute solution, letting am,B be the activity of solute substance BaI2. The quantities m+ and m− in the equation are
then the molalities of the Ba2+ and I− ions, and 𝛾± is the mean ionic activity coefficient of the dissolved BaI2. Note
that in this solution the Ba2+ and I− ions are not present in the 1:2 ratio found in BaI2, because I− is a constituent of
both solutes.

10.3.3 Incomplete dissociation
In the preceding sections of this chapter, the electrolyte solute or solutes have been assumed to be completely dissoci-
ated into their constituent ions at all molalities. Some solutions, however, contain ion pairs—closely associated ions
of opposite charge. Furthermore, in solutions of some electrolytes (often called “weak” electrolytes), an equilibrium
is established between ions and electrically-neutral molecules. In these kinds of solutions, the relations between solute
molality and ion molalities given by Eq. 10.3.1 are no longer valid. When dissociation is not complete, the expression
for 𝜇B given by Eq. 10.3.9 can still be used. However, the quantity 𝛾± appearing in the expression no longer has the
physical significance of being the geometric average of the activity coefficients of the actual dissociated ions, and is
called the stoichiometric activity coefficient of the electrolyte.

10.4 The Debye-Hückel Equation
The theory of Peter Debye and Erich Hückel (1923) provides theoretical expressions for single-ion activity coefficients
and mean ionic activity coefficients in electrolyte solutions. The expressions in one form or another are very useful
for extrapolation of quantities that include mean ionic activity coefficients to low solute molality or infinite dilution.
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./bio/debye
Figure 10.4.1.

The only interactions the theory considers are the electrostatic interactions between ions. These interactions are
much stronger than those between uncharged molecules, and they die off more slowly with distance. If the positions
of ions in an electrolyte solution were completely random, the net effect of electrostatic ion–ion interactions would
be zero, because each cation–cation or anion–anion repulsion would be balanced by a cation–anion attraction. The
positions are not random, however: each cation has a surplus of anions in its immediate environment, and each anion
has a surplus of neighboring cations. Each ion therefore has a net attractive interaction with the surrounding ion
atmosphere. The result for a cation species at low electrolyte molality is a decrease of 𝜇+ compared to the cation at
same molality in the absence of ion–ion interactions, meaning that the single-ion activity coefficient 𝛾+ becomes less
than 1 as the electrolyte molality is increased beyond the ideal-dilute range. Similarly, 𝛾− also becomes less than 1.

According to the Debye–Hückel theory, the single-ion activity coefficient 𝛾i of ion i in a solution of one or more
electrolytes is given by

ln𝛾i=−
ADH zi

2 Im�
1+BDH a Im�

(10.4.1)

where

• zi= the charge number of ion i (+1, −2, etc.);

• Im= the ionic strength of the solution on a molality basis, defined by10.4.1

Im =
def 1

2 �
all ions

mj zj
2 (10.4.2)

• ADH and BDH are defined functions of the kind of solvent and the temperature;

• a is an adjustable parameter, equal to the mean effective distance of closest approach of other ions in the
solution to one of the i ions.

The definitions of the quantities ADH and BDH appearing in Eq. 10.4.1 are

ADH =
def
(NA
2e3/(8𝜋)) (2𝜌A

∗)1/2(𝜖r𝜖0RT)−3/2 (10.4.3)

BDH =
def

NAe (2𝜌A
∗)1/2(𝜖r𝜖0RT)−1/2 (10.4.4)

where NA is the Avogadro constant, e is the elementary charge (the charge of a proton), 𝜌A
∗ and 𝜖r are

the density and relative permittivity (dielectric constant) of the solvent, and 𝜖0 is the electric constant
(or permittivity of vacuum).

When the solvent is water at 25 ∘C, the quantities ADH and BDH have the values

ADH = 1.1744kg /1 2⋅mol− /1 2 (10.4.5)
BDH = 3.285×109m−1⋅kg /1 2⋅mol− /1 2 (10.4.6)

From Eqs. 10.3.8 and 10.4.1 and the electroneutrality condition 𝜈+ z+=𝜈− z−, we obtain the following expression for
the logarithm of the mean ionic activity coefficient of an electrolyte solute:

ln𝛾±=−
ADH |z+ z−| Im�
1+BDH a Im�

(10.4.7)

In this equation, z+ and z− are the charge numbers of the cation and anion of the solute. Since the right side of Eq.
10.4.7 is negative at finite solute molalities, and zero at infinite dilution, the theory predicts that 𝛾± is less than 1 at
finite solute molalities and approaches 1 at infinite dilution.

10.4.1. Lewis and Randall (Ref. [84]) introduced the term ionic strength, defined by this equation, two years before the Debye–Hückel theory
was published. They found empirically that in dilute solutions, the mean ionic activity coefficient of a given strong electrolyte is the same in all
solutions having the same ionic strength.
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Figure 10.4.2. Mean ionic activity coefficient of aqueous HCl at 25 ∘C. Solid curve: experiment;10.4.2 dashed curve: Debye--Hückel theory
with a=5×10−10m; dotted curve: Debye--Hückel limiting law.

10.4.2. Ref. [65], Table 11-5-1.

Figure 10.4.2 on page 235 shows that with the proper choice of the parameter a, the mean ionic activity coefficient
of HCl calculated from Eq. 10.4.7 (dashed curve) agrees closely with experiment (solid curve) at low molalities.

As the molalities of all solutes become small, Eq. 10.4.7 becomes

ln𝛾±=−ADH |z+ z−| Im�
(10.4.8)

(infinite dilution)

This form is known as the Debye–Hückel limiting law. Note that the limiting law contains no adjustable parameters.
The dotted curve in Fig. 10.4.2 shows that the limiting law agrees with experiment only at quite low molality.

The ionic strength Im is calculated from Eq. 10.4.2 with the molalities of all ions in the solution, not just the
molality of the ion or solute whose activity coefficient we are interested in. This is because, as explained above, the
departure of 𝛾+ and 𝛾− from the ideal-dilute value of 1 is caused by the interaction of each ion with the ion atmosphere
resulting from all other ions in the solution.

In a binary solution of a single electrolyte solute, assumed to be completely dissociated, the relation between
the ionic strength and the solute molality depends on 𝜈 (the number of ions per solute formula unit) and the charge
numbers z+ and z−. The ionic strength is given by Im=(1/2)∑i mi zi

2=(1/2)(𝜈+ z+2 +𝜈− z−
2)mB. With the help of the

electroneutrality condition 𝜈+ z+=−(𝜈− z−), this becomes

Im =
1
2 [−(v− z−) z+− (v+ z+) z−]mB

= 1
2 [−(v−+v+) z+ z−]mB

= 1
2 v |z+ z−|mB (10.4.9)

We find the following relations hold between Im and mB in the binary solution, depending on the stoichiometry of the
solute formula unit:

• For a 1:1 electrolyte, e.g., NaCl or HCl: Im=mB

• For a 1:2 or 2:1 electrolyte, e.g., Na2SO4 or CaCl2: Im=3mB

• For a 2:2 electrolyte, e.g., MgSO4: Im=4mB

• For a 1:3 or 3:1 electrolyte, e.g., AlCl3: Im=6mB

• For a 3:2 or 2:3 electrolyte, e.g., Al2(SO4)3: Im=15mB
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Figure 10.4.3. Dependence of ln𝛾± on Im� for aqueous HCl (upper curves) and aqueous CaCl2 (lower curves) at 25 ∘C.10.4.3 Solid curves:
experimental; dashed curves: Debye–Hückel equation (a=5×10−10m for HCl, a=4.5×10−10m for CaCl2); dotted lines: Debye–Hückel
limiting law.

10.4.3. Experimental curves from parameter values in Ref. [65], Tables 11-5-1 and 12-1-3a.

Figure 10.4.3 on page 236 shows ln𝛾± as a function of Im� for aqueous HCl and CaCl2. The experimental curves have
the limiting slopes predicted by the Debye–Hückel limiting law (Eq. 10.4.8), but at a low ionic strength the curves
begin to deviate significantly from the linear relations predicted by that law. The full Debye–Hückel equation (Eq.
10.4.7) fits the experimental curves over a wider range of ionic strength.

10.5 Derivation of the Debye–Hückel Equation

Debye and Hückel derived Eq. 10.4.1 using a combination of electrostatic theory, statistical mechanical theory, and
thermodynamics. This section gives a brief outline of their derivation.

The derivation starts by focusing on an individual ion of species i as it moves through the solution; call it the
central ion. Around this central ion, the time-average spatial distribution of any ion species j is not random, on account
of the interaction of these ions of species j with the central ion. (Species i and j may be the same or different.) The
distribution, whatever it is, must be spherically symmetric about the central ion; that is, a function only of the distance
r from the center of the ion. The local concentration, cj′, of the ions of species j at a given value of r depends on the
ion charge zj e and the electric potential 𝜙 at that position. The time-average electric potential in turn depends on the
distribution of all ions and is symmetric about the central ion, so expressions must be found for cj′ and 𝜙 as functions
of r that are mutually consistent.

Debye and Hückel assumed that cj′ is given by the Boltzmann distribution

cj′=cj e−zje𝜙/(kT ) (10.5.1)

where zje𝜙 is the electrostatic energy of an ion of species j, and k is the Boltzmann constant (k=R/NA). As r becomes
large, 𝜙 approaches zero and cj′ approaches the macroscopic concentration cj. As T increases, cj′ at a fixed value of
r approaches cj because of the randomizing effect of thermal energy. Debye and Hückel expanded the exponential
function in powers of 1/T and retained only the first two terms: cj′≈cj (1− zj e𝜙/(kT)). The distribution of each ion
species is assumed to follow this relation. The electric potential function consistent with this distribution and with the
electroneutrality of the solution as a whole is

𝜙=(zi e/(4𝜋𝜖r𝜖0 r))e𝜅(a−r)/(1+𝜅a) (10.5.2)
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Here 𝜅 is defined by 𝜅2=2NA
2 e2 Ic/(𝜖r 𝜖0R T), where Ic is the ionic strength on a concentration basis defined by

Ic=(1/2)∑i ci zi
2.

The electric potential 𝜙 at a point is assumed to be a sum of two contributions: the electric potential the central ion
would cause at infinite dilution, zie/(4𝜋𝜖r𝜖0 r), and the electric potential due to all other ions, 𝜙′. Thus, 𝜙′ is equal
to 𝜙− zie/(4𝜋𝜖r𝜖0 r), or

𝜙′=(zi e/(4𝜋𝜖r𝜖0 r)) [e𝜅(a−r)/(1+𝜅a)−1] (10.5.3)

This expression for 𝜙′ is valid for distances from the center of the central ion down to a, the distance of closest
approach of other ions. At smaller values of r, 𝜙′ is constant and equal to the value at r = a, which is 𝜙′(a) =
−(zi e/(4𝜋 𝜖r 𝜖0)) 𝜅/(1 +𝜅 a). The interaction energy between the central ion and the surrounding ions (the ion
atmosphere) is the product of the central ion charge and 𝜙′(a).

The last step of the derivation is the calculation of the work of a hypothetical reversible process in which the
surrounding ions stay in their final distribution, and the charge of the central ion gradually increases from zero to its
actual value zie. Let 𝛼 zie be the charge at each stage of the process, where 𝛼 is a fractional advancement that changes
from 0 to 1. Then the work w′ due to the interaction of the central ion with its ion atmosphere is 𝜙′(a) integrated over
the charge:

w′ = −�
𝛼=0

𝛼=1
[(𝛼 zi e/(4𝜋𝜖r𝜖0))𝜅/(1+𝜅a)]d(𝛼 zi𝜖)

= −(zi
2e2/(8𝜋𝜖r𝜖0))𝜅/(1+𝜅a) (10.5.4)

Since the infinitesimal Gibbs energy change in a reversible process is given by dG=−SdT +Vdp+đw′ (Eq. 5.8.6),
this reversible nonexpansion work at constant T and p is equal to the Gibbs energy change. The Gibbs energy change
per amount of species i is w′NA=−(zi

2e2NA/(8𝜋𝜖r𝜖0))𝜅/(1+𝜅a). This quantity isΔG/ni for the process in which
a solution of fixed composition changes from a hypothetical state lacking ion–ion interactions to the real state with
ion–ion interactions present. ΔG/ni may be equated to the difference of the chemical potentials of i in the final and
initial states. If the chemical potential without ion–ion interactions is taken to be that for ideal-dilute behavior on a
molality basis, 𝜇i=𝜇m,i

ref +R T ln (mi/m∘), then −(zi
2 e2NA/(8𝜋𝜖r𝜖0))𝜅/(1+𝜅a) is equal to 𝜇i − [𝜇m,i

ref +R T ln (mi/
m∘)]=R T ln𝛾m,i. In a dilute solution, ci can with little error be set equal to 𝜌A

∗mi, and Ic to 𝜌A
∗ Im. Equation 10.4.1

follows.

10.6 Mean Ionic Activity Coefficients from Osmotic Coefficients
Recall that 𝛾± is the mean ionic activity coefficient of a strong electrolyte, or the stoichiometric activity coefficient of
an electrolyte that does not dissociate completely.

The general procedure described in this section for evaluating 𝛾± requires knowledge of the osmotic coefficient
𝜙m as a function of molality. 𝜙m is commonly evaluated by the isopiestic method (Sec. 9.6.4) or from measurements
of freezing-point depression (Sec. 12.2).

The osmotic coefficient of a binary solution of an electrolyte is defined by

𝜙m =
def 𝜇A

∗ −𝜇A
RTMA𝜈mB

(10.6.1)
(binary electrolyte solution)

That is, for an electrolyte the sum∑i≠A mi appearing in the definition of 𝜙m for a nonelectrolyte solution (Eq. 9.6.11
on page 212) is replaced by 𝜈mB, the sum of the ion molalities assuming complete dissociation. It will now be shown
that 𝜙m defined this way can be used to evaluate 𝛾±.

The derivation is like that described in Sec. 9.6.3 for a binary solution of a nonelectrolyte. Solving Eq. 10.6.1 for
𝜇A and taking the differential of 𝜇A at constant T and p, we obtain

d𝜇A=−RTMA𝜈(𝜙mdmB+mB d𝜙m) (10.6.2)

From Eq. 10.3.9 on page 232, we obtain

d𝜇B=RT 𝜈�dln𝛾±+
dmB
mB
� (10.6.3)
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Substitution of these expressions in the Gibbs–Duhem equation nAd𝜇A+ nBd𝜇B=0, together with the substitution
nAMA=nB/mB, yields

dln𝛾±=d𝜙m+
𝜙m−1

mB
dmB (10.6.4)

Then integration from mB=0 to any desired molality mB′ gives the result

ln𝛾±(mB′ )=𝜙m(mB′ )−1+�0
mB′ 𝜙m−1

mB
dmB (10.6.5)

The right side of this equation is the same expression as derived for ln𝛾m,B for a nonelectrolyte (Eq. 9.6.20 on page
213).

The integrand of the integral on the right side of Eq. 10.6.5 approaches −∞ as mB approaches zero, making it
difficult to evaluate the integral by numerical integration starting at mB=0. (This difficulty does not exist when the
solute is a nonelectrolyte.) Instead, we can split the integral into two parts

�
0

mB′ 𝜙m−1
mB

dmB=�0
mB′′ 𝜙m−1

mB
dmB+�mB′′

mB′ 𝜙m−1
mB

dmB (10.6.6)

where the integration limit mB′′ is a low molality at which the value of 𝜙m is available and at which 𝛾± can either be
measured or estimated from the Debye–Hückel equation.

We next rewrite Eq. 10.6.5 with mB′ replaced with mB′′:

ln𝛾±(mB′′)=𝜙m(mB′′)−1+�0
mB′′ 𝜙m−1

mB
dmB (10.6.7)

By eliminating the integral with an upper limit of mB′′ from Eqs. 10.6.6 and 10.6.7, we obtain

�
0

mB′ 𝜙m −1
mB

dmB=ln𝛾±(mB′′)−𝜙m(mB′′)+1+�mB′′

mB′ 𝜙m −1
mB

dmB (10.6.8)

Equation 10.6.5 becomes

ln𝛾±(mB′ )=𝜙m(mB′ )−𝜙m(mB′′)+ ln𝛾±(mB′′)+�mB′′

mB′ 𝜙m −1
mB

dmB (10.6.9)

The integral on the right side of this equation can easily be evaluated by numerical integration.
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10.7 Problems
Problem 10.7.1. The mean ionic activity coefficient of NaCl in a 0.100 molal aqueous solution at 298.15K has been evaluated with mea-
surements of equilibrium cell potentials,10.7.1 with the result ln𝛾±=−0.2505. Use this value in Eq. 10.6.9, together with the values of osmotic
coefficients in Table 10.7.1 on page 239, to evaluate 𝛾± at each of the molalities shown in the table; then plot 𝛾± as a function of mB.

mB/(mol⋅kg−1) 𝜙m mB/(mol⋅kg−1) 𝜙m
0.1 0.9325 2.0 0.9866
0.2 0.9239 3.0 1.0485
0.3 0.9212 4.0 1.1177
0.5 0.9222 5.0 1.1916
1.0 0.9373 6.0 1.2688
1.5 0.9598

Table 10.7.1. Osmotic coefficients of aqueous NaCl at 298.15K.10.7.2

10.7.2. Ref. [27].

Problem 10.7.2. Rard and Miller10.7.3 used published measurements of the freezing points of dilute aqueous solutions of Na2SO4 to calculate
the osmotic coefficients of these solutions at 298.15K. Use their values listed in Table 10.7.210.7.2 on page 239 to evaluate the mean ionic
activity coefficient of Na2SO4 at 298.15K and a molality of mB=0.15mol⋅kg−1. For the parameter a in the Debye–Hückel equation (Eq.
10.4.7), use the value a=3.0×10−10m.

mB/(mol⋅kg−1) 𝜙m mB/(mol⋅kg−1) 𝜙m
0.0126 0.8893 0.0637 0.8111
0.0181 0.8716 0.0730 0.8036
0.0228 0.8607 0.0905 0.7927
0.0272 0.8529 0.0996 0.7887
0.0374 0.8356 0.1188 0.7780
0.0435 0.8294 0.1237 0.7760
0.0542 0.8178 0.1605 0.7616
0.0594 0.8141

Table 10.7.2. Osmotic coefficients of aqueous Na2SO4 at 298.15K

10.7.1. Ref. [120], Table 9.3.
10.7.3. Ref. [117].
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Chapter 11
Reactions and Other Chemical Processes
This chapter discusses the thermodynamics of mixing processes and processes described by reaction equations (chem-
ical equations). It introduces the important concepts of molar mixing and reaction quantities, advancement, and the
thermodynamic equilibrium constant. The focus is on chemical processes that take place in closed systems at constant
pressure, with no work other than expansion work. Under these conditions, the enthalpy change is equal to the heat
(Eq. 5.3.7). The processes either take place at constant temperature, or have initial and final states of the same tem-
perature.

Most of the processes to be described involve mixtures and have intermediate states that are nonequilibrium states.
At constant temperature and pressure, these processes proceed spontaneously with decreasing Gibbs energy (Sec.
5.8).11.0.1 When the rates of change are slow enough for thermal and mechanical equilibrium to be maintained, the
spontaneity is due to lack of transfer equilibrium or reaction equilibrium. An equilibrium phase transition of a pure
substance, however, is a special case: it is a reversible process of constant Gibbs energy (Sec. 8.3).

11.1 Mixing Processes
A mixing process is a process in which a mixture is formed from pure substances. In the initial state the system has
two or more separate phases, each containing a different pure substance at the same temperature and pressure. The
final state is a single-phase mixture at this temperature and pressure.

The process is illustrated schematically in Fig. 11.1.1 on page 241. When the partition is withdrawn, the two pure
liquids mix spontaneously at constant pressure to form a single homogeneous phase. If necessary, heat transfer is used
to return the phase to the initial temperature.

11.1.1 Mixtures in general
First let us consider changes in the Gibbs energy G. Since this is an extensive property, G in the initial state 1 is the
sum of G for each pure phase:

G1=�
i

ni𝜇i
∗ (11.1.1)

Here 𝜇i
∗ is the chemical potential (i.e., the molar Gibbs energy) of pure substance i at the initial temperature and

pressure. For the final state 2, we use the additivity rule for a mixture

G2=�
i

ni𝜇i (11.1.2)

Figure 11.1.1. Initial state (left) and final state (right) of mixing process for liquid substances A and B.

11.0.1. Processes in which G decreases are sometimes called exergonic.
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where 𝜇i is the chemical potential of i in the mixture at the same temperature and pressure as the initial state. The
overall change of G, the Gibbs energy of mixing, is then

ΔG(mix)=G2−G1=�
i

ni (𝜇i−𝜇i
∗) (11.1.3)

The molar Gibbs energy of mixing is the Gibbs energy of mixing per amount of mixture formed; that is,ΔGm(mix)=
ΔG(mix)/n, where n is the sum∑i ni. Dividing both sides of Eq. 11.1.3 by n, we obtain

ΔGm(mix)=�
i

xi(𝜇i −𝜇i
∗) (11.1.4)

where xi is the mole fraction of substance i in the final mixture.
Following the same procedure for an extensive state function X, we derive the following general relation for its

molar mixing quantity:
ΔXm(mix)=�

i
xi(Xi −Xi

∗) (11.1.5)

11.1.2 Ideal mixtures
When the mixture formed is an ideal mixture (gas, liquid, or solid), and the pure constituents have the same physical
state as the mixture, the expressions for various molar mixing quantities are particularly simple. An ideal molar mixing
quantity will be indicated by a superscript “id” as in ΔGm(mix). The general definition of an ideal molar mixing
quantity, analogous to Eq. 11.1.5, is

ΔXm(mix)=�
i

xi(Xi −Xi
∗) (11.1.6)

The chemical potential of constituent i of an ideal mixture is related to the mole fraction xi by the relation (Eq. 9.4.8)

𝜇i=𝜇i
∗+RT lnxi (11.1.7)

By combining this relation with Eq. 11.1.4, we find the molar Gibbs energy of mixing to form an ideal mixture is
given by

ΔGm(mix)=RT�
i

xi ln xi (11.1.8)

Since each mole fraction is less than one and the logarithm of a fraction is negative, it follows that ΔGm(mix) is
negative for every composition of the mixture.

We obtain expressions for other molar mixing quantities by substituting formulas for partial molar quantities of
constituents of an ideal mixture derived in Sec. 9.4.3 into Eq. 11.1.5. From Si=Si

∗−R ln xi (Eq. 9.4.9), we obtain

ΔSm(mix)=−R�
i

xi ln xi (11.1.9)
This quantity is positive.

Although the molar entropy of mixing to form an ideal mixture is positive, this is not true for some non-
ideal mixtures. McGlashan11.1.1 cites the negative valueΔSm(mix)=−8.8J⋅K−1⋅mol−1 for an equimolar
mixture of diethylamine and water at 322K.

From Hi=Hi
∗ (Eq. 9.4.10) and Ui=Ui

∗ (Eq. 9.4.12), we have

ΔHm(mix)=0 (11.1.10)
and

ΔUm(mix)=0 (11.1.11)

Thus, the mixing of liquids that form an ideal mixture is an athermal process, one in which no heat transfer is needed
to keep the temperature constant.

From Vi=Vi
∗ (Eq. 9.4.11), we get

ΔVm(mix)=0 (11.1.12)

11.1.1. Ref. [95], p. 241.
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Figure 11.1.2. Molar mixing quantities for a binary ideal mixture at 298.15K.

showing that the ideal molar volume of mixing is zero. Thus an ideal mixture has the same volume as the sum of the
volumes of the pure components at the same T and p.11.1.2

Figure 11.1.2 on page 243 shows how ΔGm(mix), TΔ Sm(mix), and ΔHm(mix) depend on the composition of
an ideal mixture formed by mixing two pure substances. Although it is not obvious in the figure, the curves for
ΔGm(mix) and TΔSm(mix) have slopes of +∞ or −∞ at xA0 and xA1.

11.1.3 Excess quantities
An excess quantity XE of a mixture is defined as the difference between the value of the extensive property X of the
real mixture and X id, the value for a hypothetical ideal mixture at the same temperature, pressure, and composition.

An excess molar quantity Xm
E is the excess quantity divided by n, the total amount of all constituents of the

mixture. Examining the dependence of excess molar quantities on composition is a convenient way to characterize
deviations from ideal-mixture behavior.

Excess molar quantities are related to molar mixing quantities as follows:

Xm
E =(X −X id)/n = ((((((((((((�i

niXi −�
i

niXi
id))))))))))))/n

= �
i

xi (Xi−Xi
id)

= �
i

xi (Xi−Xi
∗)−�

i
xi (Xi

id −Xi
∗)

= ΔXm(mix)−ΔXm
id(mix) (11.1.13)

By substituting expressions for ΔXm(mix) from Eqs. 11.1.8–11.1.12 in Eq. 11.1.13, we obtain the following expres-
sions for the excess molar Gibbs energy, entropy, enthalpy, internal energy, and volume:

Gm
E = ΔGm(mix)−RT�

i
xi lnxi (11.1.14)

Sm
E = ΔSm(mix)+R�

i
xi ln xi (11.1.15)

Hm
E = ΔHm(mix) (11.1.16)

Um
E = ΔUm(mix) (11.1.17)

Vm
E = ΔVm(mix) (11.1.18)

11.1.2. From the fact mentioned on p. 182 that the volume of a mixture of water and methanol is different from the sum of the volumes of the
pure liquids, we can deduce that this mixture is nonideal, despite the fact that water and methanol mix in all proportions.
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By substitution from Eqs. 9.5.14 and 11.1.4 in Eq. 11.1.14, we can relate the excess molar Gibbs energy to the activity
coefficients of the mixture constituents based on pure-liquid reference states:

Gm
E =RT�

i
xi ln𝛾i (11.1.19)

It is also possible to derive the useful relation

[[[[[[[[[[∂(nGm
E )

∂ni ]]]]]]]]]]T ,p,nj=/ i

=RT ln𝛾i (11.1.20)

To derive Eq. 11.1.20, consider infinitesimal changes in the mixture composition at constant T and p.
From Eq. 11.1.19, we write

d(nGm
E )=RT�

i
d(ni ln𝛾i)=RT�

i
nidln𝛾i+RT�

i
(ln𝛾i)dni (11.1.21)

From 𝜇i=𝜇i
∗+R T ln (𝛾i xi), we have d𝜇i=R T (dln 𝛾i+ dxi/xi). Substitution in the Gibbs–Duhem

equation,∑i xi d𝜇i=0, gives

�
i

xidln𝛾i+�
i

dxi=0 (11.1.22)

In Eq. 11.1.22, we set the sum∑i dxi equal to zero (because∑i xi equals 1) and multiply by the total
amount, n, resulting in∑i ni dln𝛾i=0. This turns Eq. 11.1.21 into

d(nGm
E )=RT�

i
(ln𝛾i)dni (11.1.23)

from which Eq. 11.1.20 follows.

11.1.4 The entropy change to form an ideal gas mixture
When pure ideal gases mix at constant T and p to form an ideal gas mixture, the molar entropy change ΔSm

id(mix)=
−R∑i yi lnyi (Eq. 11.1.9) is positive.

Consider a pure ideal-gas phase. Entropy is an extensive property, so if we divide this phase into two subsystems
with an internal partition, the total entropy remains unchanged. The reverse process, the removal of the partition, must
also have zero entropy change. Despite the fact that the latter process allows the molecules in the two subsystems to
intermingle without a change in T or p, it cannot be considered “mixing” because the entropy does not increase. The
essential point is that the same substance is present in both of the subsystems, so there is no macroscopic change of
state when the partition is removed.

From these considerations, one might conclude that the fundamental reason the entropy increases when pure ideal
gases mix is that different substances become intermingled. This conclusion would be mistaken, as we will now see.

The partial molar entropy of constituent i of an ideal gas mixture is related to its partial pressure pi by Eq. 9.3.6:

Si=Si
∘−R ln (pi/p∘) (11.1.24)

But pi is equal to ni R T /V (Eq. 9.3.3). Therefore, if a fixed amount of i is in a container at a given temperature, Si

depends only on the volume of the container and is unaffected by the presence of the other constituents of the ideal gas
mixture.

When Eq. 11.1.24 is applied to a pure ideal gas, it gives an expression for the molar entropy

Si
∗=Si

∘−R ln (p/p∘) (11.1.25)

where p is equal to nRT /V .
From Eqs. 11.1.24 and 11.1.25, and the fact that the entropy of a mixture is given by the additivity rule S=∑i niSi,

we conclude that the entropy of an ideal gas mixture equals the sum of the entropies of the unmixed pure ideal gases,
each pure gas having the same temperature and occupying the same volume as in the mixture.
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Figure 11.1.3. Reversible mixing process for ideal gases A and B confined in a cylinder. Piston 1 is permeable to A but not B; piston 2
is permeable to B but not A.

a) Gases A and B are in separate phases at the same temperature and pressure.

b) The pistons move apart at constant temperature with negative reversible work, creating an ideal gas mixture of A and B in
continuous transfer equilibrium with the pure gases.

c) The two gases are fully mixed at the initial temperature and pressure.

We can now understand why the entropy change is positive when ideal gases mix at constant T and p: Each
substance occupies a greater volume in the final state than initially. Exactly the same entropy increase would result if
the volume of each of the pure ideal gases were increased isothermally without mixing.

The reversible mixing process depicted in Fig. 11.1.3 on page 245 illustrates this principle. The initial state shown
in Fig. 11.1.3(a) consists of volume V1(A) of pure ideal gas A and volume V1(B) of pure ideal gas B, both at the
same T and p. The hypothetical semipermeable pistons are moved apart reversibly and isothermally to create an
ideal gas mixture, as shown in Fig. 11.1.3(b). According to an argument in Sec. 9.3.3, transfer equilibrium across the
semipermeable pistons requires partial pressure pA in the mixture to equal the pressure of the pure A at the left, and
partial pressure pB in the mixture to equal the pressure of the pure B at the right. Thus in intermediate states of the
process, gas A exerts no net force on piston 1, and gas B exerts no net force on piston 2.

In the final state shown in Fig. 11.1.3(c), the gases are fully mixed in a phase of volume V2=V1(A) +V1(B).
The movement of piston 1 has expanded gas B with the same reversible work as if gas A were absent, equal to
−nBR T ln [V2/V1(B)]. Likewise, the reversible work to expand gas A with piston 2 is the same as if B were absent:
−nAR T ln [V2/V1(A)]. Because the initial and final temperatures and pressures are the same, the mole fractions in
the final mixture are yA=V1(A)/V2 and yB=V1(B)/V2. The total work of the reversible mixing process is therefore
w=nART lnyA+nBRT lnyB, the heat needed to keep the internal energy constant is q=−w, and the entropy change is

ΔS=q/T =−nAR ln yA−nBR lnyB (11.1.26)

It should be clear that isothermal expansion of both pure gases from their initial volumes to volume V2without mixing
would result in the same total work and the same entropy change.

When we divide Eq. 11.1.26 by n=nA+nB, we obtain the expression for the molar entropy of mixing given by
Eq. 11.1.9 with xi replaced by yi for a gas.

11.1.5 Molecular model of a liquid mixture
We have seen that when two pure liquids mix to form an ideal liquid mixture at the same T and p, the total volume
and internal energy do not change. A simple molecular model of a binary liquid mixture will elucidate the energetic
molecular properties that are consistent with this macroscopic behavior. The model assumes the excess molar entropy,
but not necessarily the excess molar internal energy, is zero. The model is of the type sometimes called the quasicrys-
talline lattice model, and the mixture it describes is sometimes called a simple mixture. Of course, a molecular model
like this is outside the realm of classical thermodynamics.

The model is for substances A and B in gas and liquid phases at a fixed temperature. Let the standard molar internal
energy of pure gaseous A be UA

∘ (g). This is the molar energy in the absence of intermolecular interactions, and its
value depends only on the molecular constitution and the temperature. The molar internal energy of pure liquid A is
lower because of the attractive intermolecular forces in the liquid phase. We assume the energy difference is equal to a
sum of pairwise nearest-neighbor interactions in the liquid. Thus, the molar internal energy of pure liquid A is given by

UA
∗=UA

∘ (g)+kAA (11.1.27)
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where kAA (approximately the negative of the molar internal energy of vaporization) is the interaction energy per
amount of A due to A–A interactions when each molecule of A is surrounded only by other molecules of A.

Similarly, the molar internal energy of pure liquid B is given by

UB
∗=UB

∘ (g)+kBB (11.1.28)
where kBB is for B–B interactions.

We assume that in a liquid mixture of A and B, the numbers of nearest-neighbor molecules of A and B surrounding
any given molecule are in proportion to the mole fractions xA and xB.11.1.3 Then the number of A–A interactions is
proportional to nAxA, the number of B–B interactions is proportional to nBxB, and the number of A–B interactions is
proportional to nAxB+nBxA. The internal energy of the liquid mixture is then given by

U(mixt)=nAUA
∘ (g)+nB UB

∘ (g)+nAxAkAA+nB xB kBB+(nA xB+nB xA)kAB (11.1.29)

where kAB is the interaction energy per amount of A when each molecule of A is surrounded only by molecules of B,
or the interaction energy per amount of B when each molecule of B is surrounded only by molecules of A.

The internal energy change for mixing amounts nA of liquid A and nB of liquid B is now

ΔU(mix) = U(mixt)−nAUA
∗−nB UB

∗

= nAxAkAA+nB xB kBB+(nAxB+nB xA)kAB −nAkAA −nB kBB

= nA(xA−1)kAA+nB (xB −1)kBB+(nAxB+nB xA)kAB (11.1.30)

With the identities xA−1=−xB, xB −1=−xA, and nAxB=nBxA=nAnB/n (where n is the sum nA+nB), we obtain

ΔU(mix)= nA nB
n (2 kAB −kAA −kBB) (11.1.31)

If the internal energy change to form a mixture of any composition is to be zero, as it is for an ideal mixture, the
quantity (2 kAB −kAA − kBB) must be zero, which means kAB must equal (kAA+kBB)/2. Thus, one requirement for an
ideal mixture is that an A–B interaction equals the average of an A–A interaction and a B–B interaction.

If we write Eq. 11.1.29 in the form

U(mixt)=nA UA
∘ (g)+nB UB

∘ (g)+ 1
nA+nB

(nA
2 kAA+2nA nB kAB+nB

2 kBB) (11.1.32)

we can differentiate with respect to nB at constant nA to evaluate the partial molar internal energy of B. The result can
be rearranged to the simple form

UB=UB
∗+(2 kAB −kAA −kBB) (1−xB)2 (11.1.33)

where UB
∗ is given by Eq. 11.1.28. Equation 11.1.33 predicts that the value of UB decreases with increasing xB if kAB

is less negative than the average of kAA and kBB, increases for the opposite situation, and is equal to UB
∗ in an ideal

liquid mixture.
When the excess molar volume and entropy are set equal to zero, the model describes what is called a regular

solution.11.1.4 The excess molar Gibbs energy of a mixture is Gm
E =Um

E + p Vm
E − T Sm

E . Using the expression of Eq.
11.1.31 with the further assumptions that Vm

E and Sm
E are zero, this model predicts the excess molar Gibbs energy is

given by
Gm

E = ΔU(mix)
n =xA xB (2kAB −kAA −kBB) (11.1.34)

This is a symmetric function of xA and xB. It predicts, for example, that coexisting liquid layers in a binary system
(Sec. 11.1.6) have the same value of xA in one phase as the value of xB in the other.

Molar excess Gibbs energies of real liquid mixtures are often found to be unsymmetric functions. To represent
them, a more general function is needed. A commonly used function for a binary mixture is the Redlich–Kister series
given by

Gm
E =xAxB [a+b (xA−xB)+c (xA −xB)2+ ⋅ ⋅ ⋅] (11.1.35)

11.1.3. This assumption requires the molecules of A and B to have similar sizes and shapes and to be randomly mixed in the mixture. Statistical
mechanics theory shows that the molecular sizes must be approximately equal if the excess molar entropy is to be zero.

11.1.4. Ref. [67].

246 REACTIONS AND OTHER CHEMICAL PROCESSES

246



Figure 11.1.4. Molar Gibbs energy of mixing as a function of the composition of a binary liquid mixture with spontaneous phase separa-
tion. The inflection points are indicated by filled circles.

where the parameters a,b,c, ⋅⋅⋅ depend on T and p but not on composition. This function satisfies a necessary condition
for the dependence of Gm

E on composition: Gm
E must equal zero when either xA or xB is zero.11.1.5

For many binary liquid systems, the measured dependence of Gm
E on composition is reproduced reasonably well

by the two-parameter Redlich–Kister series

Gm
E =xA xB [a+b (xA −xB) ] (11.1.36)

in which the parameters a and b are adjusted to fit the experimental data. The activity coefficients in a mixture obeying
this equation are found, from Eq. 11.1.20, to be given by

RT ln𝛾A=xB
2 [a+(3−4 xB)b ] RT ln𝛾B=xA

2 [a+(4 xA −3)b ] (11.1.37)

11.1.6 Phase separation of a liquid mixture

A binary liquid mixture in a system maintained at constant T and p can spontaneously separate into two liquid layers
if any part of the curve of a plot of ΔGm(mix) versus xA is concave downward. To understand this phenomenon,
consider Fig. 11.1.4 on page 247. This figure is a plot of ΔGm(mix) versus xA. It has the form needed to evaluate the
quantities (𝜇A−𝜇A

∗ ) and (𝜇B −𝜇B
∗ ) by the variant of the method of intercepts described on page 187. On this plot, the

tangent to the curve at any given composition has intercepts equal to (𝜇B −𝜇B
∗ ) at xA=0 and (𝜇A −𝜇A

∗ ) at xA=1.
In order for two binary liquid phases to be in transfer equilibrium, 𝜇A must be the same in both phases and 𝜇B must

also be the same in both phases. The dashed line in the figure is a common tangent to the curve at the points labeled
α and β. These two points are the only ones having a common tangent, and what makes the common tangent possible
is the downward concavity (negative curvature) of a portion of the curve between these points. Because the tangents
at these points have the same intercepts, phases α and β of compositions xA

α and xA
β can be in equilibrium with one

another: the necessary conditions 𝜇A
α=𝜇A

β and 𝜇B
α=𝜇B

β are satisfied.
Now consider point 1 on the curve. A phase of this composition is unstable. It will spontaneously separate into

the two phases of compositions xA
α and xA

β, because the Gibbs energy per total amount then decreases to the extent
indicated by the vertical arrow from point 1 to point 2. We know that a process in which G decreases at constant T
and p in a closed system, with expansion work only, is a spontaneous process (Sec. 5.8).

11.1.5. The reason for this condition can be seen by looking at Eq. 11.1.19 on page 244. For a binary mixture, this equation becomes
Gm

E =RT (xA ln𝛾A+xB ln𝛾B). When xA is zero, 𝛾B is 1 and ln𝛾B is zero. When xB is zero, 𝛾A is 1 and ln𝛾A is zero. Thus Gm
E must be zero in both

cases.
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Figure 11.1.5. Binary liquid mixtures at 1 bar. The curves are calculated from the two-parameter Redlich–Kister series using the fol-
lowing parameter values.

Curve 1: a=b=0 (ideal liquid mixture).
Curve 2: a/RT =1.8, b/RT =0.36.
Curve 3: a/RT =2.4, b/RT =0.48.

a) Molar Gibbs energy of mixing as a function of composition.

b) Activity of component A (using a pure-liquid standard state) as a function of composition.

To show that the arrow in Fig. 11.1.4 represents the change in G/n for phase separation, we let y
represent the vertical ordinate and write the equation of the dashed line through points α and β (y as a
function of xA):

y=yα+((((((((((((((
yβ −yα

xA
β −xA

α)))))))))))))) (xA −xA
α) (11.1.38)

In the system both before and after phase separation occurs, xA is the mole fraction of component A in
the system as a whole. When phases α and β are present, containing amounts nα and nβ, xA is given by
the expression

xA=
xA

α nα+xA
β nβ

nα+nβ (11.1.39)

By substituting this expression for xA in Eq. 11.1.38, after some rearrangement and using nα+nβ=n,
we obtain

y= 1n (n
α yα+nβ yβ) (11.1.40)

which equates y for a point on the dashed line to the Gibbs energy change for mixing pure components
to form an amount nα of phase α and an amount nβ of phase β, divided by the total amount n. Thus,
the difference between the values of y at points 1 and 2 is the decrease in G/n when a single phase
separates into two equilibrated phases.

Any mixture with a value of xA between xA
α and xA

β is unstable with respect to separation into two phases of
compositions xA

α and xA
β. Phase separation occurs only if the curve of the plot of ΔGm(mix) versus xA is concave

downward, which requires the curve to have at least two inflection points. The compositions of the two phases are not
the compositions at the inflection points, nor in the case of the curve shown in Fig. 11.1.4 are these compositions the
same as those of the two local minima.

By varying the values of parameters in an expression for the excess molar Gibbs energy, we can model the onset
of phase separation caused by a temperature change. Figure 11.1.5 shows the results of using the two-parameter
Redlich–Kister series (Eq. 11.1.36).
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If the properties of the mixture are such that Gm
E is positive at each mixture composition (except at the extremes

xA0 and xA1 where it must be zero), and no portion of the curve of ΔGm(mix) versus xA is concave downward, there
can be no phase separation and the activity aA increases monotonically with xA. This case is illustrated by curve 2 in
Figs. 11.1.5(a) and 11.1.5(b).

If a portion of the ΔGm(mix)–xA curve is concave downward, the condition needed for phase separation, then
a maximum appears in the curve of aA versus xA. This case is illustrated by curve 3, and the compositions of the
coexisting phases are indicated by open circles. The difference of the compositions at the two circles is a miscibility
gap. The portion of curve 3 between these compositions in Fig. 11.1.5(b) is dashed to indicate it describes unstable,
nonequilibrium states. Although the two coexisting phases have different compositions, the activity aA is the same in
both phases, as indicated in Fig. 11.1.5(b) by the horizontal dashed line. This is because component A has the same
standard state and the same chemical potential in both phases.

Coexisting liquid phases will be discussed further in Secs. 12.6 and 13.2.3.

11.2 The Advancement and Molar Reaction Quantities

Many of the processes of interest to chemists can be described by balanced reaction equations, or chemical equations,
for the conversion of reactants into products. Thus, for the vaporization of water we write

H2O(l)→H2O(g)

For the dissolution of sodium chloride in water, we write

NaCl(s)→Na+(aq)+Cl−(aq)

For the Haber synthesis of ammonia, the reaction equation can be written

N2(g)+3H2(g)→2NH3(g)

The essential feature of a reaction equation is that equal amounts of each element and equal net charges appear on both
sides; the equation is said to be balanced. Thus, matter and charge are conserved during the process, and the process
can take place in a closed system. The species to the left of a single arrow are called reactants, the species to the right
are called products, and the arrow indicates the forward direction of the process.

A reaction equation is sometimes written with right and left arrows

N2(g)+3H2(g)⇌2NH3(g)

to indicate that the process is at reaction equilibrium. It can also be written as a stoichiometric equation with an equal
sign:

N2(g)+3H2(g)=2NH3(g)

A reaction equation shows stoichiometric relations among the reactants and products. It is important to keep in mind
that it specifies neither the initial and final states of a chemical process, nor the change in the amount of a reactant
or product during the process. For example, the reaction equation N2+ 3 H2→2 NH3 does not imply that the system
initially contains only N2 and H2, or that only NH3 is present in the final state; and it does not mean that the process
consists of the conversion of exactly one mole of N2 and three moles of H2 to two moles of NH3 (although this is a
possibility). Instead, the reaction equation tells us that a change in the amount of N2 is accompanied by three times
this change in the amount of H2 and by twice this change, with the opposite sign, in the amount of NH3.

11.2.1 An example: ammonia synthesis
It is convenient to indicate the progress of a chemical process with a variable called the advancement. The reaction
equation N2+ 3 H2→2 NH3 for the synthesis of ammonia synthesis will serve to illustrate this concept. Let the system
be a gaseous mixture of N2, H2, and NH3.
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If the system is open and the intensive properties remain uniform throughout the gas mixture, there are five inde-
pendent variables. We can choose them to be T , p, and the amounts of the three substances. We can write the total
differential of the enthalpy, for instance, as

dH = �∂H
∂T �p,{ni}

dT +�∂H
∂ p �T ,{ni}

dp

+HN2 dnN2+HH2 dnH2+HNH3 dnNH3 (11.2.1)

The notation {ni} stands for the set of amounts of all substances in the mixture, and the quantities HN2, HH2, and HNH3

are partial molar enthalpies. For example, HN2 is defined by

HN2=�
∂H
∂nN2

�
T ,p,nH2,nNH3

(11.2.2)

If the system is closed, the amounts of the three substances can still change because of the reaction N2+ 3 H2→ 2 NH3,
and the number of independent variables is reduced from five to three. We can choose them to be T , p, and a variable
called advancement.

The advancement (or extent of reaction), 𝜉, is the amount by which the reaction defined by the reaction equation
has advanced in the forward direction from specified initial conditions. The quantity 𝜉 has dimensions of amount of
substance, the usual unit being the mole.

Let the initial amounts be nN2,0, nH2,0, and nNH3,0. Then at any stage of the reaction process in the closed system,
the amounts are given by

nN2=nN2,0 −𝜉 nH2=nH2,0−3𝜉 nNH3=nNH3,0+2𝜉 (11.2.3)

These relations come from the stoichiometry of the reaction as expressed by the stoichiometric coefficients in the
reaction equation. The second relation, for example, expresses the fact that when one mole of reaction has occurred
(𝜉=1mol), the amount of H2 in the closed system has decreased by three moles.

Taking the differentials of Eqs. 11.2.3, we find that infinitesimal changes in the amounts are related to the change
of 𝜉 as follows:

dnN2=−d𝜉 dnH2=−3d𝜉 dnNH3=2d𝜉 (11.2.4)

These relations show that in a closed system, the changes in the various amounts are not independent. Substitution in
Eq. 11.2.1 of the expressions for dnN2, dnH2, and dnNH3 gives

dH = �∂H
∂T �p,𝜉

dT +�∂H
∂ p�T ,𝜉

dp

+(−HN2 −3HH2+2HNH3)d𝜉
(11.2.5)

(closed system)

(The subscript {ni} on the partial derivatives has been replaced by 𝜉 to indicate the same thing: that the derivative is
taken with the amount of each species held constant.)

Equation 11.2.5 gives an expression for the total differential of the enthalpy with T , p, and 𝜉 as the independent
variables. The coefficient of d𝜉 in this equation is called the molar reaction enthalpy, or molar enthalpy of reaction,
Δr H:

Δr H=−HN2 −3HH2+2HNH3 (11.2.6)

We identify this coefficient as the partial derivative

Δr H=�
∂H
∂𝜉 �T ,p

(11.2.7)
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That is, the molar reaction enthalpy is the rate at which the enthalpy changes with the advancement as the reaction
proceeds in the forward direction at constant T and p.

The partial molar enthalpy of a species is the enthalpy change per amount of the species added to an
open system. To see why the particular combination of partial molar enthalpies on the right side of Eq.
11.2.6 is the rate at which enthalpy changes with advancement in the closed system, we can imagine
the following process at constant T and p: An infinitesimal amount dn of N2 is removed from an open
system, three times this amount of H2 is removed from the same system, and twice this amount of NH3
is added to the system. The total enthalpy change in the open system is dH=(−HN2−3HH2+2HNH3)dn.
The net change in the state of the system is equivalent to an advancement d𝜉=dn in a closed system,
so dH/d𝜉 in the closed system is equal to (−HN2 −3HH2+2HNH3) in agreement with Eqs. 11.2.6 and
11.2.7.

Note that because the advancement is defined by how we write the reaction equation, the value of Δr H also
depends on the reaction equation. For instance, if we change the reaction equation for ammonia synthesis from
N2+ 3 H2→2 NH3 to

1
2 N2+

3
2 H2→NH3

then the value of Δr H is halved.

11.2.2 Molar reaction quantities in general

Now let us generalize the relations of the preceding section for any chemical process in a closed system. Suppose the
stoichiometric equation has the form

aA+bB=d D+eE (11.2.8)

where A and B are reactant species, D and E are product species, and a, b, d, and e are the corresponding stoichio-
metric coefficients. We can rearrange this equation to

0=−aA−bB+d D+eE (11.2.9)

In general, the stoichiometric relation for any chemical process is

0=�
i
𝜈iAi (11.2.10)

where 𝜈i is the stoichiometric number of species Ai, a dimensionless quantity taken as negative for a reactant and
positive for a product. In the ammonia synthesis example of the previous section, the stoichiometric relation is 0=
−N2−3H2+2NH3 and the stoichiometric numbers are 𝜈N2=−1, 𝜈H2=−3, and 𝜈NH3=+2. In other words, each stoichio-
metric number is the same as the stoichiometric coefficient in the reaction equation, except that the sign is negative for
a reactant.

The amount of reactant or product species i present in the closed system at any instant depends on the advancement
at that instant, and is given by

ni=ni,0+𝜈i𝜉
(11.2.11)

(closed system)

The infinitesimal change in the amount due to an infinitesimal change in the advancement is

dni=𝜈id𝜉
(11.2.12)

(closed system)
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In an open system, the total differential of extensive property X is

dX=�∂X
∂T�p,{ni}

dT +�∂X
∂ p�T ,{ni}

dp+�
i

Xidni (11.2.13)

where Xi is a partial molar quantity. We restrict the system to a closed one with T , p, and 𝜉 as the independent
variables. Then, with the substitution dni=𝜈id𝜉 from Eq. 11.2.12, the total differential of X becomes

dX=�∂X
∂T�p, 𝜉

dT +�∂X
∂ p�T , 𝜉

dp+Δr X d𝜉 (11.2.14)
(closed system)

where the coefficient Δr X is the molar reaction quantity defined by

Δr X =
def
�

i
𝜈iXi (11.2.15)

Equation 11.2.14 allows us to identify the molar reaction quantity as a partial derivative:

Δr X=�
∂X
∂𝜉�T ,p

(11.2.16)
(closed system)

It is important to observe the distinction between the notations ΔX, the finite change of X during a process, and Δr X,
a differential quantity that is a property of the system in a given state. The fact that both notations use the symbol Δ
can be confusing. Equation 11.2.16 shows that we can think of Δr as an operator.

In dealing with the change of an extensive property X as 𝜉 changes, we must distinguish between molar integral
and molar differential reaction quantities.

• ΔX/Δ𝜉 is a molar integral reaction quantity, the ratio of two finite differences between the final and initial
states of a process. These states are assumed to have the same temperature and the same pressure. This book
will use a notation such as ΔHm(rxn) for a molar integral reaction enthalpy:

ΔHm(rxn)= ΔH(rxn)
Δ𝜉 = H(𝜉2)−H(𝜉1)

𝜉2−𝜉1
(11.2.17)

(T2=T1, p2= p1)

• Δr X is a molar differential reaction quantity. Equation 11.2.16 shows that Δr X is the rate at which the exten-
sive property X changes with the advancement in a closed system at constant T and p. The value of Δr X is in
general a function of the independent variables T , p, and 𝜉.

The notation for a molar differential reaction quantity such as Δr H includes a subscript following the Δ symbol to
indicate the kind of chemical process. The subscript “r” denotes a reaction or process in general. The meanings of
“vap,” “sub,” “fus,” and “trs” were described in Sec. 8.3.1. Subscripts for specific kinds of reactions and processes
are listed in Sec. D.1 of Appendix D and are illustrated in sections to follow.

For certain kinds of processes, it may happen that a partial molar quantity Xi remains constant for each species
i as the process advances at constant T and p. If Xi remains constant for each i, then according to Eq. 11.2.15 the
value of Δr X must also remain constant as the process advances. Since Δr X is the rate at which X changes with 𝜉, in
such a situation X is a linear function of 𝜉. This means that the molar integral reaction quantity ΔXm(rxn) defined by
ΔX/Δ𝜉 is equal, for any finite change of 𝜉, to Δr X.

An example is the partial molar enthalpy Hi of a constituent of an ideal gas mixture, an ideal condensed-phase
mixture, or an ideal-dilute solution. In these ideal mixtures, Hi is independent of composition at constant T and p
(Secs. 9.3.3, 9.4.3, and 9.4.7). When a reaction takes place at constant T and p in one of these mixtures, the molar
differential reaction enthalpy Δr H is constant during the process, H is a linear function of 𝜉, and Δr H and ΔHm(rxn)
are equal. Figure 11.2.1(a) on page 253 illustrates this linear dependence for a reaction in an ideal gas mixture.
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Figure 11.2.1. Enthalpy and entropy as functions of advancement at constant T and p. The curves are for a reaction A→2B with positive
Δr H taking place in an ideal gas mixture with initial amounts nA,0=1mol and nB,0=0.

In contrast, Fig. 11.2.1(b) shows the nonlinearity of the entropy as a function of 𝜉 during the same reaction. The
nonlinearity is a consequence of the dependence of the partial molar entropy Si on the mixture composition (Eq.
11.1.24). In the figure, the slope of the curve at each value of 𝜉 equals Δr S at that point; its value changes as the
reaction advances and the composition of the reaction mixture changes. Consequently, the molar integral reaction
entropy ΔSm(rxn)=ΔS(rxn)/Δ𝜉 approaches the value of Δr S only in the limit as Δ𝜉 approaches zero.

11.2.3 Standard molar reaction quantities
If a chemical process takes place at constant temperature while each reactant and product remains in its standard state
of unit activity, the molar reaction quantity Δr X is called the standard molar reaction quantity and is denoted by
Δr X∘. For instance, Δvap H∘ is a standard molar enthalpy of vaporization (already discussed in Sec. 8.3.3), and Δr G∘

is the standard molar Gibbs energy of a reaction.
From Eq. 11.2.15, the relation between a standard molar reaction quantity and the standard molar quantities of the

reactants and products at the same temperature is

Δr X∘ =
def
�

i
𝜈iXi

∘ (11.2.18)

Two comments are in order.

1. Whereas a molar reaction quantity is usually a function of T , p, and 𝜉, a standard molar reaction quantity is
a function only of T . This is evident because standard-state conditions imply that each reactant and product is
in a separate phase of constant defined composition and constant pressure p∘.

2. Since the value of a standard molar reaction quantity is independent of 𝜉, the standard molar integral and
differential quantities are identical (page 252):

ΔXm
∘ (rxn)=Δr X∘ (11.2.19)

These general concepts will now be applied to some specific chemical processes.

11.3 Molar Reaction Enthalpy

Recall thatΔHm(rxn) is a molar integral reaction enthalpy equal toΔH(rxn)/Δ𝜉, and thatΔrH is a molar differential
reaction enthalpy defined by∑i𝜈i Hi and equal to (∂H/∂𝜉)T ,p.
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11.3.1 Molar reaction enthalpy and heat
During a process in a closed system at constant pressure with expansion work only, the enthalpy change equals the
energy transferred across the boundary in the form of heat: dH=đq (Eq. 5.3.7). Thus for the molar reaction enthalpy
Δr H =(∂H/∂𝜉)T ,p, which refers to a process not just at constant pressure but also at constant temperature, we can
write

Δr H=
đq
d𝜉

(11.3.1)
(constant T and p, đw′=0)

Note that when there is nonexpansion work (w′), such as electrical work, the enthalpy change is not equal to the
heat.For example, if we compare a reaction taking place in a galvanic cell with the same reaction in a reaction vessel,
the heats at constant T and p for a given change of 𝜉 are different, and may even have opposite signs. The value of
ΔrH is the same in both systems, but the ratio of heat to advancement, đq/d𝜉, is different.

An exothermic reaction is one for which ΔrH is negative, and an endothermic reaction is one for which ΔrH is
positive. Thus in a reaction at constant temperature and pressure with expansion work only, heat is transferred out
of the system during an exothermic process and into the system during an endothermic process. If the process takes
place at constant pressure in a system with thermally-insulated walls, the temperature increases during an exothermic
process and decreases during an endothermic process.

These comments apply not just to chemical reactions, but to the other chemical processes at constant temperature
and pressure discussed in this chapter.

11.3.2 Standard molar enthalpies of reaction and formation
A standard molar reaction enthalpy, Δr H∘, is the same as the molar integral reaction enthalpy ΔHm(rxn) for the
reaction taking place under standard state conditions (each reactant and product at unit activity) at constant tempera-
ture (page huniniti).

At constant temperature, partial molar enthalpies depend only mildly on pressure. It is therefore usually safe to
assume that unless the experimental pressure is much greater than p∘, the reaction is exothermic if Δr H∘ is negative
and endothermic if Δr H∘ is positive.

The formation reaction of a substance is the reaction in which the substance, at a given temperature and in a given
physical state, is formed from the constituent elements in their reference states at the same temperature. The reference
state of an element is usually chosen to be the standard state of the element in the allotropic form and physical state
that is stable at the given temperature and the standard pressure. For instance, at 298.15K and 1bar the stable allotrope
of carbon is crystalline graphite rather than diamond.

Phosphorus is an exception to the rule regarding reference states of elements. Although red phosphorus is the
stable allotrope at 298.15K, it is not well characterized. Instead, the reference state is white phosphorus (crystalline
P4) at 1bar.

At 298.15K, the reference states of the elements are the following:

• For H2, N2, O2, F2, Cl2, and the noble gases, the reference state is the ideal gas at 1bar.

• For Br2 and Hg, the reference state is the liquid at 1bar.

• For P, as mentioned above, the reference state is crystalline white phosphorus at 1bar.

• For all other elements, the reference state is the stable crystalline allotrope at 1bar.

The standard molar enthalpy of formation (or standard molar heat of formation), Δf H∘, of a substance is the
enthalpy change per amount of substance produced in the formation reaction of the substance in its standard state.
Thus, the standard molar enthalpy of formation of gaseous methyl bromide at 298.15K is the molar reaction enthalpy
of the reaction

C(s,graphite, p∘)+ 32H2(ideal gas, p∘)+ 12 Br2(1,pJ)→CH3Br(ideal gas, p∘)
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The value ofΔf H∘ for a given substance depends only on T . By definition,Δf H∘ for the reference state of an element
is zero.

A principle called Hess's law can be used to calculate the standard molar enthalpy of formation of a substance at a
given temperature from standard molar reaction enthalpies at the same temperature, and to calculate a standard molar
reaction enthalpy from tabulated values of standard molar enthalpies of formation. The principle is an application of
the fact that enthalpy is a state function. Therefore, ΔH for a given change of the state of the system is independent
of the path and is equal to the sum of ΔH values for any sequence of changes whose net result is the given change.
(We may apply the same principle to a change of any state function.)

For example, the following combustion reactions can be carried out experimentally in a bomb calorimeter (Sec.
11.5.2), yielding the values shown below of standard molar reaction enthalpies (at T =298.15K, p= p∘=1bar):

C(s,graphite)+O2(g)→CO2(g) Δr H∘=−393.51kJ⋅mol−1

CO(g)+ 12 O2(g)→CO2(g) Δr H∘=−282.98kJ⋅mol−1

(Note that the first reaction, in addition to being the combustion reaction of graphite, is also the formation reaction
of carbon dioxide.) The change resulting from the first reaction followed by the reverse of the second reaction is the
formation reaction of carbon monoxide:

C(s,graphite)+ 12 O2(g)→CO(g)

It would not be practical to measure the molar enthalpy of this last reaction by allowing graphite to react with oxygen
in a calorimeter, because it would be difficult to prevent the formation of some CO2. From Hess's law, the standard
molar enthalpy of formation of CO is the sum of the standard molar enthalpies of the reactions that have the formation
reaction as the net result:

Δr H∘(CO,g, 298.15K) = (−393.51+282.98)kJ⋅mol−1

= −110.53kJ⋅mol−1 (11.3.2)

This value is one of the many standard molar enthalpies of formation to be found in compilations of thermodynamic
properties of individual substances, such as the table in Appendix H. We may use the tabulated values to evaluate the
standard molar reaction enthalpyΔrH∘ of a reaction using a formula based on Hess's law. Imagine the reaction to take
place in two steps: First each reactant in its standard state changes to the constituent elements in their reference states
(the reverse of a formation reaction), and then these elements form the products in their standard states. The resulting
formula is

Δr H∘=�
i
𝜈iΔf H∘(i) (11.3.3)

(Hess's law)

whereΔf H∘(i) is the standard molar enthalpy of formation of substance i. Recall that the stoichiometric number 𝜈i of
each reactant is negative and that of each product is positive, so according to Hess's law the standard molar reaction
enthalpy is the sum of the standard molar enthalpies of formation of the products minus the sum of the standard molar
enthalpies of formation of the reactants. Each term is multiplied by the appropriate stoichiometric coefficient from the
reaction equation.

A standard molar enthalpy of formation can be defined for a solute in solution to use in Eq. 11.3.3. For instance,
the formation reaction of aqueous sucrose is

12C(s,graphite)+11H2(g)+
11
2 O2(g)→C12H22O11(aq)

and Δf H∘ for C12H22O11(aq) is the enthalpy change per amount of sucrose formed when the reactants and product are
in their standard states. Note that this formation reaction does not include the formation of the solvent H2O from H2
and O2. Instead, the solute once formed combines with the amount of pure liquid water needed to form the solution.
If the aqueous solute is formed in its standard state, the amount of water needed is very large so as to have the solute
exhibit infinite-dilution behavior.
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Figure 11.3.1.

There is no ordinary reaction that would produce an individual ion in solution from its element or elements without
producing other species as well. We can, however, prepare a consistent set of standard molar enthalpies of formation
of ions by assigning a value to a single reference ion.11.3.1 We can use these values for ions in Eq. 11.3.3 just like values
of Δf H∘ for substances and nonionic solutes. Aqueous hydrogen ion is the usual reference ion, to which is assigned
the arbitrary value

Δf H∘(H+,aq)=0 at all temperatures (11.3.4)

To see how we can use this reference value, consider the reaction for the formation of aqueous HCl (hydrochloric
acid):

1
2 H2(g)+

1
2 Cl2(g)→H+(aq)+Cl−(aq)

The standard molar reaction enthalpy at 298.15K for this reaction is known, from reaction calorimetry, to have the
value Δr H∘=−167.08kJ⋅mol−1. The standard states of the gaseous H2 and Cl2 are, of course, the pure gases acting
ideally at pressure p∘, and the standard state of each of the aqueous ions is the ion at the standard molality and standard
pressure, acting as if its activity coefficient on a molality basis were 1. From Eq. 11.3.3, we equate the value of Δr H∘

to the sum

−12Δf H∘(H2,g)−
1
2Δf H∘(Cl2,g)+Δf H∘(H+, aq)+Δf H∘(Cl−,aq)

But the first three terms of this sum are zero. Therefore, the value of Δf H∘(Cl−, aq) is −167.08kJ⋅mol−1.
Next we can combine this value of Δf H∘(Cl−, aq) with the measured standard molar enthalpy of formation of

aqueous sodium chloride

Na(s)+ 12 Cl2(g)→Na+(aq)+Cl−(aq)

to evaluate the standard molar enthalpy of formation of aqueous sodium ion. By continuing this procedure with other
reactions, we can build up a consistent set of Δf H∘ values of various ions in aqueous solution.

11.3.3 Molar reaction heat capacity
The molar reaction enthalpy ΔrH is in general a function of T , p, and 𝜉. Using the relationsΔrH=∑i𝜈iHi (from Eq.
11.2.15) and Cp,i=(∂Hi/∂T)p, 𝜉 (Eq. 9.2.52), we can write

�∂Δr H
∂T �p, 𝜉

=((((((((((∂∑i 𝜈iHi
∂T ))))))))))p, 𝜉

=�
i
𝜈i Cp,i=Δr Cp (11.3.5)

where Δr Cp is the molar reaction heat capacity at constant pressure, equal to the rate at which the heat capacity Cp

changes with 𝜉 at constant T and p.
Under standard state conditions, Eq. 11.3.5 becomes

dΔr H∘/dT =Δr Cp
∘ (11.3.6)

11.3.4 Effect of temperature on reaction enthalpy
Consider a reaction occurring with a certain finite change of the advancement in a closed system at temperature T ′
and at constant pressure. The reaction is characterized by a change of the advancement from 𝜉1 to 𝜉2, and the integral
reaction enthalpy at this temperature is denoted ΔH(rxn,T ′). We wish to find an expression for the reaction enthalpy
ΔH(rxn,T ′′) for the same values of 𝜉1 and 𝜉2 at the same pressure but at a different temperature, T ′′.

11.3.1. This procedure is similar to that described on page 188 for partial molar volumes of ions.
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Figure 11.3.2. Dependence of reaction enthalpy on temperature at constant pressure.

The heat capacity of the system at constant pressure is related to the enthalpy by Eq. 5.6.3 on page 117: Cp=
(∂H/∂T)p, 𝜉. We integrate dH=Cp dT from T ′ to T ′′ at constant p and 𝜉, for both the final and initial values of the
advancement:

H (𝜉2,T ′′)=H (𝜉2,T ′)+�T ′

T ′′
Cp(𝜉2)dT (11.3.7)

H (𝜉1,T ′′)=H (𝜉1,T ′)+�T ′

T ′′
Cp(𝜉1)dT (11.3.8)

Subtracting Eq. 11.3.8 from Eq. 11.3.7, we obtain

ΔH(rxn,T ′′)=ΔH(rxn,T ′)+�
T'

T''
ΔCp dT (11.3.9)

whereΔCp is the difference between the heat capacities of the system at the final and initial values of 𝜉, a function of
T : ΔCp=Cp(𝜉2)−Cp(𝜉1). Equation 11.3.9 is the Kirchhoff equation.

When ΔCp is essentially constant in the temperature range from T ′ to T ′′, the Kirchhoff equation becomes

ΔH(rxn,T ′′)=ΔH(rxn,T ′)+ΔCp (T ′′−T') (11.3.10)

Figure 11.3.2 on page 257
illustrates the principle of the Kirchhoff equation as expressed by Eq. 11.3.10. ΔCp equals the difference in the

slopes of the two dashed lines in the figure, and the product of ΔCp and the temperature difference T ′′−T ′ equals the
change in the value of ΔH(rxn). The figure illustrates an exothermic reaction with negativeΔCp, resulting in a more
negative value of ΔH(rxn) at the higher temperature.

We can also find the effect of temperature on the molar differential reaction enthalpy Δr H. From Eq. 11.3.5, we
have (∂Δr H/∂T)p, 𝜉=Δr Cp. Integration from temperature T ′ to temperature T ′′ yields the relation

Δr H (T ′′,𝜉)=Δr H (T ′, 𝜉)+�T ′

T ′′
Δr Cp (T ,𝜉)dT (11.3.11)

This relation is analogous to Eq. 11.3.9, using molar differential reaction quantities in place of integral reaction quan-
tities.

11.4 Enthalpies of Solution and Dilution

The processes of solution (dissolution) and dilution are related. The IUPAC Green Book11.4.1 recommends the abbre-
viations sol and dil for these processes.

11.4.1. Ref. [30], Sec. 2.11.1.
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Figure 11.4.1. Two related processes in closed systems. A: solvent; B: solute. The dashed rectangles represent the system boundaries.

a) Solution process.

b) Dilution process.

During a solution process, a solute is transferred from a pure solute phase (solid, liquid, or gas) to a solvent or
solution phase. During a dilution process, solvent is transferred from a pure solvent phase to a solution phase. We
may specify the advancement of these two kinds of processes by 𝜉sol and 𝜉dil, respectively. Note that both processes
take place in closed systems that (at least initially) have two phases. The total amounts of solvent and solute in the
systems do not change, but the amounts in pure phases diminish as the processes advance and 𝜉sol or 𝜉dil increases (Fig.
11.4.1 on page 258).

The equations in this section are about enthalpies of solution and dilution, but you can replace H by any other
extensive state function to obtain relations for its solution and dilution properties.

11.4.1 Molar enthalpy of solution
First let us consider a solution process in which solute is transferred from a pure solute phase to a solution. The molar
differential enthalpy of solution, Δsol H, is the rate of change of H with the advancement 𝜉sol at constant T and p,
where 𝜉sol is the amount of solute transferred:

Δsol H=�
∂H
∂𝜉sol

�
T ,p,nA

(11.4.1)

The value of Δsol H at a given T and p depends only on the solution molality and not on the amount of solution.
When we write the solution reaction as B∗→B(sln), the general relation Δr X=∑i𝜈iXi (Eq. 11.2.15) becomes

ΔsolH=HB −HB
∗ (11.4.2)

where HB is the partial molar enthalpy of the solute in the solution and HB
∗ is the molar enthalpy of the pure solute at

the same T and p.
The molar enthalpy of solution at infinite dilution, ΔsolH∞, is the rate of change of H with 𝜉sol when the solute

is transferred to a solution with the thermal properties of an infinitely dilute solution. We can think of ΔsolH∞ as the
enthalpy change per amount of solute transferred to a very large volume of pure solvent. According to Eq. 11.4.2, this
quantity is given by

ΔsolH∞=HB
∞−HB

∗ (11.4.3)

Note that because the values of HB
∞ and HB

∗ are independent of the solution composition, the molar differential and
integral enthalpies of solution at infinite dilution are the same.

An integral enthalpy of solution, ΔH(sol), is the enthalpy change for a process in which a finite amount 𝜉sol of
solute is transferred from a pure solute phase to a specified amount of pure solvent to form a homogeneous solution
phase with the same temperature and pressure as the initial state. Division by the amount transferred gives the molar
integral enthalpy of solution which this book will denote by ΔHm(sol,mB), where mB is the molality of the solution
formed:

ΔHm(sol,mB)=
ΔH(sol)
𝜉sol

(11.4.4)
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Figure 11.4.2. Enthalpy change for the dissolution of NaCH3CO2(s) in one kilogram of water in a closed system at 298.15K and 1bar, as
a function of the amount 𝜉sol of dissolved solute.11.4.2 The open circle at 𝜉sol=15mol indicates the approximate saturation limit; data to
the right of this point come from supersaturated solutions. At the composition mB=15mol⋅kg−1, the value of ΔHm(sol,mB) is the slope
of line a and the value of Δsol H is the slope of line b. The value of Δsol H∞ is the slope of line c.

11.4.2. Data from Ref. [135], page 2-315.

An integral enthalpy of solution can be evaluated by carrying out the solution process in a constant-pressure reaction
calorimeter, as will be described in Sec. 11.5.1. Experimental values of ΔH(sol) as a function of 𝜉sol can be collected
by measuring enthalpy changes during a series of successive additions of the solute to a fixed amount of solvent,
resulting in a solution whose molality increases in stages. The enthalpy changes are cumulative, so the value of
ΔH(sol) after each addition is the sum of the enthalpy changes for this and the previous additions.

The relations between ΔH(sol) and the molar integral and differential enthalpies of solution are illustrated in
Fig. 11.4.2 on page 259 with data for the solution of crystalline sodium acetate in water. The curve shows ΔH(sol)
as a function of 𝜉sol, with 𝜉sol defined as the amount of solute dissolved in one kilogram of water. Thus at any point
along the curve, the molality is mB=𝜉sol/(1kg) and the ratio ΔH(sol)/𝜉sol is the molar integral enthalpy of solution
ΔHm(sol,mB) for the solution process that produces solution of this molality. The slope of the curve is the molar
differential enthalpy of solution:

ΔsolH=
dΔH(sol)

d𝜉sol

(11.4.5)
(constant T , p, and nA)

The slope of the curve at 𝜉sol=0 is Δsol H∞, the molar enthalpy of solution at infinite dilution. If the measurements
are made at the standard pressure, ΔsolH∞ is the same as the standard molar enthalpy of solution, ΔsolH∘, because the
standard molar enthalpy of a solute is the molar enthalpy at p= p∘ and infinite dilution.

11.4.2 Enthalpy of dilution

Next let us consider a dilution process in which solvent is transferred from a pure solvent phase to a solution phase.
The molar differential enthalpy of dilution is the rate of change of H with the advancement 𝜉dil at constant T and p
of the dilution process, where 𝜉dil is the amount of solvent transferred:

Δdil H=�
∂H
∂𝜉dil
�

T ,p,nB

(11.4.6)

For the dilution reaction A∗→A(sln), the general relation Δr X=∑i𝜈i Xi becomes

ΔdilH=HA −HA
∗ (11.4.7)
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where HA is the partial molar enthalpy of the solvent in the solution. In the limit of infinite dilution, HA must approach
the molar enthalpy of pure solvent, HA

∗; then Eq. 11.4.7 shows that Δdil H approaches zero in this limit.
An integral enthalpy of dilution,ΔH(dil), refers to the enthalpy change for transfer of a finite amount of solvent

from a pure solvent phase to a solution, T and p being the same before and after the process. The molar integral
enthalpy of dilution is the ratio of ΔH(dil) and the amount of solute in the solution. For a dilution process at
constant solute amount nB in which the molality changes from mB′ to mB′′, this book will use the notation ΔHm(dil,
mB′ →mB′′)(dil,mB′ →mB′′):

ΔHm(dil, mB′ →mB′′)=
ΔH(dil)

nB
(11.4.8)

The value of ΔHm(dil, mB′ →mB′′) at a given T and p depends only on the initial and final molalities mB′ and mB′′.
There is a simple relation between molar integral enthalpies of solution and dilution, as the following derivation

demonstrates. Consider the following two ways of preparing a solution of molality mB′′ from pure solvent and solute
phases. Both paths are at constant T and p in a closed system.

• Path 1: The solution forms directly by dissolution of the solute in the solvent. The enthalpy change is
nBΔHm(sol, mB′′), where the molality of the solution is indicated in parentheses.

• Path 2: Starting with the unmixed solvent and solute, the solute dissolves in a portion of the solvent to form
a solution of composition mB′ (more concentrated than mB′′). The enthalpy change is nBΔHm(sol, mB′ ). In a
second step of this path, the remaining pure solvent mixes with the solution to dilute it from mB′ to mB′′. The
enthalpy change of the second step is nBΔHm(dil, mB′ →mB′′).

Since both paths have the same initial states and the same final states, both have the same overall enthalpy change:

nBΔHm(sol, mB′′)=nBΔHm(sol, mB′ )+nBΔHm(dil, mB′ →mB′′) (11.4.9)

or

ΔHm(sol, mB′′)=ΔHm(sol, mB′ )+ΔHm(dil, mB′ →mB′′) (11.4.10)

Equation 11.4.10 is the desired relation. It shows how a measurement of the molar integral enthalpy change for a
solution process that produces solution of a certain molality can be combined with dilution measurements in order
to calculate molar integral enthalpies of solution for more dilute solutions. Experimentally, it is sometimes more
convenient to carry out the dilution process than the solution process, especially when the pure solute is a gas or solid.

11.4.3 Molar enthalpies of solute formation
Molar integral enthalpies of solution and dilution are conveniently expressed in terms of molar enthalpies of forma-
tion. The molar enthalpy of formation of a solute in solution is the enthalpy change per amount of solute for a process
at constant T and p in which the solute, in a solution of a given molality, is formed from its constituent elements
in their reference states. The molar enthalpy of formation of solute B in solution of molality mB will be denoted by
Δf H(B, mB).

As explained in Sec. 11.3.2, the formation reaction of a solute in solution does not include the formation of the
solvent from its elements. For example, the formation reaction for NaOH in an aqueous solution that has 50 moles of
water for each mole of NaOH is

Na(s)+ 12 O2(g)+
1
2 H2(g)+50H2O(l)→NaOHin50H2O

Consider a solution process at constant T and p in which an amount nB of pure solute (solid, liquid, or gas) is mixed
with an amount nA of pure solvent, resulting in solution of molality mB. We may equate the enthalpy change of this
process to the sum of the enthalpy changes for the following two hypothetical steps:

1. An amount nB of the pure solute decomposes to the constituent elements in their reference states. This is the
reverse of the formation reaction of the pure solute.
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2. The solution is formed from these elements and an amount nA of the solvent.

The total enthalpy change is then ΔH(sol)=−nBΔf H(B∗)+ nBΔf H(B, mB). Dividing by nB, we obtain the molar
integral enthalpy of solution:

ΔHm(sol,mB)=Δf H(B, mB)−Δf H(B∗) (11.4.11)

By combining Eqs. 11.4.10 and 11.4.11, we obtain the following expression for a molar integral enthalpy of dilution
in terms of molar enthalpies of formation:

ΔHm(dil, mB′ →mB′′)=Δf H(B, mB′′)−Δf H(B, mB′ ) (11.4.12)

From tabulated values of molar enthalpies of formation, we can calculate molar integral enthalpies of solution with Eq.
11.4.11 and molar integral enthalpies of dilution with Eq. 11.4.12. Conversely, calorimetric measurements of these
molar integral enthalpies can be combined with the value of Δf H(B∗) to establish the values of molar enthalpies of
solute formation in solutions of various molalities.

11.4.4 Evaluation of relative partial molar enthalpies
Although it is not possible to determine absolute values of partial molar enthalpies, we can evaluate HA and HB relative
to appropriate solvent and solute reference states.

The relative partial molar enthalpy of the solvent is defined by

LA =
def

HA −HA
∗ (11.4.13)

This is the partial molar enthalpy of the solvent in a solution of given composition relative to pure solvent at the same
temperature and pressure.

LA can be related to molar differential and integral enthalpies of solution as follows. The enthalpy change to
form a solution from amounts nA and nB of pure solvent and solute is given, from the additivity rule, by ΔH(sol)=
(nAHA+nBHB)− (nAHA

∗+nBHB
∗). We rearrange and make substitutions from Eqs. 11.4.2 and 11.4.13:

ΔH(sol) = nA (HA−HA
∗)+nB (HB −HB

∗)
= ALA+nBΔsolH (11.4.14)

ΔH(sol) is also given, from Eq. 11.4.4, by

ΔH(sol)=nBΔHm(sol,mB) (11.4.15)

Equating both expressions for ΔH(sol), solving for LA, and replacing nB/nA by MAmB, we obtain

LA=MAmB[ΔHm(sol,mB)−Δsol H] (11.4.16)

Thus LA depends on the difference between the molar integral and differential enthalpies of solution.
The relative partial molar enthalpy of a solute is defined by

LB =
def

HB −HB
∞ (11.4.17)

The reference state for the solute is the solute at infinite dilution. To relate LB to molar enthalpies of solution, we write
the identity

LB=HB −HB
∞=(HB −HB

∗)− (HB
∞−HB

∗) (11.4.18)

From Eqs. 11.4.2 and 11.4.3, this becomes

LB=ΔsolH −ΔsolH∞ (11.4.19)

We see that LB is equal to the difference between the molar differential enthalpies of solution at the molality of interest
and at infinite dilution.
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For a solution of a given molality, LA and LB can be evaluated from calorimetric measurements of ΔH(sol) by
various methods. Three general methods are as follows.11.4.3

• LA and LB can be evaluated by the variant of the method of intercepts described on page 186. The molar
integral enthalpy of mixing,ΔHm(mix)=ΔH(sol)/(nA+nB), is plotted versus xB. The tangent to the curve at
a given value of xB has intercepts LA at xB0 and HB −HB

∗=ΔsolH at xB1, where the values of LA and ΔsolH are
for the solution of composition xB. The tangent to the curve at xB0 has intercept ΔsolH∞ at xB1. LB is equal to
the difference of these values of Δsol H and ΔsolH∞ (Eq. 11.4.19).

• Values of ΔH(sol) for a constant amount of solvent can be plotted as a function of 𝜉sol, as in Fig. 11.4.2. The
slope of the tangent to the curve at any point on the curve is equal to Δsol H for the molality mB at that point,
and the initial slope at 𝜉sol=0 is equal to Δsol H∞. LB at molality mB is equal to the difference of these two
values, and LA can be calculated from Eq. 11.4.16.

• A third method for the evaluation of LA and LB is especially useful for solutions of an electrolyte solute. This
method takes advantage of the fact that a plot ofΔHm(sol,mB) versus mB� has a finite limiting slope at mB� =0
whose value for an electrolyte can be predicted from the Debye–Hückel limiting law, providing a useful guide
for the extrapolation of ΔHm(sol,mB) to its limiting value Δsol H∞. The remainder of this section describes
this third method.

The third method assumes we measure the integral enthalpy of solution ΔH(sol) for varying amounts 𝜉sol of solute
transferred at constant T and p from a pure solute phase to a fixed amount of solvent. From Eq. 11.4.5, the molar dif-
ferential enthalpy of solution is given byΔsolH=dΔH(sol)/d𝜉sol when nA is held constant. We make the substitution
ΔH(sol)=𝜉solΔHm(sol,mB) and take the derivative of the expression with respect to 𝜉sol:

Δsol H =
d[𝜉solΔHm(sol,mB)]

d𝜉sol

= ΔHm(sol,mB)+𝜉sol
dΔHm(sol,mB)

d𝜉sol
(11.4.20)

At constant nA, mB is proportional to 𝜉sol, so that d𝜉sol/𝜉sol can be replaced by dmB/mB. When we combine the
resulting expression forΔsolH with Eq. 11.4.19, we get the following expression for the relative partial molar enthalpy
of the solute:

LB=ΔHm(sol,mB)+mB
dΔHm(sol,mB)

dmB
−Δsol H∞ (11.4.21)

It is convenient to define the quantity

𝛷L =
def
ΔHm(sol,mB)−Δsol H∞ (11.4.22)

known as the relative apparent molar enthalpy of the solute. Because Δsol H∞ is independent of mB, the derivative
d𝛷L/dmB is equal to dΔHm(sol,mB)/dmB. We can therefore write Eq. 11.4.21 in the compact form

LB=𝛷L+mB
d𝛷L
dmB

(11.4.23)
(constant T and p)

Equation 11.4.23 allows us to evaluate LB at any molality from the dependence of 𝛷L on mB, with 𝛷L obtained from
experimental molar integral enthalpies of solution according to Eq. 11.4.22.

Once 𝛷L and LB have been evaluated for a given molality, it is a simple matter to calculate LA at that molality. By
combining Eqs. 11.4.16 and 11.4.22, we obtain the relation

LA=MAmB(𝛷L −LB) (11.4.24)

11.4.3. The descriptions refer to graphical plots with smoothed curves drawn through experimental points. A plot can be replaced by an
algebraic function (e.g., a power series) fitted to the points, and slopes and intercepts can then be evaluated by numerical methods.
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Figure 11.4.3. Thermal properties of aqueous NaCl at 25.00 ∘C.

a) Left axis: molar integral enthalpy of solution to produce solution of molality mB.11.4.4 The dashed line has a slope equal to the
theoretical limiting value of the slope of the curve. Right axis: relative apparent molar enthalpy of the solute.

b) Relative partial molar enthalpy of the solute as a function of molality.11.4.5

11.4.4. Calculated from molar enthalpy of formation values in Ref. [135], p. 2-301.
11.4.5. Based on data in Ref. [107], Table X.

For an electrolyte solute, a plot of ΔHm(sol,mB) versus mB has a limiting slope of +∞ at mB0, whereas the limiting
slope of ΔHm(sol,mB) versus mB� is finite and can be predicted from the Debye–Hückel limiting law. Accordingly,
a satisfactory procedure is to plotΔHm(sol,mB) versus mB� , perform a linear extrapolation of the experimental points
to mB� =0, and then shift the origin to the extrapolated intercept. The result is a plot of 𝛷L versus mB� . An example
for aqueous NaCl solutions is shown in Fig. 11.4.3(a) on page 263.

We can also evaluate 𝛷L from experimental enthalpies of dilution. From Eqs. 11.4.10 and 11.4.22, we obtain the
relation

𝛷L(mB′′)−𝛷L(mB′ )=ΔHm(dil, mB′ →mB′′) (11.4.25)

We can measure the enthalpy changes for diluting a solution of initial molality mB′ to various molalities mB′′, plot the
values of ΔHm(dil, mB′ →mB′′) versus mB� , extrapolate the curve to mB� =0, and shift the origin to the extrapolated
intercept, resulting in a plot of 𝛷L versus mB� .

In order to be able to use Eq. 11.4.23, we need to relate the derivative d𝛷L/dmB to the slope of the curve of 𝛷L

versus mB� . We write

d mB� = 1
2 mB�

dmB dmB=2 mB� d mB� (11.4.26)

Substituting this expression for dmB into Eq. 11.4.23, we obtain the following operational equation for evaluating LB

from the plot of 𝛷L versus mB� :

LB=𝛷L+
mB√
2

d𝛷L

d mB�
(11.4.27)

(constant T and p)

The value of 𝛷L goes to zero at infinite dilution. When the solute is an electrolyte, the dependence of 𝛷L on mB in
solutions dilute enough for the Debye–Hückel limiting law to apply is given by

𝛷L=C𝛷L mB� (11.4.28)
(very dilute solution)
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For aqueous solutions of a 1:1 electrolyte at 25 ∘C, the coefficient C𝛷L has the value11.4.6

C𝛷L=1.988×103 J⋅kg /1 2⋅mol− /3 2 (11.4.29)

C𝛷L is equal to the limiting slope of 𝛷L versus mB� , of ΔHm(sol,mB) versus mB� , and of ΔHm(dil, mB′ →mB′′) versus
mB′� . The value given by Eq. 11.4.29 can be used for extrapolation of measurements at 25 ∘C and low molality to

infinite dilution.

Equation 11.4.28 can be derived as follows. For simplicity, we assume the pressure is the standard
pressure p∘. At this pressure HB

∞ is the same as HB
∘, and Eq. 11.4.17 becomes LB=HB−HB

∘. From Eqs.
12.1.3 and 12.1.6 in the next chapter, we can write the relations

HB=−T 2�∂(𝜇B/T)
∂T �

p,{ni}
HB
∘=−T 2 d(𝜇m,B

∘ /T)
dT (11.4.30)

Subtracting the second of these relations from the first, we obtain

HB −HB
∘=−T 2�∂(𝜇B −𝜇m,B

∘ )/T
∂T �

p,{ni}
(11.4.31)

The solute activity on a molality basis, am,B, is defined by 𝜇B −𝜇m,B
∘ =R T ln am,B. The activity of

an electrolyte solute at the standard pressure, from Eq. 10.3.10, is given by am,B=(𝜈+𝜈+𝜈−
𝜈−)𝛾±𝜈(mB/

m∘)𝜈. Accordingly, the relative partial molar enthalpy of the solute is related to the mean ionic activity
coefficient by

LB=−RT 2𝜈�∂ ln𝛾±∂T �p,{ni}
(11.4.32)

We assume the solution is sufficiently dilute for the mean ionic activity coefficient to be adequately
described by the Debye–Hückel limiting law, Eq. 10.4.8: ln 𝛾± = −ADH |z+ z−| Im� , where ADH is a
temperature-dependent quantity defined on page 234. Then Eq. 11.4.32 becomes

LB=RT 2𝜈|z+ z−| Im� �∂ ADH
∂T �p,{ni}

(11.4.33)
(very dilute solution)

Substitution of the expression given by Eq. 10.4.9 on page 235 for Im in a solution of a single com-
pletely-dissociated electrolyte converts Eq. 11.4.33 to

LB = [[[[[[[[[[[[[[
RT 2

2�
�∂𝜌A

∗

∂T �p,{ni}
(v |z+ z−| /

3
2)]]]]]]]]]]]]]] mB�

= CLB
(11.4.34)

(very dilute solution)

The coefficient CLB (the quantity in brackets) depends on T , the kind of solvent, and the ion charges and
number of ions per solute formula unit, but not on the solute molality.
Let C𝛷L represent the limiting slope of 𝛷L versus mB� . In a very dilute solution we have 𝛷L=C𝛷L mB� ,
and Eq. 11.4.27 becomes

LB=𝛷L+
mB√
2

d𝛷L

d mB�
=C𝛷L mB� + mB√

2 C𝛷L (11.4.35)

By equating this expression for LB with the one given by Eq. 11.4.34 and solving for C𝛷L, we obtain
C𝛷L=(2/3)CLB and 𝛷L=(2/3)CLB mB� .

11.4.6. The fact that C𝛷L is positive means, according to Eq. 11.4.25, that dilution of a very dilute electrolyte solution is an exothermic process.
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Figure 11.5.1. Enthalpy changes for paths at constant pressure (schematic). R denotes reactants and P denotes products.

11.5 Reaction Calorimetry

Reaction calorimetry is used to evaluate the molar integral reaction enthalpyΔHm(rxn) of a reaction or other chemical
process at constant temperature and pressure. The measurement actually made, however, is a temperature change.

Sections 11.5.1 and 11.5.2 will describe two common types of calorimeters designed for reactions taking place at
either constant pressure or constant volume. The constant-pressure type is usually called a reaction calorimeter, and
the constant-volume type is known as a bomb calorimeter or combustion calorimeter.

In either type of calorimeter, the chemical process takes place in a reaction vessel surrounded by an outer jacket.
The jacket may be of either the adiabatic type or the isothermal-jacket type described in Sec. 7.3.2 in connection with
heat capacity measurements. A temperature-measuring device is immersed either in the vessel or in a phase in thermal
contact with it. The measured temperature change is caused by the chemical process, instead of by electrical work as
in the determination of heat capacity. One important way in which these calorimeters differ from ones used for heat
capacity measurements is that work is kept deliberately small, in order to minimize changes of internal energy and
enthalpy during the experimental process.

11.5.1 The constant-pressure reaction calorimeter

The contents of a constant-pressure calorimeter are usually open to the atmosphere, so this type of calorimeter is
unsuitable for processes involving gases. It is, however, a convenient apparatus in which to study a liquid-phase
chemical reaction, the dissolution of a solid or liquid solute in a liquid solvent, or the dilution of a solution with solvent.

The process is initiated in the calorimeter by allowing the reactants to come into contact. The temperature in the
reaction vessel is measured over a period of time starting before the process initiation and ending after the advance-
ment has reached a final value with no further change.

The heating or cooling curve (temperature as a function of time) is observed over a period of time that includes the
period during which the advancement 𝜉 changes. For an exothermic reaction occurring in an adiabatic calorimeter,
the heating curve may resemble that shown in Fig. 7.3.1 on page 138, and the heating curve in an isothermal-jacket
calorimeter may resemble that shown in Fig. 7.3.2 on page 139. Two points are designated on the heating or cooling
curve: one at temperature T1, before the reaction is initiated, and the other at T2, after 𝜉 has reached its final value.
These points are indicated by open circles in Figs. 7.3.1 and 7.3.2.

Figure 11.5.1 on page 265 depicts three paths at constant pressure. The enthalpy change of the experimental
process, in which reactants at temperature T1 change to products at temperature T2, is denoted ΔH(expt).

The value of ΔH(expt) at constant pressure would be zero if the process were perfectly adiabatic and the only
work were expansion work, but this is rarely the case. There may be unavoidable work from stirring and from elec-
trical temperature measurement. We can evaluate ΔH(expt) by one of the methods described in Sec. 7.3.2. For an
adiabatic calorimeter, the appropriate expression isΔH(expt)=𝜖 r (t2− t1) (Eq. 7.3.19 on page 138 with wel set equal
to zero), where 𝜖 is the energy equivalent of the calorimeter, r is the slope of the heating curve when no reaction is
occurring, and t1 and t2 are the times at temperatures T1 and T2. For an isothermal-jacket calorimeter, we evaluate
ΔH(expt) using Eq. 7.3.28 on page 140 with wel set equal to zero.

11.5 REACTION CALORIMETRY 265

265



The enthalpy change we wish to find is the reaction enthalpy ΔH(rxn, T1), which is the change for the same
advancement of the reaction at constant temperature T1. The paths labeled ΔH(expt) and ΔH(rxn, T1) in the figure
have the same initial state and different final states. The path connecting these two final states is for a change of the
temperature from T1 to T2 with 𝜉 fixed at its final value; the enthalpy change for this path is denoted ΔH(P).11.5.1 The
value of ΔH(P) can be calculated from

ΔH(P)=𝜖P (T2−T1) (11.5.1)

where 𝜖P is the energy equivalent (the average heat capacity of the calorimeter) when the calorimeter contains the
products. To measure 𝜖P, we can carry out a second experiment involving work with an electric heater included in the
calorimeter, similar to the methods described in Sec. 7.3.2.

Since the difference of enthalpy between two states is independent of the path, we can writeΔH(expt)=ΔH(rxn,
T1)+𝜖P (T2−T1), or

ΔH(rxn, T1)=−𝜖P (T2−T1)+ΔH(expt) (11.5.2)

The molar integral reaction enthalpy at temperature T1 is the reaction enthalpy divided byΔ𝜉, the advancement during
the experimental process:

ΔHm(rxn) = ΔH(rxn,T1)/Δ𝜉

= −𝜖P (T2−T1)+ΔH(expt)
Δ𝜉

(11.5.3)
(constant-pressure

calorimeter)
Note that ΔH(expt) is small, so that ΔHm(rxn) is approximately equal to −𝜖P (T2− T1)/Δ𝜉. If T2 is greater than T1
(the process is exothermic), then ΔHm(rxn) is negative, reflecting the fact that after the reaction takes place in the
calorimeter, heat would have to leave the system in order for the temperature to return to its initial value. If T2 is less
than T1 (the process is endothermic), ΔHm(rxn) is positive.

Most reactions cause a change in the composition of one or more phases, in which caseΔHm(rxn) is not the same
as the molar differential reaction enthalpy, Δr H =(∂H /∂𝜉)T ,p, unless the phase or phases can be treated as ideal
mixtures (see Sec. 11.2.2). Corrections, usually small, are needed to obtain the standard molar reaction enthalpyΔrH∘

from ΔHm(rxn).

11.5.2 The bomb calorimeter
A bomb calorimeter typically is used to carry out the complete combustion of a solid or liquid substance in the
presence of excess oxygen. The combustion reaction is initiated with electrical ignition. In addition to the main
combustion reaction, there may be unavoidable side reactions, such as the formation of nitrogen oxides if N2 is not
purged from the gas phase. Sometimes auxiliary reactions are deliberately carried out to complete or moderate the
main reaction.

From the measured heating curve and known properties of the calorimeter, reactants, and products, it is possible
to evaluate the standard molar enthalpy of combustion, Δc H∘, of the substance of interest at a particular temperature
called the reference temperature, Tref. (Tref is often chosen to be 298.15K, which is 25.00 ∘C.) With careful work, using
temperature measurements with a resolution of 1×10−4K or better and detailed corrections, the precision ofΔcH∘ can
be of the order of 0.01 percent.

Bomb calorimetry is the principal means by which standard molar enthalpies of combustion of individual elements
and of compounds of these elements are evaluated. From these values, using Hess's law, we can calculate the standard
molar enthalpies of formation of the compounds as described in Sec. 11.3.2. From the formation values of only a few
compounds, the standard molar reaction enthalpies of innumerable reactions can be calculated with Hess's law (Eq.
11.3.3 on page 255).

Because of their importance, the experimental procedure and the analysis of the data it provides will now be
described in some detail. A comprehensive problem (Prob. 11.10.7) based on this material is included at the end of
the chapter.

11.5.1. The symbol P refers to the final equilibrium state in which the reaction vessel contains products of the reaction and any excess reactants.
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Figure 11.5.2. Section view of a bomb calorimeter.

There are five main steps in the procedure of evaluating a standard molar enthalpy of combustion:

1. The combustion reaction, and any side reactions and auxiliary reactions, are carried out in the calorimeter, and
the course of the resulting temperature change is observed.

2. The experimental data are used to determine the value of ΔU(IBP, T2), the internal energy change of the
isothermal bomb process at the final temperature of the reaction. The isothermal bomb process is the ideal-
ized process that would have occurred if the reaction or reactions had taken place in the calorimeter at constant
temperature.

3. The internal energy change of the isothermal bomb process is corrected to yield ΔU(IBP,Tref), the value at
the reference temperature of interest.

4. The standard molar internal energy of combustion, ΔcU ∘(Tref), is calculated. This calculation is called reduc-
tion to standard states.

5. The standard molar enthalpy of combustion, Δc H∘(Tref), is calculated.

These five steps are described below.

Experimental

The common form of combustion bomb calorimeter shown in Fig. 11.5.2 on page 267 consists of a thick-walled
cylindrical metal vessel to contain the reactants of the combustion reaction. It is called a “bomb” because it is designed
to withstand high pressure. The bomb can be sealed with a gas-tight screw cap. During the reaction, the sealed bomb
vessel is immersed in water in the calorimeter, which is surrounded by a jacket. Conceptually, we take the system to
be everything inside the jacket, including the calorimeter walls, water, bomb vessel, and contents of the bomb vessel.

To prepare the calorimeter for a combustion experiment, a weighed sample of the substance to be combusted is
placed in a metal sample holder. The calculations are simplified if we can assume all of the sample is initially in a
single phase. Thus, a volatile liquid is usually encapsulated in a bulb of thin glass (which shatters during the ignition)
or confined in the sample holder by cellulose tape of known combustion properties. If one of the combustion products
is H2O, a small known mass of liquid water is placed in the bottom of the bomb vessel to saturate the gas space of the
bomb vessel with H2O. The sample holder and ignition wires are lowered into the bomb vessel, the cap is screwed on,
and oxygen gas is admitted through a valve in the cap to a total pressure of about 30bar.
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Figure 11.5.3. Internal energy changes for paths at constant volume in a bomb calorimeter (schematic). R denotes reactants and P denotes
products.

To complete the setup, the sealed bomb vessel is immersed in a known mass of water in the calorimeter. A
precision thermometer and a stirrer are also immersed in the water. With the stirrer turned on, the temperature is
monitored until it is found to change at a slow, practically-constant rate. This drift is due to heat transfer through
the jacket, mechanical stirring work, and the electrical work needed to measure the temperature. A particular time is
chosen as the initial time t1. The measured temperature at this time is T1, assumed to be practically uniform throughout
the system.

At or soon after time t1, the ignition circuit is closed to initiate the combustion reaction in the bomb vessel. If the
reaction is exothermic, the measured temperature rapidly increases over the course of several minutes. For a while the
temperature in the system is far from uniform, as energy is transferred by heat through the walls of the bomb vessel
walls to the water outside.

When the measured temperature is again observed to change at a slow and practically constant rate, the reaction is
assumed to be complete and the temperature is assumed once more to be uniform. A second time is now designated as
the final time t2, with final temperature T2. For best accuracy, conditions are arranged so that T2 is close to the desired
reference temperature Tref.

Because the jacket is not gas tight, the pressure of the water outside the bomb vessel stays constant at the pressure
of the atmosphere. Inside the bomb vessel, the changes in temperature and composition take place at essentially
constant volume, so the pressure inside the vessel is not constant. The volume change of the entire system during the
process is negligible.

The isothermal bomb process

The relations derived here parallel those of Sec. 11.5.1 for a constant-pressure calorimeter. The three paths depicted
in Fig. 11.5.3 on page 268

are similar to those in Fig. 11.5.1 on page 265, except that instead of being at constant pressure they are at constant
volume. We shall assume the combustion reaction is exothermic, with T2 being greater than T1.

The internal energy change of the experimental process that actually occurs in the calorimeter between times t1 and
t2 is denotedΔU(expt) in the figure. Conceptually, the overall change of state during this process would be duplicated
by a path in which the temperature of the system with the reactants present increases from T1 to T2,11.5.2 followed by
the isothermal bomb process at temperature T2. In the figure these paths are labeled with the internal energy changes
ΔU(R) and ΔU(IBP,T2), and we can write

ΔU(expt)=ΔU(R)+ΔU(IBP,T2) (11.5.4)

To evaluateΔU(R), we can use the energy equivalent 𝜖R of the calorimeter with reactants present in the bomb vessel.
𝜖R is the average heat capacity of the system between T1 and T2—that is, the ratio q/(T2−T1), where q is the heat that
would be needed to change the temperature from T1 to T2. From the first law, with expansion work assumed negligible,
the internal energy change equals this heat, giving us the relation

ΔU(R)=𝜖R (T2−T1) (11.5.5)

The initial and final states of the path are assumed to be equilibrium states, and there may be some transfer of reactants
or H2O from one phase to another within the bomb vessel during the heating process.

11.5.2. When one investigates a combustion reaction, the path in which temperature changes without reaction is best taken with reactants rather
than products present because the reactants are more easily characterized.
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The value of 𝜖R is obtained in a separate calibration experiment. The calibration is usually carried out with the
combustion of a reference substance, such as benzoic acid, whose internal energy of combustion under controlled
conditions is precisely known from standardization based on electrical work. If the bomb vessel is immersed in the
same mass of water in both experiments and other conditions are similar, the difference in the values of 𝜖R in the two
experiments is equal to the known difference in the heat capacities of the initial contents (reactants, water, etc.) of the
bomb vessel in the two experiments.

The internal energy change we wish to find isΔU(IBP,T2), that of the isothermal bomb process in which reactants
change to products at temperature T2, accompanied perhaps by some further transfer of substances between phases.
From Eqs. 11.5.4 and 11.5.5, we obtain

ΔU(IBP,T2)=−𝜖(T2−T1)+ΔU(expt) (11.5.6)

The value of ΔU(expt) is small. To evaluate it, we must look in detail at the possible sources of energy transfer
between the system and the surroundings during the experimental process. These sources are

1. electrical work wign done on the system by the ignition circuit;

2. heat transfer, minimized but not eliminated by the jacket;

3. mechanical stirring work done on the system;

4. electrical work done on the system by an electrical thermometer.

The ignition work occurs during only a short time interval at the beginning of the process, and its value is known. The
effects of heat transfer, stirring work, and temperature measurement continue throughout the course of the experiment.
With these considerations, Eq. 11.5.6 becomes

ΔU(IBP,T2)=−𝜖(T2−T1)+wign+ΔU′(expt) (11.5.7)

where ΔU ′(expt) is the internal energy change due to heat, stirring, and temperature measurement. ΔU′(expt) can
be evaluated from the energy equivalent and the observed rates of temperature change at times t1 and t2; the relevant
relations for an isothermal jacket are Eq. 7.3.24 (with wel set equal to zero) and Eq. 7.3.32.

Correction to the reference temperature

The value of ΔU(IBP,T2) evaluated from Eq. 11.5.7 is the internal energy change of the isothermal bomb process at
temperature T2. We need to correct this value to the desired reference temperature Tref. If T2 and Tref are close in value,
the correction is small and can be calculated with a modified version of the Kirchhoff equation (Eq. 11.3.10 on page
257):

ΔU(IBP,Tref)=ΔU(IBP,T2)+[CV(P)−CV(R) ](Tref −T2) (11.5.8)

Here CV(P) and CV(R) are the heat capacities at constant volume of the contents of the bomb vessel with products and
reactants, respectively, present.

Reduction to standard states

We want to obtain the value of Δc U∘(Tref), the molar internal energy change for the main combustion reaction at the
reference temperature under standard-state conditions. Once we have this value, it is an easy matter to find the molar
enthalpy change under standard-state conditions, our ultimate goal.

Consider a hypothetical process with the following three isothermal steps carried out at the reference temperature
Tref:

1. Each substance initially present in the bomb vessel changes from its standard state to the state it actually has
at the start of the isothermal bomb process.
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2. The isothermal bomb process takes place, including the main combustion reaction and any side reactions and
auxiliary reactions.

3. Each substance present in the final state of the isothermal bomb process changes to its standard state.

The net change is a decrease in the amount of each reactant in its standard state and an increase in the amount of each
product in its standard state. The internal energy change of step 2 is ΔU(IBP,Tref), whose value is found from Eq.
11.5.8. The internal energy changes of steps 1 and 3 are called Washburn corrections.11.5.3

Thus, we calculate the standard internal energy change of the main combustion reaction at temperature Tref from

ΔU ∘(cmb,Tref)=ΔU(IBP,Tref)+(Washburn corrections)−�
i
Δ𝜉iΔr U∘(i) (11.5.9)

where the sum over i is for side reactions and auxiliary reactions if present. Finally, we calculate the standard molar
internal energy of combustion from

Δc U∘(Tref)=
ΔU∘(cmb,Tref)

Δ𝜉c
(11.5.10)

where Δ𝜉c is the advancement of the main combustion reaction in the bomb vessel.

Standard molar enthalpy change

The quantity Δc U∘(Tref) is the molar internal energy change for the main combustion reaction carried out at constant
temperature Tref with each reactant and product in its standard state at pressure p∘. From the relations Δc H=∑i𝜈iHi

(Eq. 11.2.15) and Hi=Ui+ pVi (from Eq. 9.2.50), we get

Δc H∘(Tref)=Δc U∘(Tref)+ p∘�
i
𝜈iVi

∘ (11.5.11)

Molar volumes of condensed phases are much smaller than those of gases, and to a good approximation we may write

Δc H∘(Tref)=Δc U∘(Tref)+ p∘�
i
𝜈i

gVi
∘ (g) (11.5.12)

where the sum includes only gaseous reactants and products of the main combustion reaction. Since a gas in its
standard state is an ideal gas with molar volume equal to RT /p∘, the final relation is

Δc H∘(Tref)=Δc U∘(Tref)+�
i
𝜈i

g RTref (11.5.13)

Washburn corrections

The Washburn corrections needed in Eq. 11.5.9 are internal energy changes for certain hypothetical physical processes
occurring at the reference temperature Tref involving the substances present in the bomb vessel. In these processes,
substances change from their standard states to the initial state of the isothermal bomb process, or change from the
final state of the isothermal bomb process to their standard states.

For example, consider the complete combustion of a solid or liquid compound of carbon, hydrogen, and oxygen in
which the combustion products are CO2 and H2O and there are no side reactions or auxiliary reactions. In the initial
state of the isothermal bomb process, the bomb vessel contains the pure reactant, liquid water with O2 dissolved in it,
and a gaseous mixture of O2 and H2O, all at a high pressure p1. In the final state, the bomb vessel contains liquid water
with O2 and CO2 dissolved in it and a gaseous mixture of O2, H2O, and CO2, all at pressure p2. In addition, the bomb
vessel contains internal parts of constant mass such as the sample holder and ignition wires.

In making Washburn corrections, we must use a single standard state for each substance in order for Eq. 11.5.9 to
correctly give the standard internal energy of combustion. In the present example we choose the following standard
states: pure solid or liquid for the reactant compound, pure liquid for the H2O, and pure ideal gases for the O2 and CO2,
each at pressure p∘=1bar.

11.5.3. Ref. [141].
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We can calculate the amount of each substance in each phase, in both the initial state and final state of the isothermal
bomb process, from the following information: the internal volume of the bomb vessel; the mass of solid or liquid
reactant initially placed in the vessel; the initial amount of H2O; the initial O2 pressure; the water vapor pressure;
the solubilities (estimated from Henry's law constants) of O2 and CO2 in the water; and the stoichiometry of the
combustion reaction. Problem 11.10.7 on page 286 guides you through these calculations.

11.5.3 Other calorimeters
Experimenters have used great ingenuity in designing calorimeters to measure reaction enthalpies and to improve
their precision. In addition to the constant-pressure reaction calorimeter and bomb calorimeter described above, three
additional types will be briefly mentioned.

A phase-change calorimeter has two coexisting phases of a pure substance in thermal contact with the reaction
vessel and an adiabatic outer jacket. The two coexisting phases constitute a univariant subsystem that at constant
pressure is at the fixed temperature of the equilibrium phase transition. The thermal energy released or absorbed by
the reaction, instead of changing the temperature, is transferred isothermally to or from the coexisting phases and can
be measured by the volume change of the phase transition. A reaction enthalpy, of course, can only be measured by
this method at the temperature of the equilibrium phase transition. The well-known Bunsen ice calorimeter uses the
ice–water transition at 0 ∘C. The solid–liquid transition of diphenyl ether has a relatively large volume change and is
useful for measurements at 26.9 ∘C. Phase-transition calorimeters are especially useful for slow reactions.

A heat-flow calorimeter is a variation of an isothermal-jacket calorimeter. It uses a thermopile (Sec. 2.3.6.4 on
page 36) to continuously measure the temperature difference between the reaction vessel and an outer jacket acting as
a constant-temperature heat sink. The heat transfer takes place mostly through the thermocouple wires, and to a high
degree of accuracy is proportional to the temperature difference integrated over time. This is the best method for an
extremely slow reaction, and it can also be used for rapid reactions.

A flame calorimeter is a flow system in which oxygen, fluorine, or another gaseous oxidant reacts with a gaseous
fuel. The heat transfer between the flow tube and a heat sink can be measured with a thermopile, as in a heat-flow
calorimeter.

11.6 Adiabatic Flame Temperature

With a few simple approximations, we can estimate the temperature of a flame formed in a flowing gas mixture of
oxygen or air and a fuel. We treat a moving segment of the gas mixture as a closed system in which the temperature
increases as combustion takes place. We assume that the reaction occurs at a constant pressure equal to the standard
pressure, and that the process is adiabatic and the gas is an ideal-gas mixture.

The principle of the calculation is similar to that used for a constant-pressure calorimeter as explained by the paths
shown in Fig. 11.5.1 on page 265. When the combustion reaction in the segment of gas reaches reaction equilibrium,
the advancement has changed byΔ𝜉 and the temperature has increased from T1 to T2. Because the reaction is assumed
to be adiabatic at constant pressure, ΔH(expt) is zero. Therefore, the sum of ΔH (rxn,T1) and ΔH(P) is zero, and
we can write

Δ𝜉Δc H∘(T1)+�T1

T2
Cp(P)dT =0 (11.6.1)

whereΔcH∘(T1) is the standard molar enthalpy of combustion at the initial temperature, and Cp(P) is the heat capacity
at constant pressure of the product mixture.

The value of T2 that satisfies Eq. 11.6.1 is the estimated flame temperature. Problem 11.10.9 presents an appli-
cation of this calculation. Several factors cause the actual temperature in a flame to be lower: the process is never
completely adiabatic, and in the high temperature of the flame there may be product dissociation and other reactions
in addition to the main combustion reaction.
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11.7 Gibbs Energy and Reaction Equilibrium

This section begins by examining the way in which the Gibbs energy changes as a chemical process advances in a
closed system at constant T and p with expansion work only. A universal criterion for reaction equilibrium is derived
involving the molar reaction Gibbs energy.

11.7.1 The molar reaction Gibbs energy
Applying the general definition of a molar differential reaction quantity (Eq. 11.2.15) to the Gibbs energy of a closed
system with T , p, and 𝜉 as the independent variables, we obtain the definition of the molar reaction Gibbs energy or
molar Gibbs energy of reaction, Δr G:

Δr G =
def
�

i
𝜈i𝜇i (11.7.1)

Equation 11.2.16 shows that this quantity is also given by the partial derivative

Δr G=�
∂G
∂𝜉 �T ,p

(11.7.2)
(closed system)

The total differential of G is then

dG=−SdT +Vdp+Δr Gd𝜉 (11.7.3)
(closed system)

11.7.2 Spontaneity and reaction equilibrium
In Sec. 5.8, we found that the spontaneous direction of a process taking place in a closed system at constant T and p,
with expansion work only, is the direction of decreasing G. In the case of a chemical process occurring at constant
T and p, Δr G is the rate at which G changes with 𝜉. Thus if Δr G is positive, 𝜉 spontaneously decreases; if Δr G is
negative, 𝜉 spontaneously increases. During a spontaneous process d𝜉 and Δr G have opposite signs.11.7.1

Note how the equality of Eq. 11.7.3 agrees with the inequality dG< −S dT +V dp, a criterion of
spontaneity in a closed system with expansion work only (Eq. 5.8.6 on page 119). When d𝜉 and Δr G
have opposite signs, Δr Gd𝜉 is negative and dG=(−S dT +V dp+ΔrGd𝜉) is less than (−S dT +V dp).

If the system is closed and contains at least one phase that is a mixture, a state of reaction equilibrium can be
approached spontaneously at constant T and p in either direction of the reaction; that is, by both positive and negative
changes of 𝜉. In this equilibrium state, therefore, G has its minimum value for the given T and p. Since G is a
smooth function of 𝜉, its rate of change with respect to 𝜉 is zero in the equilibrium state. The condition for reaction
equilibrium, then, is that Δr G must be zero:

Δr G=�
i
𝜈i𝜇i=0

(11.7.4)
(reaction equilibrium)

It is important to realize that this condition is independent of whether or not reaction equilibrium is approached at
constant temperature and pressure. It is a universal criterion of reaction equilibrium. The value of Δr G is equal to
∑i𝜈i𝜇i and depends on the state of the system. If the state is such that Δr G is positive, the direction of spontaneous
change is one that, under the existing constraints, allowsΔrG to decrease. IfΔrG is negative, the spontaneous change
increases the value of Δr G. When the system reaches reaction equilibrium, whatever the path of the spontaneous
process, the value of Δr G becomes zero.

11.7.1. Sometimes reaction spontaneity at constant T and p is ascribed to the “driving force” of a quantity called the affinity of reaction, defined
as the negative of Δr G. 𝜉 increases spontaneously if the affinity is positive and decreases spontaneously if the affinity is negative; the system is at
equilibrium when the affinity is zero.
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11.7.3 General derivation
We can obtain the condition of reaction equilibrium given by Eq. 11.7.4 in a more general and rigorous way by an
extension of the derivation of Sec. 9.2.7, which was for equilibrium conditions in a multiphase, multicomponent
system.

Consider a system with a reference phase, α′, and optionally other phases labeled by α=/α′. Each phase contains
one or more species labeled by subscript i, and some or all of the species are the reactants and products of a reaction.

The total differential of the internal energy is given by Eq. 9.2.37 on page 189:

dU = T 𝛼′dS𝛼′− p𝛼′dV 𝛼′+�
i
𝜇i
𝛼′dni

+�
α=/α′ ((((((((((((T

α dSα − pα dV α+�
i
𝜇i

α dni
α)))))))))))) (11.7.5)

The conditions of isolation are

dU=0 (constant internal energy) (11.7.6)
dV 𝛼′+ �

α=/α′
dV α=0 (no expansion work) (11.7.7)

For each species i:
dni
𝛼′+�

α=/α'
dni

α=𝜈id𝜉 (closed system) (11.7.8)

In Eq. 11.7.8, dni′
α′′ should be set equal to zero for a species i′ that is excluded from phase α′′, and 𝜈i′′ should be set

equal to zero for a species i′′ that is not a reactant or product of the reaction.
We use these conditions of isolation to substitute for dU, dV 𝛼′, and dni

𝛼′ in Eq. 11.7.5, and make the further
substitution dS𝛼′=dS −∑α=/α′ dSα. Solving for dS, we obtain

dS = �
α=/α′

(T 𝛼′−T α)
T 𝛼′

dSα − �
α=/α′

(p𝛼′− pα)
T 𝛼′

dV α

+�
i
�

α=/α′

(𝜇i
𝛼′−𝜇i

α)
T 𝛼′

dni
α −∑i 𝜈i𝜇i

𝛼′

T 𝛼′
d𝜉 (11.7.9)

The equilibrium condition is that the coefficient multiplying each differential on the right side of Eq. 11.7.9 must be
zero. We conclude that at equilibrium the temperature of each phase is equal to that of phase α′; the pressure of each
phase is equal to that of phase α′; the chemical potential of each species, in each phase containing that species, is equal
to the chemical potential of the species in phase α′; and the quantity∑i𝜈i𝜇i

𝛼′ (which is equal to Δr G) is zero.
In short, in an equilibrium state each phase has the same temperature and the same pressure, each species has the

same chemical potential in the phases in which it is present, and the molar reaction Gibbs energy of each phase is zero.

11.7.4 Pure phases
Consider a chemical process in which each reactant and product is in a separate pure phase. For example, the decom-
position of calcium carbonate, CaCO3(s)→CaO(s) + CO2(g), involves three pure phases if no other gas is allowed to
mix with the CO2.

As this kind of reaction advances at constant T and p, the chemical potential of each substance remains constant,
and Δr G is therefore constant. The value of Δr G for this reaction depends only on T and p. If Δr G is negative, the
reaction proceeds spontaneously to the right until one of the reactants is exhausted; the reaction is said to “go to com-
pletion.” If ΔrG is positive, the reaction proceeds spontaneously to the left until one of the products is exhausted.11.7.2

The reactants and products can remain in equilibrium only if T and p are such thatΔr G is zero. These three cases are
illustrated in Fig. 11.7.1 on page 274.

11.7.2. Keep in mind that whether a species is called a reactant or a product depends, not on whether its amount decreases or increases during
a reaction process, but rather on which side of the reaction equation it appears.
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Figure 11.7.1. Gibbs energy versus advancement at constant T and p in systems of pure phases. G is a linear function of 𝜉 with slope
equal to Δr G.

a) Δr G is negative; 𝜉 spontaneously increases.

b) Δr G is positive; 𝜉 spontaneously decreases.

c) Δr G is zero; the system is in reaction equilibrium at all values of 𝜉.

Figure 11.7.2. Gibbs energy as a function of advancement at constant T and p in a closed system containing a mixture. The open circle
is at the minimum value of G. (The reaction is the same as in Fig. 11.2.1 on page 253.)

Note the similarity of this behavior to that of an equilibrium phase transition of a pure substance. Only
one phase of a pure substance is present at equilibrium unless Δtrs G is zero. A phase transition is a
special case of a chemical process.

11.7.5 Reactions involving mixtures
If any of the reactants or products of a chemical process taking place in a closed system is a constituent of a mixture,
a plot of G versus 𝜉 (at constant T and p) turns out to exhibit a minimum with a slope of zero; see the example in Fig.
11.7.2 on page 274. At constant T and p, 𝜉 changes spontaneously in the direction of decreasing G until the minimum
is reached, at which point Δr G (the slope of the curve) is zero and the system is in a state of reaction equilibrium.

The condition of reaction equilibrium given by Δr G=0 or ∑i𝜈i𝜇i=0 is a general one that is valid whether or
not the reaction proceeds at constant T and p. Suppose a spontaneous reaction occurs in a closed system at constant
temperature and volume. The system is at reaction equilibrium when ∑i𝜈i𝜇i becomes equal to zero. To relate this
condition to the change of a thermodynamic potential, we take the expression for the total differential of the Helmholtz
energy of an open system, with expansion work only, given by Eq. 5.5.8 on page 116:

dA=−S dT − pdV +�
i
𝜇i dni (11.7.10)
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When we make the substitution dni=𝜈i d𝜉, we obtain an expression for the total differential of A in a closed system
with a chemical reaction:

dA=−S dT − pdV +((((((((((((�i
𝜈i𝜇i))))))))))))d𝜉 (11.7.11)

We identify the coefficient of the last term on the right as a partial derivative:

�
i
𝜈i𝜇i=�

∂A
∂𝜉�T ,V

(11.7.12)

This equation shows that as the reaction proceeds spontaneously at constant T and V , it reaches reaction equilibrium
at the point where (∂ A/∂𝜉)T ,V is zero. This is simply another way to express the criterion for spontaneity stated on
page 119: If the only work is expansion work, the Helmholtz energy of a closed system decreases during a spontaneous
process at constant T and V and has its minimum value when the system attains an equilibrium state.

11.7.6 Reaction in an ideal gas mixture
Let us look in detail at the source of the minimum in G for the case of a reaction occurring in an ideal gas mixture in
a closed system at constant T and p. During this process the system has only one independent variable, which it is
convenient to choose as the advancement 𝜉. The additivity rule (Eq. 9.2.25) for the Gibbs energy is

G=�
i

ni𝜇i (11.7.13)

where both ni and 𝜇i depend on 𝜉. Thus, G is a complicated function of 𝜉.
For the chemical potential of each substance, we write𝜇i=𝜇i

∘(g)+RT ln(pi/p∘) (Eq. 9.3.5), where pi is the partial
pressure of i in the mixture. Substitution in Eq. 11.7.13 gives, for the Gibbs energy at any value of 𝜉,

G(𝜉)=�
i

ni�𝜇i
∘ (g)+RT ln pi

p∘� (11.7.14)

At 𝜉=0, the amounts and partial pressures have their initial values ni,0 and pi,0:

G(0)=�
i

ni,0�𝜇i
∘ (g)+RT ln pi,0

p∘ � (11.7.15)

The difference between these two expressions is

G(𝜉)−G(0)=�
i
(ni −ni,0)𝜇i

∘ (g)

+RT�
i

ni ln
pi
p∘ −RT�

i
ni,0 ln

pi,0
p∘

(11.7.16)

Converting partial pressures to mole fractions with pi=yi p and pi,0=yi,0 p gives

G(𝜉)−G(0) = �
i
(ni−ni,0)𝜇i

∘ (g)+RT�
i

ni ln yi

−RT�
i

ni,0 lnyi,0+RT�
i
(ni −ni,0) ln

p
p∘ (11.7.17)

With the substitution ni−ni,0=𝜈i𝜉 (Eq. 11.2.11) in the first and last terms on the right side of Eq. 11.7.17, the result is

G(𝜉)−G(0) = 𝜉�
i
𝜈i𝜇i

∘ (g)+RT�
i

ni lnyi

−RT�
i

ni.0 lnyi,0+RT((((((((((((�i
𝜈i))))))))))))𝜉 ln

p
p∘ (11.7.18)
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Figure 11.7.3. Gibbs energy as a function of the advancement of the reaction A→B in an ideal gas mixture at constant T and p. The initial
amount of B is zero. The equilibrium positions are indicated by open circles.

(a) Δr G∘<0 (b) Δr G∘=0 (c) Δr G∘>0

The sum∑i𝜈i𝜇i
∘(g)in the first term on the right side of Eq. 11.7.18 isΔrG∘, the standard molar reaction Gibbs energy.

Making this substitution gives finally

G(𝜉)−G(0) = 𝜉Δr G∘+RT�
i

ni ln yi−RT�
i

ni.0 ln yi,0

+RT ((((((((((((�i
𝜈i))))))))))))𝜉 ln

p
p∘

(11.7.19)
(ideal gas mixture)

There are four terms on the right side of Eq. 11.7.19. The first term is the Gibbs energy change for the reaction of pure
reactants to form pure products under standard-state conditions, the second is a mixing term, the third term is constant,
and the last term is an adjustment of G from the standard pressure to the pressure of the gas mixture. Note that the first
and last terms are proportional to the advancement and cannot be the cause of a minimum in the curve of the plot of G
versus 𝜉. It is the mixing term RT∑i ni ln yi that is responsible for the observed minimum.11.7.3 This term divided by
n=∑i ni isΔGm(mix), the molar differential Gibbs energy of mixing to form an ideal mixture (see Eq. 11.1.8 on page
242); the term is also equal to −nT ΔSm(mix) (Eq. 11.1.9), showing that the minimum is entirely an entropy effect.

Now let us consider specifically the simple reaction

A(g)→B(g)

in an ideal gas mixture, for which 𝜈A is −1 and 𝜈B is +1. Let the initial state be one of pure A: nB,0=0. The initial
mole fractions are then yA,0=1 and yB,0=0. In this reaction, the total amount n=nA+nB is constant. Substituting these
values in Eq. 11.7.19 gives11.7.4

G(𝜉)−G(0)=𝜉Δr G∘+nRT (yA ln yA+yB lnyB) (11.7.20)

The second term on the right side is nΔGm(mix), the Gibbs energy of mixing pure ideal gases A and B at constant T
and p to form an ideal gas mixture of composition yA and yB. Since the curve of ΔGm(mix) plotted against 𝜉 has a
minimum (as shown in Fig. 11.1.2 on page 243), G(𝜉)−G(0) also has a minimum.

Figure 11.7.3 on page 276 illustrates how the position of the minimum, which is the position of reaction equilib-
rium, depends on the value of Δr G∘. The more negative is Δr G∘, the closer to the product side of the reaction is the
equilibrium position. On the other hand, the more positive isΔr G∘, the smaller is the value of 𝜉 at equilibrium. These
statements apply to any reaction in a homogeneous mixture.

11.7.3. This term also causes the slope of the curve of G(𝜉)− G(0) versus 𝜉 to be −∞ and +∞ at the left and right extremes of the curve.
11.7.4. Note that although ln yA approaches −∞ as yA approaches zero, the product yA ln yA approaches zero in this limit. This behavior can

be proved with l'Hospital's rule (see any calculus textbook).

276 REACTIONS AND OTHER CHEMICAL PROCESSES

276



Figure 11.7.4. Dependence of Gibbs energy on volume and pressure, at constant temperature, in a closed system containing an ideal gas
mixture of A and B. The reaction is A→2 B with Δr G∘=0. Solid curves: contours of constant G plotted at an interval of 0.5nA,0R T .
Dashed curve: states of reaction equilibrium (Δr G=0). Dotted curves: limits of possible values of the advancement. Open circle: position
of minimum G (and an equilibrium state) at the constant pressure p=1.02 p∘. Filled circle: position of minimum G for a constant volume
of 1.41V0, where V0 is the initial volume at pressure p∘.

As the reaction A→B proceeds, there is no change in the total number of molecules, and therefore in an ideal gas
mixture at constant temperature and volume there is no pressure change. The point of reaction equilibrium is at the
minimum of G when both V and p are constant.

The situation is different when the number of molecules changes during the reaction. Consider the reaction A→2 B
in an ideal gas mixture. As this reaction proceeds to the right at constant T , the volume increases if the pressure is held
constant and the pressure increases if the volume is held constant. Figure 11.7.4 on page 277 shows how G depends
on both p and V for this reaction. Movement along the horizontal dashed line in the figure corresponds to reaction at
constant T and p. The minimum of G along this line is at the volume indicated by the open circle. At this volume, G
has an even lower minimum at the pressure indicated by the filled circle, where the vertical dashed line is tangent to
one of the contours of constant G. The condition needed for reaction equilibrium, however, is that ΔrG must be zero.
This condition is satisfied along the vertical dashed line only at the position of the open circle.

This example demonstrates that for a reaction occurring at constant temperature and volume in which the pressure
changes, the point of reaction equilibrium is not the point of minimum G. Instead, the point of reaction equilibrium
in this case is at the minimum of the Helmholtz energy A (Sec. 11.7.5).

11.8 The Thermodynamic Equilibrium Constant

11.8.1 Activities and the definition of K
Equation 10.1.9 gives the general relation between the chemical potential 𝜇i and the activity ai of species i in a phase
of electric potential 𝜙:

𝜇i=𝜇i
∘+RT lnai+ zi F𝜙 (11.8.1)

The electric potential affects 𝜇i only if the charge number zi is nonzero, i.e., only if species i is an ion.
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Consider a reaction in which any reactants and products that are ions are in a single phase of electric potential 𝜙′,
or in several phases of equal electric potential 𝜙′. Under these conditions, substitution of the expression above for 𝜇i

in Δr G=∑i𝜈i𝜇i gives

Δr G=�
i
𝜈i𝜇i

∘+RT�
i
𝜈i lnai+F𝜙′�

i
𝜈i zi

(11.8.2)
(all ions at 𝜙=𝜙′)

The first term on the right side of Eq. 11.8.2 is the standard molar reaction Gibbs energy, or standard molar Gibbs
energy of reaction:

Δr G∘ =
def
�

i
𝜈i𝜇i

∘ (11.8.3)

Since the standard chemical potential 𝜇i
∘ of each species i is a function only of T , the value of Δr G∘ for a given

reaction as defined by the reaction equation depends only on T and on the choice of a standard state for each reactant
and product.

The last term on the right side of Eq. 11.8.2 is the sum∑i𝜈i zi. Because charge is conserved during the advance-
ment of a reaction in a closed system, this sum is zero.

With these substitutions, Eq. 11.8.2 becomes

Δr G=Δr G∘+RT�
i
𝜈i lnai

(11.8.4)
(all ions at same 𝜙)

This relation enables us to say that for a reaction at a given temperature in which any charged reactants or products
are all in the same phase, or in phases of equal electric potential, the value of Δr G and ∑i𝜈i𝜇i depends only on the
activities of the reactants and products and is independent of what the electric potentials of any of the phases might
happen to be.

Unless a reaction involving ions is carried out in a galvanic cell, the ions are usually present in a single phase, and
this will not be shown as a condition of validity in the rest of this chapter. The special case of a reaction in a galvanic
cell will be discussed in Sec. 14.3.

We may use properties of logarithms to write the sum on the right side of Eq. 11.8.4 as follows:11.8.1

�
i
𝜈i lnai=�

i
ln (ai

𝜈i)=ln�
i

ai
𝜈i (11.8.5)

The product∏i ai
𝜈i is called the reaction quotient or activity quotient, Qrxn:

Qrxn =
def
�

i
ai
𝜈i (11.8.6)

Qrxn consists of a factor for each reactant and product. Each factor is the activity raised to the power of the stoi-
chiometric number 𝜈i. Since the value of 𝜈i is positive for a product and negative for a reactant, Qrxn is a quotient in
which the activities of the products appear in the numerator and those of the reactants appear in the denominator, with
each activity raised to a power equal to the corresponding stoichiometric coefficient in the reaction equation. Such a
quotient, with quantities raised to these powers, is called a proper quotient. The reaction quotient is a proper quotient
of activities.

For instance, for the ammonia synthesis reaction N2(g) + 3 H2(g)→2 NH3(g) the reaction quotient is given by

Qrxn=
aNH3
2

aN2 aH2
3 (11.8.7)

Qrxn is a dimensionless quantity. It is a function of T , p, and the mixture composition, so its value changes as the
reaction advances.

The expression for the molar reaction Gibbs energy given by Eq. 11.8.4 can now be written

Δr G=Δr G∘+RT lnQrxn (11.8.8)

11.8.1. The symbol∏ stands for a continued product. If, for instance, there are three species,∏i ai
𝜈i is the product (a1

𝜈1) (a2
𝜈2) (a3

𝜈3).
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The value of Qrxn under equilibrium conditions is the thermodynamic equilibrium constant, K. The general defin-
ition of K is

K =
def
�

i
(ai)eq

𝜈i (11.8.9)

where the subscript eq indicates an equilibrium state. Note that K, like Qrxn, is dimensionless.

The IUPAC Green Book11.8.2 gives K ∘− as an alternative symbol for the thermodynamic equilibrium con-
stant, the appended superscript denoting “standard”. An IUPAC Commission on Thermodynamics11.8.3

has furthermore recommended the name “standard equilibrium constant”, apparently because its value
depends on the choice of standard states. Using this alternative symbol and name could cause con-
fusion, since the quantity defined by Eq. 11.8.9 does not refer to reactants and products in their standard
states but rather to reactants and products in an equilibrium state.

Substituting the equilibrium conditions Δr G=0 and Qrxn=K in Eq. 11.8.8 gives an important relation between
the standard molar reaction Gibbs energy and the thermodynamic equilibrium constant:

Δr G∘=−RT lnK (11.8.10)

We can solve this equation for K to obtain the equivalent relation

K=exp�−Δr G∘
RT � (11.8.11)

We have seen that the value of Δr G∘ depends only on T and the choice of the standard states of the reactants and
products. This being so, Eq. 11.8.11 shows that the value of K for a given reaction depends only on T and the choice of
standard states. No other condition, neither pressure nor composition, can affect the value of K. We also see from Eq.
11.8.11 that K is less than 1 ifΔrG∘ is positive and greater than 1 ifΔrG∘ is negative. At a fixed temperature, reaction
equilibrium is attained only if and only if the value of Qrxn becomes equal to the value of K at that temperature.

The thermodynamic equilibrium constant K is the proper quotient of the activities of species in reaction equi-
librium. At typical temperatures and pressures, an activity cannot be many orders of magnitude greater than 1. For
instance, a partial pressure cannot be greater than the total pressure, so at a pressure of 10bar the activity of a gaseous
constituent cannot be greater than about 10. The molarity of a solute is rarely much greater than 10mol⋅dm−3, corre-
sponding to an activity (on a concentration basis) of about 10. Activities can, however, be extremely small.

These considerations lead us to the conclusion that in an equilibrium state of a reaction with a very large value
of K, the activity of at least one of the reactants must be very small. That is, if K is very large then the reaction goes
practically to completion and at equilibrium a limiting reactant is essentially entirely exhausted. The opposite case, a
reaction with a very small value of K, must have at equilibrium one or more products with very small activities. These
two cases are the two extremes of the trends shown in Fig. 11.7.3 on page 276.

Equation 11.8.10 correctly relates Δr G∘ and K only if they are both calculated with the same standard states. For
instance, if we base the standard state of a particular solute species on molality in calculatingΔrG∘, the activity of that
species appearing in the expression for K (Eq. 11.8.9) must also be based on molality.

11.8.2 Reaction in a gas phase
If a reaction takes place in a gaseous mixture, the standard state of each reactant and product is the pure gas behaving
ideally at the standard pressure p∘ (Sec. 9.3.3). In this case, each activity is given by ai (g)= fi/p∘=𝜙i pi/p∘ where
𝜙i is a fugacity coefficient (Table 9.7.1). When we substitute this expression into Eq. 11.8.9, we find we can express
the thermodynamic equilibrium constant as the product of three factors:

K=[[[[[[[[[[�i
(𝜙i)eq

𝜈i]]]]]]]]]][[[[[[[[[[�i
(pi)eq

𝜈i]]]]]]]]]][(p∘)−∑i𝜈i] (11.8.12)
(gas mixture)

11.8.2. Ref. [30], p. 58.
11.8.3. Ref. [44].

11.8 THE THERMODYNAMIC EQUILIBRIUM CONSTANT 279

279



On the right side of this equation, the first factor is the proper quotient of fugacity coefficients in the mixture at reaction
equilibrium, the second factor is the proper quotient of partial pressures in this mixture, and the third factor is the
power of p∘ needed to make K dimensionless.

The proper quotient of equilibrium partial pressures is an equilibrium constant on a pressure basis, Kp:

Kp=�
i
(pi)eq

𝜈i (11.8.13)
(gas mixture)

Note that Kp is dimensionless only if∑i𝜈i is equal to zero.
The value of Kp can vary at constant temperature, so Kp is not a thermodynamic equilibrium constant. For instance,

consider what happens when we take an ideal gas mixture at reaction equilibrium and compress it isothermally. As
the gas pressure increases, the fugacity coefficient of each constituent changes from its low pressure value of 1 and the
gas mixture becomes nonideal. In order for the mixture to remain in reaction equilibrium, and the product of factors
on the right side of Eq. 11.8.12 to remain constant, there must be a change in the value of Kp. In other words, the
reaction equilibrium shifts as we increase p at constant T , an effect that will be considered in more detail in Sec. 11.9.

As an example of the difference between K and Kp, consider again the ammonia synthesis N2(g) + 3H2(g)→
2NH3(g) in which the sum ∑i𝜈i equals −2. For this reaction, the expression for the thermodynamic equilibrium
constant is

K=((((((((((((((
𝜙NH3
2

𝜙N2𝜙H2
3 ))))))))))))))eq

Kp(p∘)2 (11.8.14)

where Kp is given by

Kp=((((((((((((((
pNH3
2

pN2 pH2
3 ))))))))))))))eq

(11.8.15)

11.8.3 Reaction in solution
If any of the reactants or products are solutes in a solution, the value of K depends on the choice of the solute standard
state.

For a given reaction at a given temperature, we can derive relations between values of K that are based on different
solute standard states. In the limit of infinite dilution, each solute activity coefficient is unity, and at the standard
pressure each pressure factor is unity. Under these conditions of infinite dilution and standard pressure, the activities
of solute B on a mole fraction, concentration, and molality basis are therefore

ax,B=xB ac,B=cB/c∘ am,B=mB/m∘ (11.8.16)

In the limit of infinite dilution, the solute composition variables approach values given by the relations in Eq. 9.1.14
on page 181: xB=VA

∗cB=MA mB. Combining these with ax,B=xB from Eq. 11.8.16, we write

ax,B=VA
∗cB=MAmB (11.8.17)

Then, using the relations for ac,B and am,B in Eq. 11.8.16, we find that the activities of solute B at infinite dilution and
pressure p∘ are related by

ax,B=VA
∗c∘ac,B=MAm∘am,B (11.8.18)

The expression K=∏i (ai)eq
𝜈i has a factor (aB)eq

𝜈B for each solute B that is a reactant or product. From Eq. 11.8.18, we
see that for solutes at infinite dilution at pressure p∘, the relations between the values of K based on different solute
standard states are

K(x basis)=�
B
(VA
∗c∘)𝜈B K(c basis)=�

B
(MA m∘)𝜈B K(m basis) (11.8.19)

For a given reaction at a given temperature, and with a given choice of solute standard state, the value of K is not
affected by pressure or dilution. The relations of Eq. 11.8.19 are therefore valid under all conditions.
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11.8.4 Evaluation of K

The relation K=exp (−ΔrG∘/(RT)) (Eq. 11.8.11) gives us a way to evaluate the thermodynamic equilibrium constant
K of a reaction at a given temperature from the value of the standard molar reaction Gibbs energy Δr G∘ at that
temperature. If we know the value of Δr G∘, we can calculate the value of K.

One method is to calculate Δr G∘ from values of the standard molar Gibbs energy of formation Δf G∘ of each
reactant and product. These values are the standard molar reaction Gibbs energies for the formation reactions of the
substances. To relate Δf G∘ to measurable quantities, we make the substitution 𝜇i=Hi − T Si (Eq. 9.2.46) in Δr G=
∑i𝜈i𝜇i to give Δr G=∑i𝜈iHi −T∑i𝜈i Si, or

Δr G=Δr H −T Δr S (11.8.20)

When we apply this equation to a reaction with each reactant and product in its standard state, it becomes

Δr G∘=Δr H∘−T Δr S∘ (11.8.21)

where the standard molar reaction entropy is given by

Δr S∘=�
i
𝜈iSi

∘ (11.8.22)

If the reaction is the formation reaction of a substance, we have

Δf G∘=Δf H∘−T�
i
𝜈iSi

∘ (11.8.23)

where the sum over i is for the reactants and product of the formation reaction. We can evaluate the standard molar
Gibbs energy of formation of a substance, then, from its standard molar enthalpy of formation and the standard molar
entropies of the reactants and product.

Extensive tables are available of values of Δf G∘ for substances and ions. An abbreviated version at the single
temperature 298.15K is given in Appendix H. For a reaction of interest, the tabulated values enable us to evaluate
Δr G∘, and then K, from the expression (analogous to Hess's law)

Δr G∘=�
i
𝜈iΔf G∘(i) (11.8.24)

The sum over i is for the reactants and products of the reaction of interest.
Recall that the standard molar enthalpies of formation needed in Eq. 11.8.23 can be evaluated by calorimetric

methods (Sec. 11.3.2). The absolute molar entropy values Si
∘ come from heat capacity data or statistical mechanical

theory by methods discussed in Sec. 6.2. Thus, it is entirely feasible to use nothing but calorimetry to evaluate an
equilibrium constant, a goal sought by thermodynamicists during the first half of the 20th century.11.8.4

For ions in aqueous solution, the values of Sm
∘ and Δf G∘ found in Appendix H are based on the reference values

Sm
∘ = 0 and Δf G∘= 0 for H+(aq) at all temperatures, similar to the convention for Δf H∘ values discussed in Sec.

11.3.2.11.8.5 For a reaction with aqueous ions as reactants or products, these values correctly give Δr S∘ using Eq.
11.8.22, or Δr G∘ using Eq. 11.8.24.

The relation of Eq. 11.8.23 does not apply to an ion, because we cannot write a formation reaction for
a single ion. Instead, the relation between Δf G∘, Δf H∘ and Sm

∘ is more complicated.
Consider first a hypothetical reaction in which hydrogen ions and one or more elements form H2 and a
cation Mz+ with charge number z+:

z+H+(aq)+elements→(z+/2)H2(g)+Mz+(aq)

11.8.4. Another method, for a reaction that can be carried out reversibly in a galvanic cell, is described in Sec. 14.3.3.
11.8.5. Note that the values of Sm

∘ in Appendix H for some ions, unlike the values for substances, are negative; this simply means that the
standard molar entropies of these ions are less than that of H+(aq).
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For this reaction, using the convention thatΔf H∘, Sm
∘ , andΔf G∘ are zero for the aqueous H+ ion and the

fact thatΔf H∘ andΔf G∘ are zero for the elements, we can write the following expressions for standard
molar reaction quantities:

Δr H∘ = Δf H∘(Mz+) (11.8.25)
Δr S∘ = (z+/2)Sm

∘ (H2)+Sm
∘ (Mz+)− �

elements
Si
∘ (11.8.26)

Δr G∘ = Δf G∘(Mz+) (11.8.27)

Then, from Δr G∘=Δr H∘−TΔr S∘, we find

Δf G∘(Mz+) = Δf H∘(Mz+)
−T [[[[[[[[[[Sm

∘ (Mz+)− �
elements

Si
∘+(z+/2)Sm

∘ (H2)]]]]]]]]]] (11.8.28)

For example, the standard molar Gibbs energy of the aqueous mercury(I) ion is found from

Δf G∘(Hg2
2+) = Δf H∘(Hg2

2+)−TSm
∘ (Hg2

2+)
+2TSm

∘ (Hg)− 22 TSm
∘ (H2) (11.8.29)

For an anion Xz− with negative charge number z−, using the hypothetical reaction

|z−/2|H2(g)+elements→|z−|H+(aq)+Xz−(aq)

we find by the same method

Δf G∘(Xz−)=Δf H∘(Xz−)
−T [[[[[[[[[[Sm

∘ (Xz−)− �
elements

Si
∘− |z−/2| Sm

∘ (H2)]]]]]]]]]] (11.8.30)

For example, the calculation for the nitrate ion is

Δf G∘(NO3
−)=Δf H∘(NO3−)−TSm

∘ (NO3
−)

+ 12 TSm
∘ (N2)+

3
2 TSm

∘ (O2)+
1
2 TSm

∘ (H2)
(11.8.31)

11.9 Effects of Temperature and Pressure on Equilibrium Position
The advancement 𝜉 of a chemical reaction in a closed system describes the changes in the amounts of the reactants
and products from specified initial values of these amounts. We have seen that if the system is maintained at constant
temperature and pressure, 𝜉 changes spontaneously in the direction that decreases the Gibbs energy. The change
continues until the system reaches a state of reaction equilibrium at the minimum of G. The value of the advancement
in this equilibrium state will be denoted 𝜉eq, as shown in Fig. 11.7.2 on page 274. The value of 𝜉eq depends in general
on the values of T and p. Thus when we change the temperature or pressure of a closed system that is at equilibrium,
𝜉eq usually changes also and the reaction spontaneously shifts to a new equilibrium position.

To investigate this effect, we write the total differential of G with T , p, and 𝜉 as independent variables
dG=−S dT +V dp+Δr Gd𝜉 (11.9.1)

and obtain the reciprocity relations

�∂Δr G
∂T �p, 𝜉

=−�∂S
∂𝜉�T ,p

�∂Δr G
∂ p �T , 𝜉

=�∂V
∂𝜉�T ,p

(11.9.2)

We recognize the partial derivative on the right side of each of these relations as a molar differential reaction quantity:

�∂Δr G
∂T �p, 𝜉

=−Δr S �∂Δr G
∂ p �T , 𝜉

=Δr V (11.9.3)
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We use these expressions for two of the coefficients in an expression for the total differential of Δr G:

dΔr G=−Δr S dT +Δr V dp+�∂Δr G
∂𝜉 �T ,p

d𝜉 (11.9.4)
(closed system)

Since Δr G is the partial derivative of G with respect to 𝜉 at constant T and p, the coefficient (∂Δr G/∂𝜉)T ,p is the
partial second derivative of G with respect to 𝜉:

�∂Δr G
∂𝜉 �T ,p

=((((((((((((∂
2G
∂𝜉2))))))))))))T ,p (11.9.5)

We know that at a fixed T and p, a plot of G versus 𝜉 has a slope at each point equal to Δr G and a minimum at the
position of reaction equilibrium where 𝜉 is 𝜉eq. At the minimum of the plotted curve, the slope Δr G is zero and
the second derivative is positive (see Fig. 11.7.2 on page 274). By setting Δr G equal to zero in the general relation
Δr G=Δr H −TΔrS, we obtain the equation Δr S=Δr H/T which is valid only at reaction equilibrium where 𝜉 equals
𝜉eq. Making this substitution in Eq. 11.9.4, and setting dΔr G equal to zero and d𝜉 equal to d𝜉eq, we obtain

0=−Δr H
T dT +Δr V dp+((((((((((((∂

2G
∂𝜉2))))))))))))T ,p d𝜉eq

(11.9.6)
(closed system)

which shows how infinitesimal changes in T , p, and 𝜉eq are related.
Now we are ready to see how 𝜉eq is affected by changes in T or p. Solving Eq. 11.9.6 for d𝜉eq gives

d𝜉eq=
Δr H

T dT −Δr V dp

((((((((((((∂
2G
∂𝜉2))))))))))))T ,p

(11.9.7)
(closed system)

The right side of Eq. 11.9.7 is the expression for the total differential of 𝜉 in a closed system at reaction equilib-
rium, with T and p as the independent variables. Thus, at constant pressure the equilibrium shifts with temperature
according to

�∂𝜉eq
∂T �p

= Δr H

T((((((((((((∂
2G
∂𝜉2))))))))))))T ,p

(11.9.8)
(closed system)

and at constant temperature the equilibrium shifts with pressure according to

�∂𝜉eq
∂ p �T

=− Δr V

((((((((((((∂
2G
∂𝜉2))))))))))))T ,p

(11.9.9)
(closed system)

Because the partial second derivative (∂2G/∂𝜉2)T ,p is positive, Eqs. 11.9.8 and 11.9.9 show that (∂𝜉eq/∂T)p and
Δr H have the same sign, whereas (∂𝜉eq/∂ p)T and Δr V have opposite signs.

These statements express the application to temperature and pressure changes of what is known as Le Châtelier's
principle: When a change is made to a closed system at equilibrium, the equilibrium shifts in the direction that tends
to oppose the change. Here are two examples.

1. Suppose Δr H is negative—the reaction is exothermic. Since (∂ 𝜉eq/∂ T)p has the same sign as Δr H, an
increase in temperature causes 𝜉eq to decrease: the equilibrium shifts to the left. This is the shift that would
reduce the temperature if the reaction were adiabatic.

2. If Δr V is positive, the volume increases as the reaction proceeds to the right at constant T and p. (∂𝜉eq/∂ p)T
has the opposite sign, so if we increase the pressure isothermally by reducing the volume, the equilibrium shifts
to the left. This is the shift that would reduce the pressure if the reaction occurred at constant T and V .
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It is easy to misuse or to be misled by Le Châtelier's principle. Consider the solution process B∗(s)→B(sln) for which
(∂𝜉eq/∂T)p, the rate of change of solubility with T , has the same sign as the molar differential enthalpy of solution
Δsol H at saturation.The sign of Δsol H at saturation may be different from the sign of the molar integral enthalpy of
solution, ΔHm(sol). This is the situation for the dissolution of sodium acetate shown in Fig. 11.4.2 on page 259. The
equilibrium position (saturation) with one kilogram of water is at 𝜉sol≈15mol, indicated in the figure by an open circle.
At this position, Δsol H is positive and ΔHm(sol) is negative. So, despite the fact that the dissolution of 15 moles
of sodium acetate in one kilogram of water to form a saturated solution is an exothermic process, the solubility of
sodium acetate actually increases with increasing temperature, contrary to what one might predict from Le Châtelier's
principle.11.9.1

Another kind of change for which Le Châtelier's principle gives an incorrect prediction is the addition of an inert
gas to a gas mixture of constant volume. Adding the inert gas at constant V increases the pressure, but has little effect
on the equilibrium position of a gas-phase reaction regardless of the value ofΔrV . This is because the inert gas affects
the activities of the reactants and products only slightly, and not at all if the gas mixture is ideal, so there is little or no
effect on the value of Qrxn. (Note that the dependence of 𝜉eq on p expressed by Eq. 11.9.9 does not apply to an open
system.)

The rigorous criterion for the equilibrium position of a reaction is always the requirement that Qrxn must equal K
or, equivalently, that Δr G must be zero.

11.9.1. Ref. [19].
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Substance Δf H/(kJ⋅mol−1) M/(g⋅mol−1)
H2O(l) -285.830 18.0153

Na2S2O3⋅5H2O(s) -2607.93 248.1828
Na2S2O3 in50H2O -1135.914
Na2S2O3 in100H2O -1133.822
Na2S2O3 in200H2O -1132.236
Na2S2O3 in300H2O -1131.780

Table 11.10.1. Data for Problem 11.10.5 (!!!!).11.10.1

11.10.1. Ref. [135], pages 2-307 and 2-308.

11.10 Problems

Problem 11.10.1. Use values of Δf H ∘ and Δf G∘ in Appendix H to evaluate the standard molar reaction enthalpy and the thermodynamic
equilibrium constant at 298.15K for the oxidation of nitrogen to form aqueous nitric acid:

1
2 N2(g)+

5
4 O2(g)+

1
2 H2O(l)→H+(aq)+NO3

−(aq)

Problem 11.10.2. In 1982, the International Union of Pure and Applied Chemistry recommended that the value of the standard pressure p∘ be
changed from 1atm to 1bar. This change affects the values of some standard molar quantities of a substance calculated from experimental data.

a) Find the changes in Hm
∘ , Sm

∘ , and Gm
∘ for a gaseous substance when the standard pressure is changed isothermally from 1.01325bar

(1atm) to exactly 1bar. (Such a small pressure change has an entirely negligible effect on these quantities for a substance in a con-
densed phase.)

b) What are the values of the corrections that need to be made to the standard molar enthalpy of formation, the standard molar entropy
of formation, and the standard molar Gibbs energy of formation of N2O4(g) at 298.15K when the standard pressure is changed from
1.01325bar to 1bar?

Problem 11.10.3. From data for mercury listed in Appendix H, calculate the saturation vapor pressure of liquid mercury at both 298.15K and
273.15K. You may need to make some reasonable approximations.

Problem 11.10.4. Given the following experimental values at T =298.15K, p=1bar:

H+(aq)+OH−(aq)→H2O(l) Δr H ∘=−55.82kJ⋅mol−1

Na+(s)+H2O(l)→Na+(aq)+OH−(aq)+ 12 H2(g) Δr H ∘=−184.52kJ⋅mol−1

NaOH(s)→NaOH(aq) ΔsolH∞=−44.75kJ⋅mol−1

NaOHin5H2O→NaOH in∞H2O ΔHm(dil)=−4.93kJ⋅mol−1

NaOH(s) Δf H ∘=−425.61kJ⋅mol−1

Using only these values, calculate:

a) Δf H ∘ for Na+(aq), NaOH(aq), and OH−(aq);

b) Δf H for NaOH in 5 H2O;

c) ΔHm(sol) for the dissolution of 1mol NaOH(s) in 5mol H2O.

Problem 11.10.5. Table 11.10.1 on page 285 lists data for water, crystalline sodium thiosulfate pentahydrate, and several sodium thiosulfate
solutions. FindΔH to the nearest 0.01kJ for the dissolution of 5.00g of crystalline Na2S2O3⋅5H2O(s) in 50.0g of water at 298.15K and 1bar.

Problem 11.10.6. Use the experimental data in Table 11.10.2 on page 286 to evaluate LA and LB at 25 ∘C for an aqueous HCl solution of
molality mB=0.0900mol⋅kg−1.
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mB′′/(mol⋅kg−1) ΔHm(dil, mB′ →mB′′)/(kJ⋅mol−1)
0.295 −2.883
0.225 −2.999
0.199 −3.041
0.147 −3.143
0.113 −3.217
0.0716 −3.325
0.0544 −3.381
0.0497 −3.412
0.0368 −3.466
0.0179 −3.574
0.0128 −3.621

Table 11.10.2. Data for Problem 11.10.6. Molar integral enthalpies of dilution of aqueous HCl (mB′ =3.337mol⋅kg−1) at 25 ∘C.11.10.2

11.10.2. Ref. [130]

Problem 11.10.7. This 16-part problem illustrates the use of experimental data from bomb calorimetry and other sources, combined with
thermodynamic relations derived in this and earlier chapters, to evaluate the standard molar combustion enthalpy of a liquid hydrocarbon. The
substance under investigation is n-hexane, and the combustion reaction in the bomb vessel is

C6H14(l)+
19
2 O2(g)→6CO2(g)+7H2O(l)

Assume that the sample is placed in a glass ampoule that shatters at ignition. Data needed for this problem are collected in Table 11.10.3 on
page 288.

States 1 and 2 referred to in this problem are the initial and final states of the isothermal bomb process. The temperature is the reference
temperature of 298.15K.

a) Parts a–c consist of simple calculations of some quantities needed in later parts of the problem. Begin by using the masses of C6H14
and H2O placed in the bomb vessel, and their molar masses, to calculate the amounts (moles) of C6H14 and H2O present initially in the
bomb vessel. Then use the stoichiometry of the combustion reaction to find the amount of O2 consumed and the amounts of H2O and
CO2 present in state 2. (There is not enough information at this stage to allow you to find the amount of O2 present, just the change.)
Also find the final mass of H2O. Assume that oxygen is present in excess and the combustion reaction goes to completion.

b) From the molar masses and the densities of liquid C6H14 and H2O, calculate their molar volumes.

c) From the amounts present initially in the bomb vessel and the internal volume, find the volumes of liquid C6H14, liquid H2O, and gas
in state 1 and the volumes of liquid H2O and gas in state 2. For this calculation, you can neglect the small change in the volume of
liquid H2O due to its vaporization.

d) When the bomb vessel is charged with oxygen and before the inlet valve is closed, the pressure at 298.15K measured on an external
gauge is found to be p1=30.00bar. To a good approximation, the gas phase of state 1 has the equation of state of pure O2 (since the
vapor pressure of water is only 0.1% of 30.00bar). Assume that this equation of state is given by Vm=RT /p+BBB (Eq. 2.2.8), where
BBB is the second virial coefficient of O2 listed in Table 11.10.3. Solve for the amount of O2 in the gas phase of state 1. The gas phase
of state 2 is a mixture of O2 and CO2, again with a negligible partial pressure of H2O. Assume that only small fractions of the total
amounts of O2 and CO2 dissolve in the liquid water, and find the amount of O2 in the gas phase of state 2 and the mole fractions of O2
and CO2 in this phase.

e) You now have the information needed to find the pressure in state 2, which cannot be measured directly. For the mixture of O2 and
CO2 in the gas phase of state 2, use Eq. 9.3.23 on page 196 to calculate the second virial coefficient. Then solve the equation of state
of Eq. 9.3.21 on page 196 for the pressure. Also calculate the partial pressures of the O2 and CO2 in the gas mixture.

f) Although the amounts of H2O in the gas phases of states 1 and 2 are small, you need to know their values in order to take the energy
of vaporization into account. In this part, you calculate the fugacities of the H2O in the initial and final gas phases, in part g you use
gas equations of state to evaluate the fugacity coefficients of the H2O (as well as of the O2 and CO2), and then in part h you find the
amounts of H2O in the initial and final gas phases.

The pressure at which the pure liquid and gas phases of H2O are in equilibrium at 298.15K (the saturation vapor pressure of water)
is 0.03169bar. Use Eq. 7.8.18 on page 150 to estimate the fugacity of H2O(g) in equilibrium with pure liquid water at this temperature
and pressure. The effect of pressure on fugacity in a one-component liquid--gas system is discussed in Sec. 12.8.1; use Eq. 12.8.3 on
page 315 to find the fugacity of H2O in gas phases equilibrated with liquid water at the pressures of states 1 and 2 of the isothermal
bomb process. (The mole fraction of O2 dissolved in the liquid water is so small that you can ignore its effect on the chemical potential
of the water.)

g) Calculate the fugacity coefficients of H2O and O2 in the gas phase of state 1 and of H2O, O2, and CO2 in the gas phase of state 2.
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For state 1, in which the gas phase is practically-pure O2, you can use Eq. 7.8.18 on page 150 to calculate 𝜙O2. The other calcu-
lations require Eq. 9.3.29 on page 196, with the value of Bi′ found from the formulas of Eq. 9.3.26 or Eqs. 9.3.27 and 9.3.28 (yA is so
small that you can set it equal to zero in these formulas).

Use the fugacity coefficient and partial pressure of O2 to evaluate its fugacity in states 1 and 2; likewise, find the fugacity of CO2
in state 2. [You calculated the fugacity of the H2O in part f.]

h) From the values of the fugacity and fugacity coefficient of a constituent of a gas mixture, you can calculate the partial pressure with Eq.
9.3.17 on page 195, then the mole fraction with yi= pi/p, and finally the amount with ni=yi n. Use this method to find the amounts of
H2O in the gas phases of states 1 and 2, and also calculate the amounts of H2O in the liquid phases of both states.

i) Next, consider the O2 dissolved in the water of state 1 and the O2 and CO2 dissolved in the water of state 2. Treat the solutions of these
gases as ideal dilute with the molality of solute i given by mi= fi/km,i (Eq. 9.4.21). The values of the Henry's law constants of these
gases listed in Table 11.10.3 are for the standard pressure of 1bar. Use Eq. 12.8.35 on page 321 to find the appropriate values of km,i
at the pressures of states 1 and 2, and use these values to calculate the amounts of the dissolved gases in both states.

j) At this point in the calculations, you know the values of all properties needed to describe the initial and final states of the isothermal
bomb process. You are now able to evaluate the various Washburn corrections. These corrections are the internal energy changes, at
the reference temperature of 298.15K, of processes that connect the standard states of substances with either state 1 or state 2 of the
isothermal bomb process.

First, consider the gaseous H2O. The Washburn corrections should be based on a pure-liquid standard state for the H2O. Section
7.9 shows that the molar internal energy of a pure gas under ideal-gas conditions (low pressure) is the same as the molar internal energy
of the gas in its standard state at the same temperature. Thus, the molar internal energy change when a substance in its pure-liquid
standard state changes isothermally to an ideal gas is equal to the standard molar internal energy of vaporization, Δvap U∘. Using the
value of Δvap U∘ for H2O given in Table 11.10.3, calculate ΔU for the vaporization of liquid H2O at pressure p∘ to ideal gas in the
amount present in the gas phase of state 1. Also calculate ΔU for the condensation of ideal gaseous H2O in the amount present in the
gas phase of state 2 to liquid at pressure p∘.

k) Next, consider the dissolved O2 and CO2, for which gas standard states are used. Assume that the solutions are sufficiently dilute to
have infinite-dilution behavior; then the partial molar internal energy of either solute in the solution at the standard pressure p∘=1bar
is equal to the standard partial molar internal energy based on a solute standard state (Sec. 9.7.1). Values ofΔsol U∘ are listed in Table
11.10.3. FindΔU for the dissolution of O2 from its gas standard state to ideal-dilute solution at pressure p∘ in the amount present in the
aqueous phase of state 1. FindΔU for the desolution (transfer from solution to gas phase) of O2 and of CO2 from ideal-dilute solution
at pressure p∘, in the amounts present in the aqueous phase of state 2, to their gas standard states.

l) Calculate the internal energy changes when the liquid phases of state 1 (n-hexane and aqueous solution) are compressed from p∘ to
p1 and the aqueous solution of state 2 is decompressed from p2 to p∘. Use an approximate expression from Table 7.6.1, and treat the
cubic expansion coefficient of the aqueous solutions as being the same as that of pure water.

m) The final Washburn corrections are internal energy changes of the gas phases of states 1 and 2. H2O has such low mole fractions in
these phases that you can ignore H2O in these calculations; that is, treat the gas phase of state 1 as pure O2 and the gas phase of state
2 as a binary mixture of O2 and CO2.

One of the internal energy changes is for the compression of gaseous O2, starting at a pressure low enough for ideal-gas behavior
(Um=Um

∘ ) and ending at pressure p1 to form the gas phase present in state 1. Use the approximate expression for Um−Um
∘ (g) in Table

7.9.1 to calculate ΔU=U(p1)− nUm
∘ (g); a value of dB/dT for pure O2 is listed in Table 11.10.3.

The other internal energy change is for a process in which the gas phase of state 2 at pressure p2 is expanded until the pressure
is low enough for the gas to behave ideally, and the mixture is then separated into ideal-gas phases of pure O2 and CO2. The molar
internal energies of the separated low-pressure O2 and CO2 gases are the same as the standard molar internal energies of these gases.
The internal energy of unmixing ideal gases is zero (Eq. 11.1.11). The dependence of the internal energy of the gas mixture is given,
to a good approximation, by U=∑i Ui

∘ (g)− n pTdB/dT , where B is the second virial coefficient of the gas mixture; this expression
is the analogy for a gas mixture of the approximate expression for Um − Um

∘ (g) in Table 7.9.1. Calculate the value of dB/dT for
the mixture of O2 and CO2 in state 2 (you need Eq. 9.3.23 on page 196 and the values of dBij/dT in Table 11.10.3) and evaluate
ΔU=∑i ni Ui

∘ (g)− U(p2) for the gas expansion.

n) Add the internal energy changes you calculated in parts j--m to find the total internal energy change of the Washburn corrections. Note
that most of the corrections occur in pairs of opposite sign and almost completely cancel one another. Which contributions are the
greatest in magnitude?

o) The internal energy change of the isothermal bomb process in the bomb vessel, corrected to the reference temperature of 298.15K,
is found to be ΔU(IBP,Tref)=−32.504kJ. Assume there are no side reactions or auxiliary reactions. From Eqs. 11.5.9 and 11.5.10,
calculate the standard molar internal energy of combustion of n-hexane at 298.15K.

p) From Eq. 11.5.13, calculate the standard molar enthalpy of combustion of n-hexane at 298.15K.
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Properties of the bomb vessel:
internal volume............................................................ 350.0cm3
mass of n-hexane placed in bomb ............................... 0.6741g
mass of water placed in bomb ..................................... 1.0016g

Properties of liquid n-hexane:
molar mass................................................................... M=86.177g⋅mol−1

density.......................................................................... 𝜌=0.6548g⋅cm−3

cubic expansion coefficient.......................................... 𝛼=1.378×10−3K−1

Properties of liquid H2O:
molar mass................................................................... M=18.0153g⋅mol−1

density.......................................................................... 𝜌=0.9970g⋅mol−1

cubic expansion coefficient.......................................... 𝛼=2.59×10−4K−1

standard molar energy of vaporization ........................ Δvap U∘=41.53kJ⋅mol−1
Second virial coefficients, 298.15K

BAA............................................................................... −1158cm3 ⋅mol−1

BBB............................................................................... −16cm3⋅mol−1
dBBB/dT ...................................................................... 0.21cm3⋅K−1⋅mol−1
BCC............................................................................... −127cm3⋅mol−1
dBCC/dT ...................................................................... 0.97cm3⋅K−1⋅mol−1
BAB............................................................................... −40cm3⋅mol−1
BAC............................................................................... −214cm3⋅mol−1
BBC............................................................................... −43.7cm3⋅mol−1
dBBC/dT ...................................................................... 0.4cm3⋅K−1⋅mol−1

Henry's law constants at 1bar (solvent=H2O):
O2................................................................................. km,B=796bar⋅kg⋅mol−1

CO2 .............................................................................. km,C=29.7bar⋅kg⋅mol−1
Partial molar volumes of solutes in water

O2................................................................................. VB
∞=31 cm3⋅mol−1

CO2 .............................................................................. VC
∞=33 cm3⋅mol−1

Standard molar energies of solution (solvent=H2O):
O2................................................................................. ΔsolU∘=−9.7kJ⋅mol−1
CO2 .............................................................................. ΔsolU∘=−17.3kJ⋅mol−1

Table 11.10.3. Data for Problem 11.10.7. The values of intensive properties are for a temperature of 298.15K and a pressure of 30bar
unless otherwise stated. Subscripts: A = H2O, B = O2, C = CO2.

Problem 11.10.8. By combining the results of Prob. 11.10.7(p) with the values of standard molar enthalpies of formation from Appendix H,
calculate the standard molar enthalpy of formation of liquid n-hexane at 298.15K.

Problem 11.10.9. Consider the combustion of methane:

CH4(g)+2O2(g)→CO2(g)+2H2O(g)

Suppose the reaction occurs in a flowing gas mixture of methane and air. Assume that the pressure is constant at 1bar, the reactant mixture is at
a temperature of 298.15K and has stoichiometric proportions of methane and oxygen, and the reaction goes to completion with no dissociation.
For the quantity of gaseous product mixture containing 1mol CO2, 2mol H2O, and the nitrogen and other substances remaining from the air,
you may use the approximate formula Cp(P)=a+bT , where the coefficients have the values a=297.0J⋅K−1 and b=8.520×10−2J⋅K−2. Solve
Eq. 11.6.1 for T2 to estimate the flame temperature to the nearest kelvin.

Problem 11.10.10. The standard molar Gibbs energy of formation of crystalline mercury(II) oxide at 600.00K has the value Δf G∘=
−26.386kJ⋅mol−1. Estimate the partial pressure of O2 in equilibrium with HgO at this temperature: 2HgO(s)⇌2Hg(l)+O2(g).

Problem 11.10.11. The combustion of hydrogen is a reaction that is known to “go to completion.”

a) Use data in Appendix H to evaluate the thermodynamic equilibrium constant at 298.15K for the reaction

H2(g)+
1
2O2(g)→H2O(l)

b) Assume that the reaction is at equilibrium at 298.15K in a system in which the partial pressure of O2 is 1.0bar. Assume ideal-gas
behavior and find the equilibrium partial pressure of H2 and the number of H2 molecules in 1.0m3 of the gas phase.
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c) In the preceding part, you calculated a very small value (a fraction) for the number of H2molecules in 1.0m3. Statistically, this fraction
can be interpreted as the fraction of a given length of time during which one molecule is present in the system. Take the age of the
universe as 1.0×1010 years and find the total length of time in seconds, during the age of the universe, that a H2 molecule is present in
the equilibrium system. (This hypothetical value is a dramatic demonstration of the statement that the limiting reactant is essentially
entirely exhausted during a reaction with a large value of K .)

Problem 11.10.12. Let G represent carbon in the form of graphite and D represent the diamond crystal form. At 298.15K, the thermodynamic
equilibrium constant for G⇌D, based on a standard pressure p∘=1bar, has the value K =0.31. The molar volumes of the two crystal forms at
this temperature are Vm(G)=5.3×10−6m3⋅mol−1 and Vm(D)=3.4×10−6m3⋅mol−1.

a) Write an expression for the reaction quotient Qrxn as a function of pressure. Use the approximate expression of the pressure factor
given in Table 9.7.2.

b) Use the value of K to estimate the pressure at which the D and G crystal forms are in equilibrium with one another at 298.15K. (This
is the lowest pressure at which graphite could in principle be converted to diamond at this temperature.)

Problem 11.10.13. Consider the dissociation reaction N2O4(g)→2NO2(g) taking place at a constant temperature of 298.15K and a constant
pressure of 0.0500bar. Initially (at 𝜉=0) the system contains 1.000mol of N2O4 and no NO2. Other needed data are found in Appendix H.
Assume ideal-gas behavior.

a) For values of the advancement 𝜉 ranging from 0 to 1mol, at an interval of 0.1mol or less, calculate [G(𝜉)−G(0) ] to the nearest 0.01kJ.
A computer spreadsheet would be a convenient way to make the calculations.

b) Plot your values of G(𝜉)− G(0) as a function of 𝜉, and draw a smooth curve through the points.

c) On your curve, indicate the estimated position of 𝜉eq. Calculate the activities of N2O4 and NO2 for this value of 𝜉, use them to estimate
the thermodynamic equilibrium constant K , and compare your result with the value of K calculated from Eq. 11.8.11.
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Chapter 12
Equilibrium Conditions in Multicomponent Systems
This chapter applies equilibrium theory to a variety of chemical systems of more than one component. Two different
approaches will be used as appropriate: one based on the relation 𝜇i

α=𝜇i
β for transfer equilibrium, the other based on

∑i𝜈i𝜇i=0 or K=∏i ai
𝜈i for reaction equilibrium.

12.1 Effects of Temperature
For some of the derivations in this chapter, we will need an expression for the rate at which the ratio 𝜇i/T varies with
temperature in a phase of fixed composition maintained at constant pressure. This expression leads, among other
things, to an important relation between the temperature dependence of an equilibrium constant and the standard molar
reaction enthalpy.

12.1.1 Variation of μi/T with temperature
In a phase containing species i, either pure or in a mixture, the partial derivative of 𝜇i/T with respect to T at constant
p and a fixed amount of each species is given by12.1.1

�∂(𝜇i/T)
∂T �

p,{ni}
= 1T�

∂𝜇i
∂T �p,{ni}

− 𝜇i

T 2
(12.1.1)

This equality comes from a purely mathematical operation; no thermodynamics is involved. The partial derivative
(∂𝜇i/∂T)p,{ni} is equal to −Si (Eq. 9.2.48), so that Eq. 12.1.1 becomes

�∂(𝜇i/T)
∂T �

p,{ni}
=−Si

T − 𝜇i

T 2
=−TSi+𝜇i

T 2
(12.1.2)

The further substitution 𝜇i=Hi−TSi (Eq. 9.2.46) gives finally

�∂(𝜇i/T)
∂T �

p,{ni}
=− Hi

T 2
(12.1.3)

For a pure substance in a closed system, Eq. 12.1.3 when multiplied by the amount n becomes

�∂(G/T)∂T �
p
=− H

T 2
(12.1.4)

This is the Gibbs--Helmholtz equation.

12.1.2 Variation of μi
J/T with temperature

If we make the substitution 𝜇i=𝜇i
∘+RT lnai in Eq. 12.1.3 and rearrange, we obtain

d(𝜇i
∘/T)

dT =− Hi

T 2
−R�∂lnai

∂T �p,{ni}
(12.1.5)

12.1.1. This relation is obtained from the formula d(uv)/dx=u (dv/dx)+ v (du/dx) (Appendix E), where u is 1/T , v is 𝜇i, and x is T .
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Because 𝜇i
∘/T is a function only of T , its derivative with respect to T is itself a function only of T . We can therefore

use any convenient combination of pressure and composition in the expression on the right side of Eq. 12.1.5 in order
to evaluate d(𝜇i

∘/T)/dT at a given temperature.
If species i is a constituent of a gas mixture, we take a constant pressure of the gas that is low enough for the gas to

behave ideally. Under these conditions Hi is the standard molar enthalpy Hi
∘ (Eq. 9.3.7). In the expression for activity,

ai (g)=𝛤i (g)𝜙i pi/p (Table 9.7.1), the pressure factor 𝛤i (g) is constant when p is constant, the fugacity coefficient
𝜙i for the ideal gas is unity, and pi/p=yi is constant at constant {ni}, so that the partial derivative [∂lnai(g)/∂T]p,{ni}
is zero.

For component i of a condensed-phase mixture, we take a constant pressure equal to the standard pressure p∘, and
a mixture composition in the limit given by Eqs. 9.5.20–9.5.24 in which the activity coefficient is unity. Hi is then
the standard molar enthalpy Hi

∘, and the activity is given by an expression in Table 9.7.1 with the pressure factor and
activity coefficient set equal to 1: ai=xi, aAxA, ax,BxB, ac,BcB/c∘, or am,BmB/m∘.12.1.2 With the exception of ac,B, these
activities are constant as T changes at constant p and {ni}.

Thus for a gas-phase species, or a species with a standard state based on mole fraction or molality, [∂ ln ai (g)/
∂T]p,{ni} is zero and Eq. 12.1.5 becomes

d(𝜇i
∘/T)

dT =−Hi
∘

T 2
(12.1.6)

(standard state not based
on concentration)

Equation 12.1.6, as the conditions of validity indicate, does not apply to a solute standard state based on concentration,
except as an approximation. The reason is the volume change that accompanies an isobaric temperature change. We
can treat this case by considering the following behavior of ln (cB/c∘):

�∂ ln(cB/c∘)
∂T �

p,{ni}
= 1cB

�∂cB
∂T �p,{ni}

= 1
nB/V

�∂(nB/V)
∂T �

p,{ni}

= V �∂(1/V)∂T �
p,{ni}
=− 1V �

∂V
∂T�p,{ni}

= −𝛼 (12.1.7)

Here 𝛼 is the cubic expansion coefficient of the solution (Eq. 7.1.1). If the activity coefficient is to be unity, the
solution must be an ideal-dilute solution, and 𝛼 is then 𝛼A

∗, the cubic expansion coefficient of the pure solvent. Eq.
12.1.5 for a nonelectrolyte becomes

d(𝜇c,B
∘ /T)
dT =−HB

∘

T 2
+R𝛼A

∗ (12.1.8)

12.1.3 Variation of lnK with temperature
The thermodynamic equilibrium constant K, for a given reaction equation and a given choice of reactant and product
standard states, is a function of T and only of T . By equating two expressions for the standard molar reaction Gibbs
energy, Δr G∘=∑i𝜈i𝜇i

∘ and Δr G∘=−RT lnK (Eqs. 11.8.3 and 11.8.10), we obtain

lnK=− 1RT�
i
𝜈i𝜇i

∘ (12.1.9)

The rate at which lnK varies with T is then given by

dlnK
dT =− 1R�

i
𝜈i

d(𝜇i
∘/T)

dT (12.1.10)

Combining Eq. 12.1.10 with Eqs. 12.1.6 or 12.1.8, and recognizing that ∑i𝜈i Hi
∘ is the standard molar reaction

enthalpy Δr H∘, we obtain the final expression for the temperature dependence of lnK:

dlnK
dT =

Δr H∘
RT 2

−𝛼A
∗ � vi

solutes,
conc. basis

(12.1.11)

12.1.2. If solute B is an electrolyte, am,B is given instead by Eq. 10.3.10; like am,B for a nonelectrolyte, it is constant as T changes at constant
p and {ni}.
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Clausius–Clapeyron equation van't Hoff equation

Δvap H≈−R dln (p/p∘)
d(1/T) Δvap H∘=−R dlnK

d(1/T)

Derivation assumes Vm(g)≫Vm(l) and ideal-
gas behavior. An exact relation.

Δvap H is the difference of the molar
enthalpies of the real gas and the liquid at
the saturation vapor pressure of the liquid.

Δvap H ∘ is the difference of the molar
enthalpies of the ideal gas and the liquid at
pressure p∘.

p is the saturation vapor pressure of the
liquid.

K is equal to a (g)/a(l)=( f /p∘)/𝛤(l), and
is only approximately equal to p/p∘.

Table 12.1.1. Comparison of the Clausius--Clapeyron and van't Hoff equations for vaporization of a liquid.

The sum on the right side includes only solute species whose standard states are based on concentration. The
expression is simpler if all solute standard states are based on mole fraction or molality:

dlnK
dT =

Δr H∘
RT 2

(12.1.12)
(no solute standard states
based on concentration)

We can rearrange Eq. 12.1.12 to

Δr H∘=RT 2 dlnK
dT

(12.1.13)
(no solute standard states
based on concentration)

We can convert this expression for Δr H∘ to an equivalent form by using the mathematical identity d(1/T)=−(1/
T 2)dT :

Δr H∘=−R dlnK
d(1/T)

(12.1.14)
(no solute standard states
based on concentration)

Equations 12.1.13 and 12.1.14 are two forms of the van't Hoff equation. They allow us to evaluate the standard molar
reaction enthalpy of a reaction by a noncalorimetric method from the temperature dependence of lnK. For example,
we can plot lnK versus 1/T ; then according to Eq. 12.1.14, the slope of the curve at any value of 1/T is equal to
−Δr H∘/R at the corresponding temperature T .

A simple way to derive the equation for this last procedure is to substitute Δr G∘=Δr H∘− TΔr S∘ in
Δr G∘=−RT lnK and rearrange to

lnK=−Δr H∘
R �1T�+

Δr S∘
R (12.1.15)

Suppose we plot lnK versus 1/T . In a small temperature interval in which Δr H∘ and Δr S∘ are practi-
cally constant, the curve will appear linear. According to Eq. 12.1.15, the curve in this interval has a
slope of −ΔrH∘/R, and the tangent to a point on the curve has its intercept at 1/T =0 equal toΔrS∘/R.

When we apply Eq. 12.1.14 to the vaporization process A(l)→A(g) of pure A, it resembles the Clausius–Clapeyron
equation for the same process (Eq. 8.4.15 on page 177). These equations are not exactly equivalent, however, as
the comparison in Table 12.1.1 on page 293 shows.

12.2 Solvent Chemical Potentials from Phase Equilibria
Section 9.6.3 explained how we can evaluate the activity coefficient𝛾m,B of a nonelectrolyte solute of a binary solution
if we know the variation of the osmotic coefficient of the solution from infinite dilution to the molality of interest. A
similar procedure for the mean ionic activity coefficient of an electrolyte solute was described in Sec. 10.6.
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Figure 12.2.1. Integration path abcde at constant pressure for determining 𝜇A
∗ −𝜇A at temperature T ′ from the freezing point Tf of a

solution (schematic). The dashed extensions of the curves represent unstable states.

The physical measurements needed to find the osmotic coefficient 𝜙m of a binary solution must be directed to the
calculation of the quantity 𝜇A

∗ −𝜇A, the difference between the chemical potentials of the pure solvent and the solvent
in the solution at the temperature and pressure of interest. This difference is positive, because the presence of the solute
reduces the solvent's chemical potential.

To calculate 𝜙m from 𝜇A
∗ −𝜇A, we use Eq. 9.6.16 on page 213 for a nonelectrolyte solute, or Eq. 10.6.1 on page

237 for an electrolyte solute. Both equations are represented by

𝜙m=
𝜇A
∗ −𝜇A

RTMA𝜈mB
(12.2.1)

where 𝜈 for a nonelectrolyte is 1 and for an electrolyte is the number of ions per formula unit.
The sequence of steps, then, is (1) the determination of 𝜇A

∗ −𝜇A over a range of molality at constant T and p, (2)
the conversion of these values to 𝜙m using Eq. 12.2.1, and (3) the evaluation of the solute activity coefficient12.2.1 by
a suitable integration from infinite dilution to the molality of interest.

Sections 12.2.1 and 12.2.2 will describe freezing-point and osmotic-pressure measurements, two much-used
methods for evaluating 𝜇A

∗ −𝜇A in a binary solution at a given T and p. The isopiestic vapor-pressure method was
described in Sec. 9.6.4. The freezing-point and isopiestic vapor-pressure methods are often used for electrolyte solu-
tions, and osmotic pressure is especially useful for solutions of macromolecules.

12.2.1 Freezing-point measurements
This section explains how we can evaluate 𝜇A

∗ −𝜇A for a solution of a given composition at a given T and p from the
freezing point of the solution combined with additional data obtained from calorimetric measurements.

Consider a binary solution of solvent A and solute B. We assume that when this solution is cooled at constant
pressure and composition, the solid that first appears is pure A. For example, for a dilute aqueous solution the solid
would be ice. The temperature at which solid A first appears is Tf, the freezing point of the solution. This temperature
is lower than the freezing point Tf

∗ of the pure solvent, a consequence of the lowering of 𝜇A by the presence of the
solute. Both Tf and Tf

∗ can be measured experimentally.
Let T ′ be a temperature of interest that is equal to or greater than Tf

∗. We wish to determine the value of 𝜇A
∗ (l,

T ′)−𝜇A(sln,T ′), where 𝜇A
∗ (l,T ′) refers to pure liquid solvent and 𝜇A(sln,T ′) refers to the solution.

Figure 12.2.1 on page 294 explains the principle of the procedure. The figure shows 𝜇A/T for the solvent in the
pure solid phase, in the pure liquid phase, and in the fixed-composition solution, plotted as functions of T at constant
p. Since 𝜇A is the same in the solution and solid phases at temperature Tf, and is the same in the pure liquid and solid
phases at temperature Tf

∗, the curves intersect at these temperatures as shown.

12.2.1. A measurement of 𝜇A
∗ −𝜇A also gives us the solvent activity coefficient, based on the pure-solvent reference state, through the relation

𝜇A=𝜇A
∗ +RT ln(𝛾AxA) (Eq. 9.5.15).
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Figure 12.2.2. Apparatus to measure osmotic pressure (schematic). The dashed line represents a membrane permeable only to the solvent
A. The cross-hatched rectangles represent moveable pistons.

Formulas for the slopes of the three curves, from Eq. 12.1.3 on page 291, are included in the figure. The desired
value of 𝜇A

∗ (l,T ′)−𝜇A(sln,T ′) is the product of T ′ and the difference of the values of 𝜇A/T at points e and a. To find
this difference, we integrate the slope d(𝜇A/T)/dT over T along the path abcde:

𝜇A
∗ (l,T ′)

T ′ − 𝜇A(sln,T ′)
T ′ = −�

T ′

Tf
∗ HA(sln)

T 2
dT −�

Tf
∗

Tf HA(sln)
T 2

dT

−�
Tf

Tf
∗ HA
∗(s)
T 2

dT −�
Tf
∗

T ′ HA
∗(l)
T 2

dT (12.2.2)

By combining integrals that have the same range of integration, we turn Eq. 12.2.2 into

𝜇A
∗ (l,T ′)

T ′ − 𝜇A(sln,T ′)
T ′ = �

Tf

Tf
∗ HA(sln)−HA

∗(s)
T 2

dT

+�
Tf
∗

T ′ HA(sln)−HA
∗(l)

T 2
dT (12.2.3)

For convenience of notation, this book will use Δsol,A H to denote the molar enthalpy difference HA(sln) − HA
∗(s).

Δsol,A H is the molar differential enthalpy of solution of solid A in the solution at constant T and p. The first integral
on the right side of Eq. 12.2.3 requires knowledge of Δsol,A H over a temperature range, but the only temperature
at which it is practical to measure this quantity calorimetrically is at the equilibrium transition temperature Tf. It is
usually sufficient to assume Δsol,A H is a linear function of T :

Δsol,A H(T)=Δsol,A H(Tf)+Δsol,ACp (T −Tf) (12.2.4)

The molar differential heat capacity of solution Δsol,A Cp =Cp,A(sln) − Cp,A(s) is treated as a constant that can be
determined from calorimetric measurements.

The quantity HA(sln)−HA
∗(l) in the second integral on the right side of Eq. 12.2.3 is the molar differential enthalpy

of dilution of the solvent in the solution, Δdil H (see Eq. 11.4.7). This quantity can be measured calorimetrically at
any temperature higher than Tf

∗. Making this substitution in Eq. 12.2.3 together with that of Eq. 12.2.4, carrying out
the integration of the first integral and rearranging, we obtain finally

𝜇A
∗ (l,T ′)−𝜇A(sln,T ′) = T ′ [Δsol,A H(Tf)−TfΔsol,A Cp]�

1
Tf

− 1Tf
∗�

+T ′Δsol,A Cp ln
Tf
∗

Tf
+T ′�

Tf
∗

T ′ ΔdilH
T 2

dT (12.2.5)

12.2.2 Osmotic-pressure measurements
A second method for evaluating 𝜇A

∗ −𝜇A uses the solution property called osmotic pressure. A simple apparatus to
measure the osmotic pressure of a binary solution is shown schematically in Fig. 12.2.2. The system consists of two
liquid phases separated by a semipermeable membrane. Phase α is pure solvent and phase β is a solution with the same
solvent at the same temperature. The semipermeable membrane is permeable to the solvent and impermeable to the
solute.
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The presence of the membrane makes this system different from the multiphase, multicomponent system of Sec.
9.2.7, used there to derive conditions for transfer equilibrium. By a modification of that procedure, we can derive
the conditions of equilibrium for the present system. We take phase β as the reference phase because it includes both
solvent and solute. In order to prevent expansion work in the isolated system, both pistons shown in the figure must be
fixed in stationary positions. This keeps the volume of each phase constant: dV α=dV β=0. Equation 9.2.419.2.41 on
page 190, expressing the total differential of the entropy in an isolated multiphase, multicomponent system, becomes

dS= T β −T α

T β dSα+ 𝜇A
β −𝜇A

α

T β dnA
α (12.2.6)

In an equilibrium state, the coefficients (T β − T α)/T β and (𝜇A
β −𝜇A

α)/T β must be zero. Therefore, in an equilibrium
state the temperature is the same in both phases and the solvent has the same chemical potential in both phases. The
presence of the membrane, however, allows the pressures of the two phases to be unequal in the equilibrium state.

Suppose we start with both phases shown in Fig. 12.2.2 at the same temperature and pressure. Under these condi-
tions, the value of𝜇A is less in the solution than in the pure liquid, and a spontaneous flow of solvent will occur through
the membrane from the pure solvent to the solution. This phenomenon is called osmosis.12.2.2 If we move the right-
hand piston down slightly in order to increase the pressure p′′ of the solution in phase β, 𝜇A increases in this phase.
The osmotic pressure of the solution, 𝛱, is defined as the additional pressure the solution must have, compared to
the pressure p′ of the pure solvent at the same temperature, to establish an equilibrium state with no flow of solvent
in either direction through the membrane: p′′= p′+𝛱.

In practice, the membrane may not be completely impermeable to a solute. All that is required for the
establishment of an equilibrium state with different pressures on either side of the membrane is that
solvent transfer equilibrium be established on a short time scale compared to the period of observation,
and that the amount of solute transferred during this period be negligible.

The osmotic pressure𝛱 is an intensive property of a solution whose value depends on the solution's temperature,
pressure, and composition. Strictly speaking, 𝛱 in an equilibrium state of the system shown in Fig. 12.2.2 refers
to the osmotic pressure of the solution at pressure p′, the pressure of the pure solvent.In other words, the osmotic
pressure of a solution at temperature T and pressure p′ is the additional pressure that would have to be exerted on the
solution to establish transfer equilibrium with pure solvent that has temperature T and pressure p′. A solution has the
property called osmotic pressure regardless of whether this additional pressure is actually present, just as a solution
has a freezing point even when its actual temperature is different from the freezing point.

Because in an equilibrium state the solvent chemical potential must be the same on both sides of the semipermeable
membrane, there is a relation between chemical potentials and osmotic pressure given by

𝜇A(p′′)=𝜇A(p′+𝛱)=𝜇A
∗ (p′) (12.2.7)

(equilibrium state)

We can use this relation to derive an expression for 𝜇A
∗ (p′)−𝜇A(p′) as a function of 𝛱. The dependence of 𝜇A on

pressure is given according to Eq. 9.2.49 by

�∂𝜇A
∂ p �T ,{ni}

=VA (12.2.8)

where VA is the partial molar volume of the solvent in the solution. Rewriting this equation in the form d𝜇A=VAdp
and integrating at constant temperature and composition from p′ to p′+𝛱, we obtain

𝜇A(p′+𝛱)−𝜇A(p′)=�p′

p′+𝛱
VA dp (12.2.9)

Substitution from Eq. 12.2.7 changes this to

𝜇A
∗ (p′)−𝜇A(p′)=�p′

p′+𝛱
VA dp (12.2.10)

(constant T )

12.2.2. Greek for push.
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which is the desired expression for 𝜇A
∗ −𝜇A at a single temperature and pressure. To evaluate the integral, we need an

experimental value of the osmotic pressure𝛱 of the solution. If we assume VA is constant in the pressure range from
p′ to p′+𝛱, Eq. huniniti becomes simply

𝜇A
∗ (p′)−𝜇A(p′)=VA𝛱 (12.2.11)

12.3 Binary Mixture in Equilibrium with a Pure Phase
This section considers a binary liquid mixture of components A and B in equilibrium with either pure solid A or pure
gaseous A. The aim is to find general relations among changes of temperature, pressure, and mixture composition in
the two-phase equilibrium system that can be applied to specific situations in later sections.

In this section, 𝜇A is the chemical potential of component A in the mixture and 𝜇A
∗ is for the pure solid or gaseous

phase. We begin by writing the total differential of 𝜇A/T with T , p, and xA as the independent variables. These
quantities refer to the binary liquid mixture, and we have not yet imposed a condition of equilibrium with another
phase. The general expression for the total differential is

d(𝜇A/T)=�
∂(𝜇A/T)
∂T �

p,xA

dT +�∂(𝜇A/T)
∂ p �

T ,xA

dp+�∂(𝜇A/T)
∂xA

�
T ,p

dxA (12.3.1)

With substitutions from Eqs. 9.2.49 and 12.1.3, this becomes

d(𝜇A/T)=−HA
T 2

dT + VA
T dp+�∂(𝜇A/T)

∂xA
�

T ,p
dxA (12.3.2)

Next we write the total differential of 𝜇A
∗ /T for pure solid or gaseous A. The independent variables are T and p; the

expression is like Eq. 12.3.2 with the last term missing:

d(𝜇A
∗ /T)=−HA

∗

T 2
dT + VA

∗

T dp (12.3.3)

When the two phases are in transfer equilibrium, 𝜇A and 𝜇A
∗ are equal. If changes occur in T , p, or xA while the phases

remain in equilibrium, the condition d(𝜇A/T)=d(𝜇A
∗ /T)must be satisfied. Equating the expressions on the right sides

of Eqs. 12.3.2 and 12.3.3 and combining terms, we obtain the equation

HA −HA
∗

T 2
dT − VA −VA

∗

T dp=�∂(𝜇A/T)
∂xA

�
T ,p

dxA (12.3.4)

which we can rewrite as

Δsol,AH
T 2

dT −Δsol,AV
T dp=�∂(𝜇A/T)

∂xA
�

T ,p
dxA

(12.3.5)
(phases in
equilibrium)

Here Δsol,A H is the molar differential enthalpy of solution of solid or gaseous A in the liquid mixture, and Δsol,AV is
the molar differential volume of solution. Equation 12.3.5 is a relation between changes in the variables T , p, and xA,
only two of which are independent in the equilibrium system.

Suppose we set dp equal to zero in Eq. 12.3.5 and solve for dT /dxA. This gives us the rate at which T changes
with xA at constant p:

� ∂T
∂xA
�

p
= T 2
Δsol,AH �

∂(𝜇A/T)
∂xA

�
T ,p

(12.3.6)
(phases in
equilibrium)

We can also set dT equal to zero in Eq. 12.3.5 and find the rate at which p changes with xA at constant T :

� ∂ p
∂xA
�

T
=− T
Δsol,A V �

∂(𝜇A/T)
∂xA

�
T ,p

(12.3.7)
(phases in
equilibrium)
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Figure 12.4.1. Freezing-point depression and boiling-point elevation of an aqueous solution. Solid curves: dependence on temperature of
the chemical potential of H2O (A) in pure phases and in an aqueous solution at 1bar. Dashed curves: unstable states. The 𝜇A values have
an arbitrary zero. The solution curve is calculated for an ideal-dilute solution of composition xA=0.9.

Equations 12.3.6 and 12.3.7 will be needed in Secs. 12.4 and 12.5.

12.4 Colligative Properties of a Dilute Solution

The colligative properties of a solution are usually considered to be:

1. Freezing-point depression: the decrease in the freezing point of the solution, compared to pure solvent at the
same pressure.

2. Boiling-point elevation: the increase in the boiling point of a solution containing nonvolatile solutes, compared
to pure solvent at the same pressure.

3. Vapor-pressure lowering: the decrease in the vapor pressure of a solution containing nonvolatile solutes, com-
pared to the vapor pressure of the pure solvent at the same temperature.

4. Osmotic pressure: the increase in the pressure of the solution that places the solvent in transfer equilibrium
with pure solvent at the same temperature and pressure as the original solution (page 296).

Note that all four properties are defined by an equilibrium between the liquid solution and a solid, liquid, or gas phase
of the pure solvent. The properties called colligative (Latin: tied together) have in common a dependence on the
concentration of solute particles that affects the solvent chemical potential.

Figure 12.4.1 on page 298 illustrates the freezing-point depression and boiling-point elevation of an aqueous
solution. At a fixed pressure, pure liquid water is in equilibrium with ice at the freezing point and with steam at the
boiling point. These are the temperatures at which H2O has the same chemical potential in both phases at this pressure.
At these temperatures, the chemical potential curves for the phases intersect, as indicated by open circles in the figure.
The presence of dissolved solute in the solution causes a lowering of the H2O chemical potential compared to pure
water at the same temperature. Consequently, the curve for the chemical potential of H2O in the solution intersects the
curve for ice at a lower temperature, and the curve for steam at a higher temperature, as indicated by open triangles.
The freezing point is depressed by ΔTf, and the boiling point (if the solute is nonvolatile) is elevated by ΔTb.
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Sections 12.4.1–12.4.4 will derive theoretical relations between each of the four colligative properties and solute
composition variables in the limit of infinite dilution. The expressions show that the colligative properties of a dilute
binary solution depend on properties of the solvent, are proportional to the solute concentration and molality, but do
not depend on the kind of solute.

Although these expressions provide no information about the activity coefficient of a solute, they are useful for
estimating the solute molar mass. For example, from a measurement of any of the colligative properties of a dilute
solution and the appropriate theoretical relation, we can obtain an approximate value of the solute molality mB. (It is
only approximate because, for a measurement of reasonable precision, the solution cannot be extremely dilute.) If we
prepare the solution with a known amount nA of solvent and a known mass of solute, we can calculate the amount of
solute from nB=nAMA mB; then the solute molar mass is the solute mass divided by nB.

12.4.1 Freezing-point depression
As in Sec. 12.2.1, we assume the solid that forms when a dilute solution is cooled to its freezing point is pure compo-
nent A.

Equation 12.3.6 on page 297 gives the general dependence of temperature on the composition of a binary liquid
mixture of A and B that is in equilibrium with pure solid A. We treat the mixture as a solution. The solvent is
component A, the solute is B, and the temperature is the freezing point Tf:

� ∂Tf
∂xA
�

p
= Tf

2

Δsol,AH �
∂(𝜇A/T)
∂xA

�
T ,p

(12.4.1)

Consider the expression on the right side of this equation in the limit of infinite dilution. In this limit, Tf becomes Tf
∗,

the freezing point of the pure solvent, and Δsol,AH becomesΔfus,AH, the molar enthalpy of fusion of the pure solvent.
To deal with the partial derivative on the right side of Eq. 12.4.1 in the limit of infinite dilution, we use the fact

that the solvent activity coefficient 𝛾A approaches 1 in this limit. Then the solvent chemical potential is given by the
Raoult's law relation

𝜇A=𝜇A
∗ +RT lnxA

(12.4.2)
(solution at infinite dilution)

where 𝜇A
∗ is the chemical potential of A in a pure-liquid reference state at the same T and p as the mixture.12.4.1

If the solute is an electrolyte, Eq. 12.4.2 can be derived by the same procedure as described in Sec. 9.4.6 for an
ideal-dilute binary solution of a nonelectrolyte. We must calculate xA from the amounts of all species present at infinite
dilution. In the limit of infinite dilution, any electrolyte solute is completely dissociated to its constituent ions: ion
pairs and weak electrolytes are completely dissociated in this limit. Thus, for a binary solution of electrolyte B with
𝜈 ions per formula unit, we should calculate xA from

xA=
nA

nA+𝜈nB
(12.4.3)

where nB is the amount of solute formula unit. (If the solute is a nonelectrolyte, we simply set 𝜈 equal to 1 in this
equation.)

From Eq. 12.4.2, we can write
�∂(𝜇A/T)
∂xA

�
T ,p
→R as xA→1 (12.4.4)

In the limit of infinite dilution, then, Eq. 12.4.1 becomes

lim
xA→1
� ∂Tf
∂xA
�

p
= R (Tf

∗)2
Δfus,A H (12.4.5)

It is customary to relate freezing-point depression to the solute concentration cB or molality mB. From Eq. 12.4.3, we
obtain

1−xA=
𝜈nB

nA+𝜈nB
(12.4.6)

12.4.1. At the freezing point of the mixture, the reference state is an unstable supercooled liquid.
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In the limit of infinite dilution, when 𝜈nB is much smaller than nA, 1−xA approaches the value 𝜈nB/nA. Then, using
expressions in Eq. 9.1.14 on page 181, we obtain the relations

dxA = −d(1−xA)=−𝜈d(nB/nA)
= −𝜈VA

∗dcB

= −𝜈MAdmB

(12.4.7)
(binary solution at
infinite dilution)

which transform Eq. 12.4.5 into the following:12.4.2

mcB→0�
∂Tf
∂cB
�

p
= −𝜈VA

∗R (Tf
∗)2

Δfus,A H

lim
mB→0
� ∂Tf
∂mB
�

p
= −𝜈MAR (Tf

∗)2
Δfus,AH (12.4.8)

We can apply these equations to a nonelectrolyte solute by setting 𝜈 equal to 1.
As cB or mB approaches zero, Tf approaches Tf

∗. The freezing-point depression (a negative quantity) is ΔTf =
Tf − Tf

∗. In the range of molalities of a dilute solution in which (∂Tf/∂mB)p is given by the expression on the right
side of Eq. 12.4.8, we can write

ΔTf=−𝜈MAR (Tf
∗)2

Δfus,A H mB (12.4.9)

The molal freezing-point depression constant or cryoscopic constant, Kf, is defined for a binary solution by

Kf =
def

− lim
mB→0

ΔTf
𝜈mB

(12.4.10)

and, from Eq. 12.4.9, has a value given by

Kf =
MAR (Tf

∗)2
Δfus,AH (12.4.11)

The value of Kf calculated from this formula depends only on the kind of solvent and the pressure. For H2O at 1bar,
the calculated value is Kb=1.860K⋅kg⋅mol−1 (Prob. 12.11.4 ).

In the dilute binary solution, we have the relation

ΔTf =−𝜈Kf mB
(12.4.12)

(dilute binary solution)

This relation is useful for estimating the molality of a dilute nonelectrolyte solution (𝜈=1) from a measurement of the
freezing point. The relation is of little utility for an electrolyte solute, because at any electrolyte molality that is high
enough to give a measurable depression of the freezing point, the mean ionic activity coefficient deviates greatly from
unity and the relation is not accurate.

12.4.2 Boiling-point elevation
We can apply Eq. 12.3.6 to the boiling point Tb of a dilute binary solution. The pure phase of A in equilibrium with
the solution is now a gas instead of a solid.12.4.3 Following the procedure of Sec. 12.4.1, we obtain

lim
mB→0
� ∂Tb
∂mB
�

p
= 𝜈MA R (Tb

∗)2
Δvap,AH (12.4.13)

where Δvap,A H is the molar enthalpy of vaporization of pure solvent at its boiling point Tb
∗.

The molal boiling-point elevation constant or ebullioscopic constant, Kb, is defined for a binary solution by

Kb =
def
lim

mB→0

ΔTb
𝜈mB

(12.4.14)

12.4.2. A small dependence of VA
∗ on T has been ignored.

12.4.3. We must assume the solute is nonvolatile or has negligible partial pressure in the gas phase.
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./bio/raoult
Figure 12.4.2.

where ΔTb=Tb −Tb
∗ is the boiling-point elevation. Accordingly, Kb has a value given by

Kb=
MA R (Tb

∗)2
Δvap,AH (12.4.15)

For the boiling point of a dilute solution, the analogy of Eq. 12.4.12 is

ΔTb=𝜈Kb mB
(12.4.16)

(dilute binary solution)

Since Kf has a larger value than Kb (because Δfus,A H is smaller than Δvap,A H), the measurement of freezing-point
depression is more useful than that of boiling-point elevation for estimating the molality of a dilute solution.

12.4.3 Vapor-pressure lowering
In a binary two-phase system in which a solution of volatile solvent A and nonvolatile solute B is in equilibrium with
gaseous A, the vapor pressure of the solution is equal to the system pressure p.

Equation 12.3.7 on page 297 gives the general dependence of p on xA for a binary liquid mixture in equilibrium
with pure gaseous A. In this equation, Δsol,AV is the molar differential volume change for the dissolution of the gas in
the solution. In the limit of infinite dilution, −Δsol,AV becomesΔvap,AV , the molar volume change for the vaporization
of pure solvent. We also apply the limiting expressions of Eqs. 12.4.4 and 12.4.7. The result is

lim
cB→0
� ∂ p
∂cB
�

T
=−𝜈VA

∗RT
Δvap,AV lim

mB→0
� ∂ p
∂mB
�

T
=−𝜈MA RT
Δvap,A V (12.4.17)

If we neglect the molar volume of the liquid solvent compared to that of the gas, and assume the gas is ideal, then we
can replace Δvap,A V in the expressions above by VA

∗ (g)=RT /pA
∗ and obtain

lim
cB→0
� ∂ p
∂cB
�

T
≈−𝜈VA

∗ pA
∗ lim

mB→0
� ∂ p
∂mB
�

T
≈−𝜈MA pA

∗ (12.4.18)

where pA
∗ is the vapor pressure of the pure solvent at the temperature of the solution.

Thus, approximate expressions for vapor-pressure lowering in the limit of infinite dilution are

Δ p≈−𝜈VA
∗ pA
∗ cB and Δ p≈−𝜈MA pA

∗mB (12.4.19)

We see that the lowering in this limit depends on the kind of solvent and the solution composition, but not on the kind
of solute.

12.4.4 Osmotic pressure
The osmotic pressure𝛱 is an intensive property of a solution and was defined in Sec. 12.2.2. In a dilute solution of
low𝛱, the approximation used to derive Eq. 12.2.11 (that the partial molar volume VA of the solvent is constant in
the pressure range from p to p+𝛱) becomes valid, and we can write

𝛱=𝜇A
∗ −𝜇A
VA

(12.4.20)

In the limit of infinite dilution, 𝜇A
∗ −𝜇A approaches −RT ln xA (Eq. 12.4.2) and VA becomes the molar volume VA

∗ of
the pure solvent. In this limit, Eq. 12.4.20 becomes

𝛱=−RT lnxA
VA
∗ (12.4.21)

from which we obtain the equation
lim
xA→1
�∂𝛱∂xA

�
T ,p
=−RT

VA
∗ (12.4.22)
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The relations in Eq. 12.4.7 transform Eq. 12.4.22 into

lim
cB→0
�∂𝛱∂cB

�
T ,p
=𝜈RT (12.4.23)

lim
mB→0
� ∂𝛱∂mB

�
T ,p
= 𝜈RTMA

VA
∗ =𝜈𝜌A

∗RT (12.4.24)

Equations 12.4.23 and 12.4.24 show that the osmotic pressure becomes independent of the kind of solute as the
solution approaches infinite dilution. The integrated forms of these equations are

𝛱=𝜈cB RT (12.4.25)
(dilute binary solution)

𝛱= RTMA
VA
∗ 𝜈mB=𝜌A

∗RT 𝜈mB
(12.4.26)

(dilute binary solution)

Equation 12.4.25 is van't Hoff's equation for osmotic pressure. If there is more than one solute species, 𝜈cB can be
replaced by∑i=/A ci and 𝜈mB by∑i=/A mi in these expressions.

In Sec. 9.6.3, it was stated that𝛱/mB is equal to the product of 𝜙m and the limiting value of𝛱/mB at
infinite dilution, where 𝜙m=(𝜇A

∗ −𝜇A)/RTMA∑i=/A mi is the osmotic coefficient. This relation follows
directly from Eqs. 12.2.11 and 12.4.26.

12.5 Solid–Liquid Equilibria
A freezing-point curve (freezing point as a function of liquid composition) and a solubility curve (composition of
a solution in equilibrium with a pure solid as a function of temperature) are different ways of describing the same
physical situation. Thus, strange as it may sound, the composition xA of an aqueous solution at the freezing point is
the mole fraction solubility of ice in the solution.

12.5.1 Freezing points of ideal binary liquid mixtures
Section 12.2.1 described the use of freezing-point measurements to determine the solvent chemical potential in a
solution of arbitrary composition relative to the chemical potential of the pure solvent. The way in which freezing
point varies with solution composition in the limit of infinite dilution was derived in Sec. 12.4.1. Now let us consider
the freezing behavior over the entire composition range of an ideal liquid mixture.

The general relation between temperature and the composition of a binary liquid mixture, when the mixture is in
equilibrium with pure solid A, is given by Eq. 12.3.6:

� ∂T
∂xA
�

p
= T 2
Δsol,A H�

∂(𝜇A/T)
∂xA

�
T ,p

(12.5.1)

We can replace T by Tf,A to indicate this is the temperature at which the mixture freezes to form solid A. From
the expression for the chemical potential of component A in an ideal liquid mixture, 𝜇A=𝜇A

∗ +R T ln xA, we have
[∂(𝜇A/T)/∂xA]T ,p=R/xA. With these substitutions, Eq. 12.5.1 becomes

�∂Tf,A
∂xA
�

p
= RTf,A

2

xAΔsol,A H
(12.5.2)

(ideal liquid mixture)
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Figure 12.5.1. Dependence on composition of the freezing point of binary liquid mixtures with benzene as component A.12.5.1 Solid curve:
calculated for an ideal liquid mixture (Eq. 12.5.2), taking the temperature variation of Δsol,A H into account. Open circles: B = toluene.
Open triangles: B = cyclohexane.

12.5.1. Experimental data from Ref. [103].

Figure 12.5.1 on page 303 compares the freezing behavior of benzene predicted by this equation with experimental
freezing-point data for mixtures of benzene–toluene and benzene–cyclohexane. Any constituent that forms an ideal
liquid mixture with benzene should give freezing points for the formation of solid benzene that fall on the curve in this
figure. The agreement is good over a wide range of compositions for benzene–toluene mixtures (open circles), which
are known to closely approximate ideal liquid mixtures. The agreement for benzene–cyclohexane mixtures (open
triangles), which are not ideal liquid mixtures, is confined to the ideal-dilute region.

If we make the approximation that Δsol,A H is constant over the entire range of mixture composition, we can
replace it by Δfus,AH, the molar enthalpy of fusion of pure solid A at its melting point. This approximation allows us
to separate the variables in Eq. 12.5.2 and integrate as follows from an arbitrary mixture composition xA′ at the freezing
point Tf,A′ to pure liquid A at its freezing point Tf,A

∗ :

�
Tf,A′

Tf,A
∗ dT

T 2
= R
Δfus,A H �xA′

1 dxA
xA

(12.5.3)

The result, after some rearrangement, is

ln xA=
Δfus,A H

R (((((((((( 1Tf,A
∗ − 1Tf,A))))))))))

(12.5.4)
(ideal liquid mixture,
Δsol,A H=Δfus,A H)

This equation was used to generate the curves shown in Fig. 12.5.2 on page 303. Although the shape of the freezing-
point curve (Tf,A versus xB) shown in Fig. 12.5.1 is concave downward, Fig. 12.5.2 shows this is not always the case.
When Δfus,A H/RTf,A

∗ is less than 2, the freezing-point curve at low xB is concave upward.

Figure 12.5.2. Freezing-point curves of ideal binary liquid mixtures. The solid is component A. Each curve is calculated from Eq. 12.5.4
and is labeled with the value of Δfus,AH /RTf,A

∗ .
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12.5.2 Solubility of a solid nonelectrolyte

Suppose we find that a solution containing solute B at a particular combination of temperature, pressure, and compo-
sition can exist in transfer equilibrium with pure solid B at the same temperature and pressure. This solution is said
to be saturated with respect to the solid. We can express the solubility of the solid in the solvent by the value of the
mole fraction, concentration, or molality of B in the saturated solution. We can also define solubility as the maximum
value of the solute mole fraction, concentration, or molality that can exist in the solution without the possibility of
spontaneous precipitation.

This section considers the solubility of a solid nonelectrolyte. For the solution process B(s)→B(sln), the gen-
eral expression for the thermodynamic equilibrium constant is K=aB(sln)/aB(s).12.5.2 The activity of the pure solid
is aB(s) =𝛤B(s). Let us use a solute standard state based on mole fraction; then the solute activity is aB(sln) =
𝛤x,B𝛾x,B xB. From these relations, the solubility expressed as a mole fraction is

xB=
𝛤B(s)K
𝛤x,B𝛾x,B

(12.5.5)

If we measure the solubility at the standard pressure, the pressure factors𝛤B(s) and𝛤x,B are unity and the solubility
is given by

xB=
K
𝛾x,B

(12.5.6)
(solubility of solid B, p= p∘)

If the pressure is not exactly equal to p∘, but is not very much greater, the values of the pressure factors are close to
unity and Eq. 12.5.6 is a good approximation.

We can find the standard molar enthalpy of solution of B from the temperature dependence of the solubility.
Combining Eqs. 12.1.12 and 12.5.6, we obtain

Δsol,B H∘=RT 2 dln (𝛾x,B xB)
dT

(12.5.7)
(p= p∘)

The solubility may be small enough for us to be able to set the solute activity coefficient equal to 1, in which case Eq.
12.5.7 becomes

Δsol,B H∘=RT 2 dln xB
dT

(12.5.8)
(p= p∘,𝛾x,B=1)

If the solubility xB increases with increasing temperature, Δsol,B H∘ must be positive and the solution process is
endothermic. A decrease of solubility with increasing temperature implies an exothermic solution process. These
statements refer to a solid of low solubility; see page 284 for a discussion of the general relation between the tem-
perature dependence of solubility and the sign of the molar differential enthalpy of solution at saturation.

For a solute standard state based on molality, we can derive equations like Eqs. 12.5.7 and 12.5.8 with𝛾x,B replaced
by 𝛾m,B and xB replaced by mB/m∘. If we use a solute standard state based on concentration, the expressions become
slightly more complicated. The solubility in this case is given by

cB=
𝛤B(s)Kc∘
𝛤c,B𝛾c,B

(12.5.9)

From Eq. 12.1.11, we obtain, for a nonelectrolyte solid of low solubility, the relation

Δsol,B H∘=RT 2�dln (cB/c∘)
dT +𝛼A

∗� (12.5.10)
(p= p∘, 𝛾c,B=1)

12.5.2. In this and other expressions for equilibrium constants in this chapter, activities will be assumed to be for equilibrium states, although
not indicated by the “eq” subscripts used in Chap. 11.
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Figure 12.5.3. Ideal solubility of solid B as a function of T . The curves are calculated for two solids having the same molar enthalpy of
fusion (Δfus,BH =20kJ⋅mol−1) and the values of Tf,B

∗ indicated.

12.5.3 Ideal solubility of a solid
The ideal solubility of a solid at a given temperature and pressure is the solubility calculated on the assumptions that
(1) the liquid is an ideal liquid mixture, and (2) the molar differential enthalpy of solution equals the molar enthalpy of
fusion of the solid (Δsol,B H=Δfus,B H). These were the assumptions used to derive Eq. 12.5.4 for the freezing-point
curve of an ideal liquid mixture. In Eq. 12.5.4, we exchange the constituent labels A and B so that the solid phase is
now component B:

ln xB=
Δfus,B H

R (((((((((( 1Tf,B
∗ − 1T)))))))))) (12.5.11)

(ideal solubility of solid B)

Here Tf,B
∗ is the melting point of solid B.

According to Eq. huniniti, the ideal solubility of a solid is independent of the kind of solvent and increases with
increasing temperature. For solids with similar molar enthalpies of fusion, the ideal solubility is less at a given temper-
ature the higher is the melting point. This behavior is shown in Fig. 12.5.3 on page 305. In order for the experimental
solubility of a solid to agree even approximately with the ideal value, the solvent and solute must be chemically
similar, and the temperature must be close to the melting point of the solid so thatΔsol,BH is close in value to Δfus,B H.

From the freezing behavior of benzene--toluene mixtures shown by the open circles in Fig. 12.5.1 on
page 303, we can see that solid benzene has close to ideal solubility in liquid toluene at temperatures
not lower than about 20K below the melting point of benzene.

12.5.4 Solid compound of mixture components
Binary liquid mixtures are known in which the solid that appears when the mixture is cooled is a compound containing
both components in a fixed proportion. This kind of solid is called a solid compound, or stoichiometric addition
compound. Examples are salt hydrates (salts with fixed numbers of waters of hydration in the formula unit) and certain
metal alloys.

The composition of the liquid mixture in this kind of system is variable, whereas the composition of the solid
compound is fixed. Suppose the components are A and B, present in the liquid mixture at mole fractions xA and xB, and
the solid compound has the formula AaBb. We assume that in the liquid phase the compound is completely dissociated
with respect to the components; that is, that no molecules of formula AaBb exist in the liquid. The reaction equation
for the freezing process is

aA(mixt)+bB(mixt)→AaBb(s)

When equilibrium exists between the liquid and solid phases, the temperature is the freezing point Tf of the liquid. At
equilibrium, the molar reaction Gibbs energy defined by Δr G=∑i𝜈i𝜇i is zero:

−a𝜇A −b𝜇B+𝜇(s)=0 (12.5.12)
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Here 𝜇A and 𝜇B refer to chemical potentials in the liquid mixture, and 𝜇(s) refers to the solid compound.
How does the freezing point of the liquid mixture vary with composition? We divide both sides of Eq. 12.5.12 by

T and take differentials:

−ad(𝜇A/T)−bd(𝜇B/T)+d[𝜇(s)/T]=0 (12.5.13)
(phase equilibrium)

The pressure is constant. Then 𝜇A/T and 𝜇B/T are functions of T and xA, and 𝜇(s)/T is a function only of T . We
find expressions for the total differentials of these quantities at constant p with the help of Eq. 12.1.3 on page 291:

d(𝜇A/T) = −HA
T 2

dT + 1T�
∂𝜇A
∂xA
�

T ,p
dxA (12.5.14)

d(𝜇B/T) = −HB
T 2

dT + 1T�
∂𝜇B
∂xA
�

T ,p
dxA (12.5.15)

d[𝜇(s)/T] = −Hm(s)
T 2

dT (12.5.16)

When we substitute these expressions in Eq. 12.5.13 and solve for dT /dxA, setting T equal to Tf, we obtain

dTf
dxA
= Tf

aHA+bHB −Hm(s)
�a�∂𝜇A
∂xA
�

T ,p
+b�∂𝜇B

∂xA
�

T ,p
� (12.5.17)

The quantity aHA+bHB −Hm(s) in the denominator on the right side of Eq. 12.5.17 is Δsol H, the molar differential
enthalpy of solution of the solid compound in the liquid mixture. The two partial derivatives on the right side are
related through the Gibbs–Duhem equation xAd𝜇A+xBd𝜇B=0 (Eq. 9.2.27 on page 187), which applies to changes at
constant T and p. We rearrange the Gibbs–Duhem equation to d𝜇B=−(xA/xB)d𝜇A and divide by dxA:

�∂𝜇B
∂xA
�

T ,p
=−xA

xB
�∂𝜇A
∂xA
�

T ,p
(12.5.18)

Making this substitution in Eq. 12.5.17, we obtain the equation

dTf
dxA
= xATf
ΔsolH

� a
xA

− b
xB
��∂𝜇A
∂xA
�

T ,p
(12.5.19)

which can also be written in the slightly rearranged form

dTf
dxA
= bTf
Δsol H

�a
b − xA
1−xA

��∂𝜇A
∂xA
�

T ,p
(12.5.20)

Suppose we heat a sample of the solid compound to its melting point to form a liquid mixture of the same composition
as the solid. The molar enthalpy change of the fusion process is the molar enthalpy of fusion of the solid compound,
ΔfusH, a positive quantity. When the liquid has the same composition as the solid, the dissolution and fusion processes
are identical; under these conditions, Δsol H is equal to Δfus H and is positive.

Equation 12.5.20 shows that the slope of the freezing-point curve, Tf versus xA, is zero when xA/(1−xA) is equal to
a/b, or xA=a/(a+b);that is, when the liquid and solid have the same composition. Because (∂𝜇A/∂xA)T ,p is positive,
andΔsolH at this composition is also positive, we see from the equation that the slope decreases as xA increases. Thus,
the freezing-point curve has a maximum at the mixture composition that is the same as the composition of the solid
compound. This conclusion applies when both components of the liquid mixture are nonelectrolytes, and also when
one component is an electrolyte that dissociates into ions.

Now let us assume the liquid mixture is an ideal liquid mixture of nonelectrolytes in which 𝜇A obeys Raoult's law
for fugacity, 𝜇A=𝜇A

∗ +RT ln xA. The partial derivative (∂𝜇A/∂xA)T ,p then equals RT /xA, and Eq. 12.5.19 becomes

dTf
dxA
= RTf

2

Δsol H
� a

xA
− b

xB
� (12.5.21)

By making the approximations that Δsol H is independent of T and xA, and is equal to Δfus H, we can separate the
variables and integrate as follows:

�
Tf′

Tf′′ dTf

Tf
2 =

R
Δfus H ��xA′

xA′′ a
xA

dxA+�xB′

xB′′ b
xB

dxB� (12.5.22)
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Figure 12.5.4. Solid curve: freezing-point curve of a liquid melt of Zn and Mg that solidifies to the solid compound Zn2Mg.12.5.3 The
curve maximum (open circle) is at the compound composition xZn′′ =2/3 and the solid compound melting point Tf′′=861K. Dashed curve:
calculated using Eq. 12.5.23 with Δfus H =15.8kJ⋅mol−1.

12.5.3. Ref. [43], p. 603.

(The second integral on the right side comes from changing dxA to −dxB.) The result of the integration is

1
Tf′
= 1Tf′′

+ R
Δfus H ((((((((((a ln xA′′

xA′
+b ln xB′′

xB′ ))))))))))
(12.5.23)

(ideal liquid mixture in
equilibrium with solid
compound, ΔsolH=Δfus H)

Let Tf′ be the freezing point of a liquid mixture of composition xA′ and xB′ =1−xA′ , and let Tf′′ be the melting point of
the solid compound of composition xA′′=a/(a+b) and xB′′=b/(a+b). Figure 12.5.4 on page 307 shows an example
of a molten metal mixture that solidifies to an alloy of fixed composition. The freezing-point curve of this system is
closely approximated by Eq. 12.5.23.

12.5.5 Solubility of a solid electrolyte
Consider an equilibrium between a crystalline salt (or other kind of ionic solid) and a solution containing the solvated
ions:

M𝜈+X𝜈−(s)⇌𝜈+Mz+(aq)+𝜈− Xz−(aq)

Here 𝜈+ and 𝜈− are the numbers of cations and anions in the formula unit of the salt, and z+ and z− are the charge
numbers of these ions. The solution in equilibrium with the solid salt is a saturated solution. The thermodynamic
equilibrium constant for this kind of equilibrium is called a solubility product, Ks.

We can readily derive a relation between Ks and the molalities of the ions in the saturated solution by treating
the dissolved salt as a single solute substance, B. We write the equilibrium in the form B∗(s)⇌B(sln), and write the
expression for the solubility product as a proper quotient of activities:

Ks=
am,B
aB
∗ (12.5.24)

From Eq. 10.3.16 on page 233, we have am,B=𝛤m,B𝛾±𝜈(m+/m∘)𝜈+ (m−/m∘)𝜈−. This expression is valid whether or
not the ions Mz+ and Xz− are present in solution in the same ratio as in the solid salt. When we replace am,B with this
expression, and replace aB

∗ with𝛤B
∗ (Table 9.7.1), we obtain

Ks=�
𝛤m,B
𝛤B
∗ �𝛾±𝜈�

m+
m∘ �

𝜈+
�m−

m∘�
𝜈−

(12.5.25)

12.5 SOLID–LIQUID EQUILIBRIA 307

307



where 𝜈=𝜈++𝜈− is the total number of ions per formula unit. 𝛾± is the mean ionic activity coefficient of the dissolved
salt in the saturated solution, and the molalities m+ and m− refer to the ions Mz+ and Xz− in this solution.

The first factor on the right side of Eq. 12.5.25, the proper quotient of pressure factors for the reaction B∗(s)→B(sln),
will be denoted 𝛤r (the subscript “r” stands for reaction). The value of 𝛤r is exactly 1 if the system is at the stan-
dard pressure, and is otherwise approximately 1 unless the pressure is very high.

If the aqueous solution is produced by allowing the salt to dissolve in pure water, or in a solution of a second
solute containing no ions in common with the salt, then the ion molalities in the saturated solution are m+=𝜈+mB
and m−=𝜈− mB where mB is the solubility of the salt expressed as a molality. Under these conditions, Eq. 12.5.25
becomes12.5.4

Ks=𝛤r𝛾±𝜈(𝜈+𝜈+𝜈−
𝜈−)�mB

m∘ �
𝜈 (12.5.26)

(no common ion)

If the ionic strength of the saturated salt solution is sufficiently low (i.e., the solubility is sufficiently low), it may be
practical to evaluate the solubility product with Eq. 12.5.26 and an estimate of𝛾± from the Debye–Hückel limiting law
(see Prob. 12.11.19). The most accurate method of measuring a solubility product, however, is through the standard
cell potential of an appropriate galvanic cell (Sec. 14.3.3).

Since Ks is a thermodynamic equilibrium constant that depends only on T , and 𝛤r depends only on T and p, Eq.
12.5.26 shows that any change in the solution composition at constant T and p that decreases 𝛾± must increase the
solubility. For example, the solubility of a sparingly-soluble salt increases when a second salt, lacking a common ion,
is dissolved in the solution; this is a salting-in effect.

Equation 12.5.25 is a general equation that applies even if the solution saturated with one salt contains a second salt
with a common ion. For instance, consider the sparingly-soluble salt M𝜈+X𝜈− in transfer equilibrium with a solution
containing the more soluble salt M𝜈+′Y𝜈−′ at molality mC. The common ion in this example is the cation Mz+. The
expression for the solubility product is now

Ks=𝛤r𝛾±𝜈 (𝜈+mB+𝜈+′mC)𝜈+ (𝜈− mB)𝜈−/(m∘)𝜈 (12.5.27)
(common cation)

where mB again is the solubility of the sparingly-soluble salt, and mC is the molality of the second salt. Ks and𝛤r are
constant if T and p do not change, so any increase in mC at constant T and p must cause a decrease in the solubility
mB. This is called the common ion effect.

From the measured solubility of a salt in pure solvent, or in an electrolyte solution with a common cation, and
a known value of Ks, we can evaluate the mean ionic activity coefficient 𝛾± through Eq. 12.5.26 or huniniti. This
procedure has the disadvantage of being limited to the value of mB existing in the saturated solution.

We find the temperature dependence of Ks by applying Eq. 12.1.12:

dlnKs
dT = Δsol,B H∘

RT 2
(12.5.28)

At the standard pressure, Δsol,B H∘ is the same as the molar enthalpy of solution at infinite dilution, Δsol,B H∞.

12.6 Liquid–Liquid Equilibria

12.6.1 Miscibility in binary liquid systems
When two different pure liquids are unable to mix in all proportions, they are said to be partially miscible. When these
liquids are placed in contact with one another and allowed to come to thermal, mechanical, and transfer equilibrium,
the result is two coexisting liquid mixtures of different compositions.

12.5.4. We could also have obtained this equation by using the expression of Eq. 10.3.10 for am,B.
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Liquids are never actually completely immiscible. To take an extreme case, liquid mercury, when equilibrated with
water, has some H2O dissolved in it, and some mercury dissolves in the water, although the amounts may be too small
to measure.

The Gibbs phase rule for a multicomponent system to be described in Sec. 13.1 shows that a two-component, two-
phase system at equilibrium has only two independent intensive variables. Thus at a given temperature and pressure,
the mole fraction compositions of both phases are fixed; the compositions depend only on the identity of the substances
and the temperature and pressure.

Figure 13.2.5 on page 339 shows a phase diagram for a typical binary liquid mixture that spontaneously separates
into two phases when the temperature is lowered. The thermodynamic conditions for phase separation of this kind
were discussed in Sec. 11.1.6. The phase separation is usually the result of positive deviations from Raoult's law.
Typically, when phase separation occurs, one of the substances is polar and the other nonpolar.

12.6.2 Solubility of one liquid in another
Suppose substances A and B are both liquids when pure. In discussing the solubility of liquid B in liquid A, we can
treat B as either a solute or as a constituent of a liquid mixture. The difference lies in the choice of the standard state
or reference state of B.

We can define the solubility of B in A as the maximum amount of B that can dissolve without phase separation in
a given amount of A at the given temperature and pressure. Treating B as a solute, we can express its solubility as the
mole fraction of B in the phase at the point of phase separation. The addition of any more B to the system will result in
two coexisting liquid phases of fixed composition, one of which will have mole fraction xB equal to its solubility.12.6.1

Consider a system with two coexisting liquid phases α and β containing components A and B. Let α be the A-rich
phase and β be the B-rich phase. For example, A could be water and B could be benzene, a hydrophobic substance.
Phase α would then be an aqueous phase polluted with a low concentration of dissolved benzene, and phase β would
be wet benzene. xB

α would be the solubility of the benzene in water, expressed as a mole fraction.
Below, relations are derived for this kind of system using both choices of standard state or reference state.

Solute standard state

Assume that the two components have low mutual solubilities, so that B has a low mole fraction in phase α and a mole
fraction close to 1 in phase β. It is then appropriate to treat B as a solute in phase α and as a constituent of a liquid
mixture in phase β. The value of xB

α is the solubility of liquid B in liquid A.
The equilibrium when two liquid phases are present is B(β)⇌B(α), and the expression for the thermodynamic

equilibrium constant, with the solute standard state based on mole fraction, is

K= ax,B
α

aB
β =
𝛤x,B

α 𝛾x,B
α xB

α

𝛤B
β𝛾B

β xB
β (12.6.1)

The solubility of B is then given by

xB
α=𝛤B

β𝛾B
β xB

β

𝛤x,B
α 𝛾x,B

α K (12.6.2)

The values of the pressure factors and activity coefficients are all close to 1, so that the solubility of B in A is given by
xB

α≈K. The temperature dependence of the solubility is given by

dlnxB
α

dT ≈ dlnK
dT =

Δsol,B H∘
RT 2

(12.6.3)

where Δsol,B H∘ is the molar enthalpy change for the transfer at pressure p∘ of pure liquid solute to the solution at
infinite dilution.

12.6.1. Experimentally, the solubility of B in A can be determined from the cloud point, the point during titration of A with B at which
persistent turbidity is observed.
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Figure 12.6.1. Aqueous solubility of liquid n-butylbenzene as a function of temperature (Ref. [106]).

H2O and n-butylbenzene are two liquids with very small mutual solubilities. Figure 12.6.1 on page 310 shows
that the solubility of n-butylbenzene in water exhibits a minimum at about 12 ∘C. Equation 12.6.3 allows us to deduce
from this behavior that Δsol,B H∘ is negative below this temperature, and positive above.

Pure–liquid reference state

The condition for transfer equilibrium of component B is 𝜇B
α=𝜇B

β . If we use a pure-liquid reference state for B in both
phases, this condition becomes

𝜇B
∗ +RT ln (𝛾B

α xB
α)=𝜇B

∗ +RT ln (𝛾B
β xB

β) (12.6.4)

This results in the following relation between the compositions and activity coefficients:

𝛾B
α xB

α=𝛾B
β xB

β (12.6.5)

As before, we assume the two components have low mutual solubilities, so that the B-rich phase is almost pure liquid
B. Then xB

β is only slightly less than 1, 𝛾B
β is close to 1, and Eq. 12.6.5 becomes xB

α≈1/𝛾B
α. Since xB

α is much less than
1, 𝛾B

α must be much greater than 1.

In environmental chemistry it is common to use a pure-liquid reference state for a nonpolar liquid solute that has
very low solubility in water, so that the aqueous solution is essentially at infinite dilution. Let the nonpolar solute be
component B, and let the aqueous phase that is equilibrated with liquid B be phase α. The activity coefficient 𝛾B

α is
then a limiting activity coefficient or activity coefficient at infinite dilution. As explained above, the aqueous solubility
of B in this case is given by xB

α≈1/𝛾B
α, and 𝛾B

α is much greater than 1.

We can also relate the solubility of B to its Henry's law constant kH,B
α . Suppose the two liquid phases are equi-

librated not only with one another but also with a gas phase. Since B is equilibrated between phase α and the gas,
we have 𝛾x,B

α = fB/(kH,B
α xB

α) (Table 9.6.1). From the equilibration of B between phase β and the gas, we also have
𝛾B

β= fB/�xB
β fB∗�. By eliminating the fugacity fB from these relations, we obtain the general relation

xB
α= 𝛾B

β xB
β fB∗

𝛾x,B
α kH,B

α (12.6.6)

If we assume as before that the activity coefficients and xB
β are close to 1, and that the gas phase behaves ideally, the

solubility of B is given by xB
α≈ pB

∗/kH,B
α , where pB

∗ is the vapor pressure of the pure solute.
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12.6.3 Solute distribution between two partially-miscible solvents
Consider a two-component system of two equilibrated liquid phases, α and β. If we add a small quantity of a third
component, C, it will distribute itself between the two phases. It is appropriate to treat C as a solute in both phases.
The thermodynamic equilibrium constant for the equilibrium C(β)⇌C(α), with solute standard states based on mole
fraction, is

K= ax,C
α

ax,C
β =

𝛤x,C
α 𝛾x,C

α xC
α

𝛤x,C
β 𝛾x,C

β xC
β (12.6.7)

We define K′ as the ratio of the mole fractions of C in the two phases at equilibrium:

K ′ =
def xC

α

xC
β =
𝛤x,C

β 𝛾x,C
β

𝛤x,C
α 𝛾x,C

α K (12.6.8)

At a fixed T and p, the pressure factors and equilibrium constant are constants. If xC is low enough in both phases for
𝛾x,C

α and 𝛾x,C
β to be close to unity, K′ becomes a constant for the given T and p. The constancy of K ′ over a range of

dilute composition is the Nernst distribution law.
Since solute molality and concentration are proportional to mole fraction in dilute solutions, the ratios mC

α/mC
β and

cC
α/cC

β also approach constant values at a given T and p. The ratio of concentrations is called the partition coefficient
or distribution coefficient.

In the limit of infinite dilution of C, the two phases have the compositions that exist when only components A and
B are present. As C is added and xC

α and xC
β increase beyond the region of dilute solution behavior, the ratios xB

α/xA
α and

xB
β/xA

β may change. Continued addition of C may increase the mutual solubilities of A and B, resulting, when enough
C has been added, in a single liquid phase containing all three components. It is easier to understand this behavior with
the help of a ternary phase diagram such as Fig. 13.3.3 on page 349.

12.7 Membrane Equilibria
A semipermeable membrane used to separate two liquid phases can, in principle, be permeable to certain species and
impermeable to others. A membrane, however, may not be perfect in this respect over a long time period (see page
296). We will assume that during the period of observation, those species to which the membrane is supposed to be
permeable quickly achieve transfer equilibrium, and only negligible amounts of the other species are transferred across
the membrane.

Section 12.2.2 sketched a derivation of the conditions needed for equilibrium in a two-phase system in which
a membrane permeable only to solvent separates a solution from pure solvent. We can generalize the results for
any system with two liquid phases separated by a semipermeable membrane: in an equilibrium state, both phases
must have the same temperature, and any species to which the membrane is permeable must have the same chemical
potential in both phases. The two phases, however, need not and usually do not have the same pressure.

12.7.1 Osmotic membrane equilibrium
An equilibrium state in a system with two solutions of the same solvent and different solute compositions, separated
by a membrane permeable only to the solvent, is called an osmotic membrane equilibrium. We have already seen
this kind of equilibrium in an apparatus that measures osmotic pressure (Fig. 12.2.2 on page 295).

Consider a system with transfer equilibrium of the solvent across a membrane separating phases α and β. The
phases have equal solvent chemical potentials but different pressures:

𝜇A
β (pβ)=𝜇A

α(pα) (12.7.1)

The dependence of 𝜇A on pressure in a phase of fixed temperature and composition is given by (∂𝜇A/∂ p)T ,{ni}=VA
(from Eq. 9.2.49), where VA is the partial molar volume of A in the phase. If we apply this relation to the solution
of phase β, treat the partial molar volume VA as independent of pressure, and integrate at constant temperature and
composition from the pressure of phase α to that of phase β, we obtain

𝜇A
β (pβ)=𝜇A

β (pα)+VA
β(pβ − pα) (12.7.2)
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By equating the two expressions for 𝜇A
β (pβ) and rearranging, we obtain the following expression for the pressure

difference needed to achieve transfer equilibrium:

pβ − pα= 𝜇A
α(pα)−𝜇A

β (pα)
VA

β (12.7.3)

The pressure difference can be related to the osmotic pressures of the two phases. From Eq. 12.2.11 on page 297, the
solvent chemical potential in a solution phase can be written 𝜇A(p)=𝜇A

∗ (p)− VA𝛱(p). Using this to substitute for
𝜇A

α(pα) and 𝜇A
β (pα) in Eq. 12.7.3, we obtain

pβ − pα=𝛱β(pα)−((((((((((((((
VA

α

VA
β))))))))))))))𝛱α(pα) (12.7.4)

12.7.2 Equilibrium dialysis
Equilibrium dialysis is a useful technique for studying the binding of a small uncharged solute species (a ligand) to a
macromolecule. The macromolecule solution is placed on one side of a membrane through which it cannot pass, with a
solution without the macromolecule on the other side, and the ligand is allowed to come to transfer equilibrium across
the membrane. If the same solute standard state is used for the ligand in both solutions, at equilibrium the unbound
ligand must have the same activity in both solutions. Measurements of the total ligand molality in the macromolecule
solution and the ligand molality in the other solution, combined with estimated values of the unbound ligand activity
coefficients, allow the amount of ligand bound per macromolecule to be calculated.

12.7.3 Donnan membrane equilibrium
If one of the solutions in a two-phase membrane equilibrium contains certain charged solute species that are unable to
pass through the membrane, whereas other ions can pass through, the situation is more complicated than the osmotic
membrane equilibrium described in Sec. 12.7.1. Usually if the membrane is impermeable to one kind of ion, an
ion species to which it is permeable achieves transfer equilibrium across the membrane only when the phases have
different pressures and different electric potentials. The equilibrium state in this case is a Donnan membrane equi-
librium, and the resulting electric potential difference across the membrane is called the Donnan potential. This
phenomenon is related to the membrane potentials that are important in the functioning of nerve and muscle cells
(although the cells of a living organism are not, of course, in equilibrium states).

A Donnan potential can be measured electrically, with some uncertainty due to unknown liquid junction potentials,
by connecting silver-silver chloride electrodes (described in Sec. 14.1) to both phases through salt bridges.

General expressions
Consider solution phases α and β separated by a semipermeable membrane. Both phases contain a dissolved salt,
designated solute B, that has 𝜈+ cations and 𝜈− anions in each formula unit. The membrane is permeable to these
ions. Phase β also contains a protein or other polyelectrolyte with a net positive or negative charge, together with
counterions of the opposite charge that are the same species as the cation or anion of the salt. The presence of the
counterions in phase β prevents the cation and anion of the salt from being present in stoichiometric amounts in this
phase. The membrane is impermeable to the polyelectrolyte, perhaps because the membrane pores are too small to
allow the polyelectrolyte to pass through.

The condition for transfer equilibrium of solute B is 𝜇B
α=𝜇B

β , or

(𝜇m,B
∘ )α+RT lnam,B

α =(𝜇m,B
∘ )β+RT lnam,B

β (12.7.5)

Solute B has the same standard state in the two phases, so that (𝜇m,B
∘ )α and (𝜇m,B

∘ )β are equal. The activities am,B
α and

am,B
β are therefore equal at equilibrium. Using the expression for solute activity from Eq. 10.3.16, which is valid for

a multisolute solution, we find that at transfer equilibrium the following relation must exist between the molalities of
the salt ions in the two phases:

𝛤m,B
α (𝛾±α)𝜈 (m+α)𝜈+ (m−

α)𝜈−=𝛤m,B
β �𝛾±

β�𝜈�m+
β�𝜈+ (m−

β)𝜈− (12.7.6)
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Figure 12.7.1. Process for attainment of a Donnan membrane equilibrium (schematic). The dashed ellipse represents a semipermeable
membrane.

a) Initial nonequilibrium state.

b) Final equilibrium state.

To find an expression for the Donnan potential, we can equate the single-ion chemical potentials of the salt cation:
𝜇+α(𝜙α)=𝜇+

β (𝜙β). When we use the expression of Eq. 10.1.15 for 𝜇+(𝜙), we obtain

𝜙α −𝜙β= RT
z+F ln

𝛤+
β𝛾+

β m+
β

𝛤+α𝛾+α m+α
(12.7.7)

(Donnan potential)

The condition needed for an osmotic membrane equilibrium related to the solvent can be written

𝜇A
β (pβ)−𝜇A

α(pα)=0 (12.7.8)

The chemical potential of the solvent is 𝜇A=𝜇A
∘ +RT lnaA=𝜇A

∘ +RT ln (𝛤A𝛾A xA). From Table 9.7.2, we have to a
good approximation the expression RT ln𝛤A=VA

∗(p− p∘). With these substitutions, Eq. 12.7.8 becomes

RT ln 𝛾A
β xA

β

𝛾Aα xA
α +VA

∗ (pβ − pα)=0 (12.7.9)

We can use this equation to estimate the pressure difference needed to maintain an equilibrium state. For dilute solu-
tions, with 𝛾Aα and 𝛾A

β set equal to 1, the equation becomes

pβ − pα≈ RT
VA
∗ ln

xA
α

xA
β (12.7.10)

In the limit of infinite dilution, lnxA can be replaced by −MA∑i=/A mi (Eq. 9.6.12 on page 212), giving the relation

pβ − pα≈MA RT
VA
∗ �

i=/A
�mi

β −mi
α�=𝜌A

∗RT�
i=/A
�mi

β −mi
α� (12.7.11)

Example

As a specific example of a Donnan membrane equilibrium, consider a system in which an aqueous solution of a poly-
electrolyte with a net negative charge, together with a counterion M+ and a salt MX of the counterion, is equilibrated
with an aqueous solution of the salt across a semipermeable membrane. The membrane is permeable to the H2O
solvent and to the ions M+ and X−, but is impermeable to the polyelectrolyte. The species in phase α are H2O, M+,
and X−; those in phase β are H2O, M+, X−, and the polyelectrolyte. In an equilibrium state, the two phases have the
same temperature but different compositions, electric potentials, and pressures.

Because the polyelectrolyte in this example has a negative charge, the system has more M+ ions than X− ions.
Figure 12.7.1(a) on page 313 is a schematic representation of an initial state of this kind of system. Phase β is shown
as a solution confined to a closed dialysis bag immersed in phase α. The number of cations and anions shown in each
phase indicate the relative amounts of these ions.
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For simplicity, let us assume the two phases have equal masses of water, so that the molality of an ion is propor-
tional to its amount by the same ratio in both phases. It is clear that in the initial state shown in the figure, the chemical
potentials of both M+ and X− are greater in phase β (greater amounts) than in phase α, and this is a nonequilibrium
state. A certain quantity of salt MX will therefore pass spontaneously through the membrane from phase β to phase α
until equilibrium is attained.

The equilibrium ion molalities must agree with Eq. 12.7.6. We make the approximation that the pressure factors
and mean ionic activity coefficients are unity. Then for the present example, with 𝜈+=𝜈−=1, the equation becomes

m+α m−
α≈m+

β m−
β (12.7.12)

There is furthermore an electroneutrality condition for each phase:

m+α=m−
α m+

β =m−
β+ |zP|mP (12.7.13)

Here zP is the negative charge of the polyelectrolyte, and mP is its molality. Substitution of these expressions into Eq.
12.7.12 gives the relation

(m−
α)2≈�m−

β+ |zP|mP�m−
β (12.7.14)

This shows that in the equilibrium state, m−
α is greater than m−

β. Then Eq. 12.7.12 shows that m+α is less than m+
β . These

equilibrium molalities are depicted in Fig. 12.7.1(b).
The chemical potential of a cation, its activity, and the electric potential of the phase are related by Eq. 10.1.9 on

page 228: 𝜇+=𝜇+∘ +R T lna++ z+F𝜙. In order for M+ to have the same chemical potential in both phases, despite
its lower activity in phase α, the electric potential of phase α must be greater than that of phase β. Thus the Donnan
potential 𝜙α −𝜙β in the present example is positive. Its value can be estimated from Eq. 12.7.7 with the values of the
single-ion pressure factors and activity coefficients approximated by 1 and with z+ for this example set equal to 1:

𝜙α −𝜙β≈ RT
F ln

m+
β

m+α
(12.7.15)

The existence of a Donnan potential in the equilibrium state is the result of a very small departure of
the phases on both sides of the membrane from exact electroneutrality. In the example, phase α has a
minute net positive charge and phase β has a net negative charge of equal magnitude. The amount of
M+ ion transferred across the membrane to achieve equilibrium is slightly greater than the amount of
X− ion transferred; the difference between these two amounts is far too small to be measured chemi-
cally. At equilibrium, the excess charge on each side of the membrane is distributed over the boundary
surface of the solution phase on that side, and is not part of the bulk phase composition.

The pressure difference pβ − pα at equilibrium can be estimated with Eq. 12.7.11, and for the present example is
found to be positive. Without this pressure difference, the solution in phase α would move spontaneously through the
membrane into phase β until phase α completely disappears. With phase α open to the atmosphere, as in Fig. 12.7.1,
the volume of phase β must be constrained in order to allow its pressure to differ from atmospheric pressure. If the
volume of phase β remains practically constant, the transfer of a minute quantity of solvent across the membrane is
sufficient to cause the pressure difference.

It should be clear that the existence of a Donnan membrane equilibrium introduces complications that would make
it difficult to use a measured pressure difference to estimate the molar mass of the polyelectrolyte by the method of
Sec. 12.4, or to study the binding of a charged ligand by equilibrium dialysis.

12.8 Liquid–Gas Equilibria

This section describes multicomponent systems in which a liquid phase is equilibrated with a gas phase.
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12.8.1 Effect of liquid pressure on gas fugacity

If we vary the pressure of a liquid mixture at constant temperature and composition, there is a small effect on the
fugacity of each volatile component in an equilibrated gas phase. One way to vary the pressure at essentially constant
liquid composition is to change the partial pressure of a component of the gas phase that has negligible solubility in
the liquid.

At transfer equilibrium, component i has the same chemical potential in both phases: 𝜇i(l)=𝜇i (g). Combining
the relations [∂𝜇i(l)/∂ p]T ,{ni}=Vi(l) and 𝜇i (g)=𝜇i

∘ (g)+RT ln ( fi/p∘) (Eqs. 9.2.49 and 9.3.12), we obtain

dln ( fi/p∘)
dp = Vi(l)

RT

(12.8.1)
(equilibrated liquid and
gas mixtures, constant T
and liquid composition)

Equation 12.8.1 shows that an increase in pressure, at constant temperature and liquid composition, causes an increase
in the fugacity of each component in the gas phase.

Integration of Eq. 12.8.1 between pressures p1 and p2 yields

fi(p2)= fi(p1)exp��p1

p2 Vi(l)
RT dp�

(12.8.2)
(equilibrated liquid and
gas mixtures, constant T
and liquid composition)

The exponential on the right side is called the Poynting factor.

The integral in the Poynting factor is simplified if we make the approximation that Vi(l) is independent of pressure.
Then we obtain the approximate relation

fi(p2)≈ fi(p1)exp�
Vi(l)(p2− p1)

RT �

(12.8.3)
(equilibrated liquid and
gas mixtures, constant T
and liquid composition)

The effect of pressure on fugacity is usually small, and can often be neglected. For typical values of
the partial molar volume Vi(l), the exponential factor is close to unity unless |p2− p1| is very large. For
instance, for Vi(l)100cm3⋅mol−1 and T =300K, we obtain a value for the ratio fi(p2)/ fi(p1) of 1.004 if
p2− p1 is 1bar, 1.04 if p2− p1 is 10bar, and 1.5 if p2− p1 is 100bar. Thus, unless the pressure change
is large, we can to a good approximation neglect the effect of total pressure on fugacity. This statement
applies only to the fugacity of a substance in a gas phase that is equilibrated with a liquid phase of
constant composition containing the same substance. If the liquid phase is absent, the fugacity of i in
a gas phase of constant composition is of course approximately proportional to the total gas pressure.

We can apply Eqs. 12.8.2 and 12.8.3 to pure liquid A, in which case Vi(l) is the molar volume VA
∗(l). Suppose we

have pure liquid A in equilibrium with pure gaseous A at a certain temperature. This is a one-component, two-phase
equilibrium system with one degree of freedom (Sec. 8.1.7), so that at the given temperature the value of the pressure
is fixed. This pressure is the saturation vapor pressure of pure liquid A at this temperature. We can make the pressure
p greater than the saturation vapor pressure by adding a second substance to the gas phase that is essentially insoluble
in the liquid, without changing the temperature or volume. The fugacity fA is greater at this higher pressure than it was
at the saturation vapor pressure. The vapor pressure pA, which is approximately equal to fA, has now become greater
than the saturation vapor pressure. It is, however, safe to say that the difference is negligible unless the difference
between p and pA is much greater than 1bar.
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As an application of these relations, consider the effect of the size of a liquid droplet on the equilibrium vapor
pressure. The calculation of Prob. 12.11.8(b) shows that the fugacity of H2O in a gas phase equilibrated with liquid
water in a small droplet is slightly greater than when the liquid is in a bulk phase. The smaller the radius of the droplet,
the greater is the fugacity and the vapor pressure.

12.8.2 Effect of liquid composition on gas fugacities
Consider system 1 in Fig. 9.4.1 on page 197. A binary liquid mixture of two volatile components, A and B, is
equilibrated with a gas mixture containing A, B, and a third gaseous component C of negligible solubility used to
control the total pressure. In order for A and B to be in transfer equilibrium, their chemical potentials must be the same
in both phases:

𝜇A(l)=𝜇A
∘ (g)+RT ln fA

p∘ 𝜇B(l)=𝜇B
∘ (g)+RT ln fB

p∘ (12.8.4)

Suppose we make an infinitesimal change in the liquid composition at constant T and p. This causes infinitesimal
changes in the chemical potentials and fugacities:

d𝜇A(l)=RT d fA
fA

d𝜇B(l)=RT d fB
fB

(12.8.5)

By inserting these expressions in the Gibbs–Duhem equation xAd𝜇A=−xB d𝜇B (Eq. 9.2.43), we obtain

xA
fA

d fA=−xB
fB

d fB
(12.8.6)

(binary liquid mixture equilibrated
with gas, constant T and p)

This equation is a relation between changes in gas-phase fugacities caused by a change in the liquid-phase composi-
tion. It shows that a composition change at constant T and p that increases the fugacity of A in the equilibrated gas
phase must decrease the fugacity of B.

Now let us treat the liquid mixture as a binary solution with component B as the solute. In the ideal-dilute region,
at constant T and p, the solute obeys Henry's law for fugacity:

fB=kH,BxB (12.8.7)

For composition changes in the ideal-dilute region, we can write

d fB
dxB
=kH,B=

fB
xB

(12.8.8)

With the substitution dxB=−dxA and rearrangement, Eq. 12.8.8 becomes

−xB
fB

d fB=dxA (12.8.9)

Combined with Eq. 12.8.6, this is (xA/ fA)d fA=dxA, which we can rearrange and integrate as follows within the ideal-
dilute region:

�
fA∗
fA′ d fA

fA
=�
1

xA′ dxA
xA

ln fA′
fA∗
=ln xA′ (12.8.10)

The result is

fA=xAfA∗
(12.8.11)

(ideal–dilute binary solution)

Here fA∗ is the fugacity of A in a gas phase equilibrated with pure liquid A at the same T and p as the mixture. Equation
12.8.11 is Raoult's law for fugacity applied to component A.

If component B obeys Henry's law at all compositions, then the Henry's law constant kH,B is equal to fB∗ and B
obeys Raoult's law, fB=xB fB∗, over the entire range of xB.
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Figure 12.8.1. Fugacities in a gas phase equilibrated with a binary liquid mixture of H2O (A) and ethanol (B) at 25 ∘C and 1bar.12.8.1 The
dashed lines show Raoult's law behavior. The dotted lines illustrate the inequality (d fB/dxB)<( fB/xB).

12.8.1. Based on data in Ref. [39].

We can draw two conclusions:

1. In the ideal-dilute region of a binary solution, where the solute obeys Henry's law, the solvent must obey
Raoult's law. (A similar result was derived in Sec. 9.4.6 for a solution with any number of solutes.)

2. If one component of a binary liquid mixture obeys Raoult's law at all compositions, so also must the other
component. This is the definition of an ideal binary liquid mixture (Sec. 9.4.2).

Suppose we have a nonideal binary liquid mixture in which component B exhibits positive deviations from Raoult's
law. An example of this behavior for the water–ethanol system is shown in Fig. 12.8.1 on page 317. At each point on
the curve of fB versus xB, the slope d fB/dxB is less than the slope fB/xB of a line drawn from the origin to the point
(as illustrated by the open circles and dotted lines in the figure), except that the two slopes become equal at xB1:

d fB
dxB
≤ fB

xB
(12.8.12)

As we can see from the figure, this relation must apply to any component whose fugacity curve exhibits a positive
deviation from Raoult's law and has only one inflection point.

Algebraic operations on an inequality must be carried out with care: multiplying both sides by a quantity that can
be negative may change the inequality to one with the wrong sign. In order to simplify manipulation of the inequality
of Eq. 12.8.12, it helps to convert it to the following equality:12.8.2

d fB
dxB
+D= fB

xB
(12.8.13)

Here D represents the difference between fB/xB and d fB/dxB; its value is a function of xB and is, according to Eq.
12.8.12, either positive or zero. We make the substitution dxB=−dxA and rearrange to

xBd fB
− fB+DxB

=dxA (12.8.14)

When D is zero, this equation becomes −xB d fB/ fB= dxA. When D is positive, the left side of the equation is less
than −xB d fB/ fB and is equal to dxA, so that dxA is less than −xB d fB/ fB. Since D cannot be negative, Eq. 12.8.14 is
equivalent to the following relation:

−xB
fB

d fB≥dxA (12.8.15)

12.8.2. This procedure is similar to the rectification procedure described on page 119.
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Figure 12.8.2. Fugacities in a gas phase equilibrated with a binary liquid mixture of chloroform (A) and ethanol (B) at 35 ∘C (Ref. [124]).

A substitution from Eq. 12.8.6 gives us

xA
fA

d fA≥dxA or d fA
fA
≥ dxA

xA
(12.8.16)

We can integrate both sides of the second relation as follows:12.8.3

�
fA∗
fA′ d fA

fA
≥�
1

xA′ dxA
xA

ln fA′
fA∗
≥ln xA′ fA≥xAfA∗ (12.8.17)

Thus, if the curve of fugacity versus mole fraction for one component of a binary liquid mixture exhibits only positive
deviations from Raoult's law, with only one inflection point, so also must the curve of the other component. In the
water–ethanol system shown in Fig. 12.8.1, both curves have positive deviations from Raoult's law, and both have a
single inflection point.

By the same method, we find that if the fugacity curve of one component has only negative deviations from
Raoult's law with a single inflection point, the same is true of the other component.

Figure 12.8.2 on page 318 illustrates the case of a binary mixture in which component B has only positive devia-
tions from Raoult's law, whereas component A has both positive and negative deviations ( fA is slightly less than xAfA∗

for xB less than 0.3). This unusual behavior is possible because both fugacity curves have two inflection points instead
of the usual one. Other types of unusual nonideal behavior are possible.12.8.4

12.8.3 The Duhem–Margules equation

When we divide both sides of Eq. 12.8.6 by dxA, we obtain the Duhem–Margules equation:

xA
fA

d fA
dxA
=−xB

fB
d fB
dxA

(12.8.18)
(binary liquid mixture equilibrated
with gas, constant T and p)

f we assume the gas mixture is ideal, the fugacities are the same as the partial pressures, and the Duhem–Margules
equation then becomes

xA
pA

dpA
dxA
=−xB

pB

dpB
dxA

(12.8.19)
(binary liquid mixture equilibrated
with gas, constant T and p)

12.8.3. The equalities are the same as Eqs. 12.8.10 and 12.8.11, with the difference that here xA is not restricted to the ideal-dilute region.
12.8.4. Ref. [94].
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Solving Eq. 12.8.19 for dpB/dxA, we obtain

dpB
dxA
=−xApB

xBpA

dpA
dxA

(12.8.20)

To a good approximation, by assuming an ideal gas mixture and neglecting the effect of total pressure on fugacity, we
can apply Eq. 12.8.20 to a liquid–gas system in which the total pressure is not constant, but instead is the sum of pA

and pB. Under these conditions, we obtain the following expression for the rate at which the total pressure changes
with the liquid composition at constant T :

dp
dxA

= d(pA+ pB)
dxA

= dpA
dxA

− xA pB
xB pA

dpA
dxA
= dpA

dxA
�1− xA/xB

pA/pB
�

= dpA
dxA
�1− xA/xB

yA/yB
� (12.8.21)

Here yA and yB are the mole fractions of A and B in the gas phase given by yA= pA/p and yB= pB/p.
We can use Eq. 12.8.21 to make several predictions for a binary liquid–gas system at constant T .

• If the ratio yA/yB is greater than xA/xB (meaning that the mole fraction of A is greater in the gas than in the
liquid), then (xA/xB)/(yA/yB) is less than 1 and dp/dxA must have the same sign as dpA/dxA, which is
positive.

• Conversely, if yA/yB is less than xA/xB (i.e., the mole fraction of B is greater in the gas than in the liquid), then
dp/dxA must be negative.

• Thus compared to the liquid, the gas phase is richer in the component whose addition to the liquid at constant
temperature causes the total pressure to increase. This statement is a version of Konowaloff's rule.

In some binary liquid–gas systems, the total pressure at constant temperature exhibits a maximum or minimum at a
particular liquid composition.At this composition, dp/dxA is zero but dpA/dxA is positive. From Eq. 12.8.21, we see
that at this composition xA/xB must equal yA/yB, meaning that the liquid and gas phases have identical mole fraction
compositions. The liquid with this composition is called an azeotrope. The behavior of systems with azeotropes will
be discussed in Sec. 13.2.5.

12.8.4 Gas solubility

For the solution process B(g)→B(sln), the general expression for the thermodynamic equilibrium constant is K =
aB(sln)/aB (g).

The activity of B in the gas phase is given by aB (g)= fB/p∘. If the solute is a nonelectrolyte and we choose a
standard state based on mole fraction, the activity in the solution is aB(sln)=𝛤x,B𝛾x,BxB. The equilibrium constant is
then given by

K=𝛤x,B𝛾x,B xB
fB/p∘

(12.8.22)

and the solubility, expressed as the equilibrium mole fraction of solute in the solution, is given by

xB=
KfB/p∘
𝛤x,B𝛾x,B

(12.8.23)
(nonelectrolyte solute in
equilibrium with gas)

At a fixed T and p, the values of K and 𝛤x,B are constant. Therefore any change in the solution composition that
increases the value of the activity coefficient 𝛾x,B will decrease the solubility for the same gas fugacity. This solubility
decrease is often what happens when a salt is dissolved in an aqueous solution, and is known as the salting-out effect
(Prob. 12.11.11).
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Unless the pressure is much greater than p∘, we can with negligible error set the pressure factor 𝛤x,B equal to 1.
When the gas solubility is low and the solution contains no other solutes, the activity coefficient 𝛾x,B is close to 1. If
furthermore we assume ideal gas behavior, then Eq. 12.8.23 becomes

xB=K pB
p∘

(12.8.24)
(nonelectrolyte solute in equilibrium
with ideal gas,𝛤x,B=1, 𝛾x,B=1)

The solubility is predicted to be proportional to the partial pressure. The solubility of a gas that dissociates into ions
in solution has a quite different dependence on partial pressure. An example is the solubility of gaseous HCl in water
to form an electrolyte solution, shown in Fig. 10.0.1 on page 227.

If the actual conditions are close to those assumed for Eq. 12.8.24, we can use Eq. 12.1.13 to derive an expression
for the temperature dependence of the solubility for a fixed partial pressure of the gas:

�∂ lnxB
∂T �pB

= dlnK
dT =

Δsol,B H∘
RT 2

(12.8.25)

At the standard pressure, Δsol,B H∘ is the same as the molar enthalpy of solution at infinite dilution.
Since the dissolution of a gas in a liquid is invariably an exothermic process,Δsol,BH∘ is negative, and Eq. 12.8.25

predicts the solubility decreases with increasing temperature.
Note the similarity of Eq. 12.8.25 and the expressions derived previously for the temperature dependence of

the solubilities of solids (Eq. 12.5.8) and liquids (Eq. 12.6.3). When we substitute the mathematical identity dT =
−T 2d(1/T), Eq. 12.8.25 becomes

� ∂ lnxB
∂(1/T)�pB

=−Δsol,B H∘
R (12.8.26)

We can use this form to evaluate Δsol,B H∘ from a plot of ln xB versus 1/T .
The ideal solubility of a gas is the solubility calculated on the assumption that the dissolved gas obeys Raoult's

law for partial pressure: pB= xB pB
∗ . The ideal solubility, expressed as a mole fraction, is then given as a function of

partial pressure by

xB=
pB
pB
∗

(12.8.27)
(ideal solubility of a gas)

Here pB
∗ is the vapor pressure of pure liquid solute at the same temperature and total pressure as the solution. If the

pressure is too low for pure B to exist as a liquid at this temperature, we can with little error replace pB
∗ with the

saturation vapor pressure of liquid B at the same temperature, because the effect of total pressure on the vapor pressure
of a liquid is usually negligible (Sec. 12.8.1). If the temperature is above the critical temperature of pure B, we can
estimate a hypothetical vapor pressure by extrapolating the liquid–vapor coexistence curve beyond the critical point.

We can use Eq. 12.8.27 to make several predictions regarding the ideal solubility of a gas at a fixed value of pB.

1. The ideal solubility, expressed as a mole fraction, is independent of the kind of solvent.

2. The solubility expressed as a concentration, cB, is lower the greater is the molar volume of the solvent. This is
because at constant xB, cB decreases as the solution volume increases.

3. The more volatile is the pure liquid solute at a particular temperature (i.e., the greater is pB
∗), the lower is the

solubility.

4. The solubility decreases with increasing temperature, since pB
∗ increases.

Of course, these predictions apply only to solutions that behave approximately as ideal liquid mixtures, but even for
many nonideal mixtures the predictions are found to have good agreement with experiment.

As an example of the general validity of prediction 1, Hildebrand and Scott12.8.5 list the following
solubilities of gaseous Cl2 in several dissimilar solvents at 0 ∘C and a partial pressure of 1.01 bar:
xB=0.270 in heptane, xB=0.288 in SiCl4, and xB=0.298 in CCl4. These values are similar to one
another and close to the ideal value pB/pB

∗ =0.273.

12.8.5. Ref. [68], Chap. XV.
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12.8.5 Effect of temperature and pressure on Henry's law constants
Consider the solution process B(g)→B(soln) for a nonelectrolyte solute B. The expression for the thermodynamic
equilibrium constant, with a solute standard state based on mole fraction, is

K= aB(sln)
aB (g)

= 𝛤x,B𝛾x,B xB
fB/p∘

(12.8.28)

The Henry's law constant kH,B is related to fB and xB by

kH,B=
fB
𝛾x,B xB

(12.8.29)

(see Table 9.6.1), and is therefore related to K as follows:

kH,B=
𝛤x,B p∘

K
(12.8.30)

(nonelectrolyte solute)

The pressure factor𝛤x,B is a function of T and p, and K is a function only of T . The value of kH,B therefore depends
on both T and p.

At the standard pressure p∘=1bar, the value of𝛤x,B is unity, and Eqs. 12.1.13 and 12.1.14 then give the following
expressions for the dependence of the dimensionless quantity kH,B/p∘ on temperature:

dln (kH,B/p∘)
dT =−dlnK

dT =−Δsol,B H∘
RT 2

(12.8.31)
(p= p∘)

dln (kH,B/p∘)
d(1/T) =− dlnK

d(1/T) =
Δsol,B H∘

R
(12.8.32)
(p= p∘)

These expressions can be used with little error at any pressure that is not much greater than p∘, say up to at least 2bar,
because under these conditions𝛤x,B does not differ appreciably from unity (page 218).

To find the dependence of kH,B on pressure, we substitute 𝛤x,B in Eq. 12.8.30 with the expression for 𝛤x,B at
pressure p′ found in Table 9.7.2:

kH,B(p′)=
𝛤x,B(p′) p∘

K = p∘
K exp��p∘

p′ VB
∞

RT dp� (12.8.33)

We can use Eq. 12.8.33 to compare the values of kH,B at the same temperature and two different pressures, p1 and p2:

kH,B(p2)=kH,B(p1) exp��p1

p2 VB
∞

RT dp� (12.8.34)

An approximate version of this relation, found by treating VB
∞ as independent of pressure, is

kH,B(p2)≈ kH,B(p1)exp�
VB
∞(p2− p1)

RT � (12.8.35)

Unless |p2− p1| is much greater than 1bar, the effect of pressure on kH,B is small; see Prob. 12.11.12 for an example.

12.9 Reaction Equilibria
The definition of the thermodynamic equilibrium constant of a reaction or other chemical process is given by Eq.
11.8.9:

K=�
i
(ai)eq

𝜈i (12.9.1)

The activity ai of each reactant or product species is based on an appropriate standard state. We can replace each
activity on the right side of Eq. 12.9.1 by an expression in Table 12.9.1 on page 322.
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Species Activity

Pure gas a (g)= f
p∘

Pure liquid or solid a=𝛤

Substance i in a gas mixture ai (g)=
fi
p∘

Substance i in a liquid or solid mixture ai=𝛤i𝛾ixi

Solvent A of a solution aA=𝛤A𝛾AxA

Nonelectrolyte solute B, mole fraction basis ax,B=𝛤x,B𝛾x,B xB

Nonelectrolyte solute B, concentration basis ac,B=𝛤c,B𝛾c,B
cB

c∘

Nonelectrolyte solute B, molality basis am,B=𝛤m,B𝛾m,B
mB
m∘

Electrolyte solute B am,B=𝛤m,B𝛾±𝜈 �
m+
m∘ �
𝜈+�m−

m∘�
𝜈−

Ion in solution a+=𝛤+𝛾+
m+
m∘ a−=𝛤−𝛾−

m−

m∘

Table 12.9.1. Expressions for activities (from Table 9.7.1 and Eqs. 10.1.14 and 10.3.16

For example, consider the following heterogeneous equilibrium that is important in the formation of limestone
caverns:

CaCO3(cr,calcite)+CO2(g)+H2O(sln)⇌Ca2+(aq)+2HCO3
−(aq)

If we treat H2O as a solvent and Ca2+ and HCO3− as the solute species, then we write the thermodynamic equilibrium
constant as follows:

K= a+ a−
2

aCaCO3 aCO2 aH2O
=𝛤r

𝛾+𝛾−
2m+m−

2/(m∘)3
( fCO2/p∘)𝛾H2O xH2O

(12.9.2)

The subscripts + and − refer to the Ca2+ and HCO3− ions, and all quantities are for the system at reaction equilibrium.
𝛤r is the proper quotient of pressure factors, given for this reaction by12.9.1

𝛤r=
𝛤+𝛤−

2

𝛤CaCO3𝛤H2O
(12.9.3)

Unless the pressure is very high, we can with little error set the value of𝛤r equal to unity.
Equation 12.9.2 is an example of a “mixed” equilibrium constant—one using more than one kind of standard state.

From the definition of the mean ionic activity coefficient (Eq. 10.3.7), we can replace the product 𝛾+𝛾−
2 by 𝛾±3, where

𝛾± is the mean ionic activity coefficient of aqueous Ca(HCO3)2:

K=𝛤r
𝛾±3m+m−

2 /(m∘)3
( fCO2/p∘)𝛾H2O xH2O

(12.9.4)

Instead of treating the aqueous Ca2+ and HCO3
− ions as solute species, we can regard the dissolved Ca(HCO3)2

electrolyte as the solute and write
K= am,B

aCaCO3 aCO2 aH2O
(12.9.5)

We then obtain Eq. 12.9.4 by replacing am,B with the expression in Table 12.9.1 for an electrolyte solute.
The value of K depends only on T , and the value of𝛤r depends only on T and p. Suppose we dissolve some NaCl

in the aqueous phase while maintaining the system at constant T and p. The increase in the ionic strength will alter
𝛾± and necessarily cause a compensating change in the solute molarity in order for the system to remain in reaction
equilibrium.

An example of a different kind of reaction equilibrium is the dissociation (ionization) of a weak monoprotic acid
such as acetic acid

HA(aq)⇌H+(aq)+A−(aq)

12.9.1. The product𝛤+𝛤−
2 in the numerator of Eq. 12.9.3 is the pressure factor𝛤m,B for the solute Ca(HCO3)2 (see Eq. 10.3.11 on page 232).

322 EQUILIBRIUM CONDITIONS IN MULTICOMPONENT SYSTEMS

322



for which the thermodynamic equilibrium constant (the acid dissociation constant) is

Ka=𝛤r
𝛾+𝛾− m+m−
𝛾m,HAmHAm∘ =𝛤r

𝛾±2m+m−
𝛾m,HA mHA m∘ (12.9.6)

Suppose the solution is prepared from water and the acid, and H+ from the dissociation of H2O is negligible compared
to H+ from the acid dissociation. We may then write m+=m−=𝛼mB, where 𝛼 is the degree of dissociation and mB
is the overall molality of the acid. The molality of the undissociated acid is mHA=(1−𝛼)mB, and the dissociation
constant can be written

Ka=𝛤r
𝛾±2𝛼2mB/m∘
𝛾m,HA(1−𝛼) (12.9.7)

From this equation, we see that a change in the ionic strength that decreases 𝛾± when T , p, and mB are held constant
must increase the degree of dissociation (Prob. 12.11.17).

12.10 Evaluation of Standard Molar Quantities
Some of the most useful experimentally-derived data for thermodynamic calculations are values of standard molar
reaction enthalpies, standard molar reaction Gibbs energies, and standard molar reaction entropies. The values of these
quantities for a given reaction are related, as we know (Eq. 11.8.21), by

Δr G∘=Δr H∘−TΔr S∘ (12.10.1)

and Δr S∘ can be calculated from the standard molar entropies of the reactants and products using Eq. 11.8.22:

Δr S∘=�
i
𝜈iSi

∘ (12.10.2)

The standard molar quantities appearing in Eqs. 12.10.1 and 12.10.2 can be evaluated through a variety of exper-
imental techniques. Reaction calorimetry can be used to evaluate Δr H∘ for a reaction (Sec. 11.5). Calorimetric
measurements of heat capacity and phase-transition enthalpies can be used to obtain the value of Si

∘ for a solid or
liquid (Sec. 6.2.1). For a gas, spectroscopic measurements can be used to evaluate Si

∘ (Sec. 6.2.2). Evaluation of a
thermodynamic equilibrium constant and its temperature derivative, for any of the kinds of equilibria discussed in
this chapter (vapor pressure, solubility, chemical reaction, etc.), can provide values of Δr G∘ and Δr H∘ through the
relations Δr G∘=−RT lnK and Δr H∘=−RdlnK/d(1/T).

In addition to these methods, measurements of cell potentials are useful for a reaction that can be carried out
reversibly in a galvanic cell. Section 14.3.3 will describe how the standard cell potential and its temperature derivative
allow Δr H∘, Δr G∘, and Δr S∘ to be evaluated for such a reaction.

An efficient way of tabulating the results of experimental measurements is in the form of standard molar enthalpies
and Gibbs energies of formation. These values can be used to generate the values of standard molar reaction quantities
for reactions not investigated directly. The relations between standard molar reaction and formation quantities (Sec.
11.3.2) are

Δr H∘=�
i
𝜈iΔf H∘(i) Δr G∘=�

i
𝜈iΔf G∘(i) (12.10.3)

and for ions the conventions used are

Δf H∘(H+, aq)=0 Δf G∘(H+, aq)=0 Sm
∘ (H+, aq)=0 (12.10.4)

Appendix H gives an abbreviated set of values of Δf H∘, Sm
∘ , and Δf G∘ at 298.15K.

For examples of the evaluation of standard molar reaction quantities and standard molar formation quantities from
measurements made by various experimental techniques, see Probs. 12.11.18–12.11.20, 14.7.3, and 14.7.4.
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t/ ∘C p/Torr t/∘C p/Torr
842.3 343.0 904.3 879.0
852.9 398.6 906.5 875.0
854.5 404.1 937.0 1350
868.9 510.9 937.0 1340

Table 12.11.1. Pressure of an equilibrium system containing CaCO3(s), CaO(s), and CO2(g).12.11.1

12.11.1. Ref. [127].

12.11 Problems
Problem 12.11.1. Consider the heterogeneous equilibrium CaCO3(s)⇌CaO(s)+CO2(g). Table 12.11.1 on page 324 lists pressures measured
over a range of temperatures for this system.

a) What is the approximate relation between p and K?

b) Plot these data in the form lnK versus 1/T , or fit lnK to a linear function of 1/T . Then, evaluate the temperature at which the partial
pressure of the CO2 is 1bar, and the standard molar reaction enthalpy at this temperature.

Problem 12.11.2. For a homogeneous reaction in which the reactants and products are solutes in a solution, write a rigorous relation between
the standard molar reaction enthalpy and the temperature dependence of the thermodynamic equilibrium constant, with solute standard states
based on concentration.

Problem 12.11.3. Derive an expression for the standard molar reaction entropy of a reaction that can be used to calculate its value from the
thermodynamic equilibrium constant and its temperature derivative. Assume that no solute standard states are based on concentration.

Problem 12.11.4. Use the data in Table 12.11.2 on page 324 to evaluate the molal freezing-point depression constant and the molal boiling-
point elevation constant for H2O at a pressure of 1bar.

M tf tb Δfus H Δvap H
18.0153g⋅mol−1 0.00 ∘C 99.61 ∘C 6.010kJ⋅mol−1 40.668kJ⋅mol−1

Table 12.11.2. Properties of H2O at 1bar

Problem 12.11.5. An aqueous solution of the protein bovine serum albumin, containing 2.00×10−2g of protein per cubic centimeter, has an
osmotic pressure of 8.1×10−3bar at 0 ∘C. Estimate the molar mass of this protein.

Problem 12.11.6. Figure 12.6.1 on page 310 shows a curve fitted to experimental points for the aqueous solubility of n-butylbenzene. The
curve has the equation ln xB=a (t/∘C−b)2+c, where the constants have the values a=3.34×10−4, b=12.13, and c=−13.25. Assume that the
saturated solution behaves as an ideal-dilute solution, use a solute standard state based on mole fraction, and calculate Δsol,BH ∘ and Δsol,B S∘

at 5.00 ∘C, 12.13 ∘C (the temperature of minimum solubility), and 25.00 ∘C.

Problem 12.11.7. Consider a hypothetical system in which two aqueous solutions are separated by a semipermeable membrane. Solution
α is prepared by dissolving 1.00× 10−5mol KCl in 10.0g water. Solution β is prepared from 1.00×10−5mol KCl and 1.00×10−6mol of the
potassium salt of a polyelectrolyte dissolved in 10.0g water. All of solution β is used to fill a dialysis bag, which is then sealed and placed in
solution α.

Each polyelectrolyte ion has a charge of −10. The membrane of the dialysis bag is permeable to the water molecules and to the K+ and
Cl− ions, but not to the polyelectrolyte. The system comes to equilibrium at 25.00 ∘C. Assume that the volume of the dialysis bag remains
constant. Also make the drastic approximation that both solutions behave as ideal-dilute solutions.

a) Find the equilibrium molality of each solute species in the two solution phases.

b) Describe the amounts and directions of any macroscopic transfers of ions across the membrane that are required to establish the
equilibrium state.

c) Estimate the Donnan potential, 𝜙α −𝜙β.

d) Estimate the pressure difference across the membrane at equilibrium. (The density of liquid H2O at 25.00 ∘C is 0.997g⋅cm−3.)

Problem 12.11.8. The derivation of Prob. 9.9.3 on page 223 shows that the pressure in a liquid droplet of radius r is greater than the pressure
of the surrounding equilibrated gas phase by a quantity 2𝛾/r, where 𝛾 is the surface tension.

a) Consider a droplet of water of radius 1.00×10−6m at 25 ∘C suspended in air of the same temperature. The surface tension of water at
this temperature is 0.07199J⋅m−2. Find the pressure in the droplet if the pressure of the surrounding air is 1.00bar.
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T =298.152K Second virial coefficients:
xB=2.02142×10−5 BAA=−1152×10−6m3⋅mol−1

(nB
g/V g)=35.9957mol⋅m−3 BBB=−16.2×10−6m3⋅mol−1

pA
∗=3167.13Pa BAB=−27.0×10−6m3⋅mol−1

VA
∗=18.069×10−6m3⋅mol−1

VB
∞=31.10×10−6m3⋅mol−1

Table 12.11.3. Data for Problem 12.11.13 (A = H2O, B = O2)

b) Calculate the difference between the fugacity of H2O in the air of pressure 1.00bar equilibrated with this water droplet, and the fugacity
in air equilibrated at the same temperature and pressure with a pool of liquid water having a flat surface. Liquid water at 25 ∘C and
1bar has a vapor pressure of 0.032bar and a molar volume of 1.807×10−5m3⋅mol−1.

Problem 12.11.9. For a solution process in which species B is transferred from a gas phase to a liquid solution, find the relation between
Δsol G∘ (solute standard state based on mole fraction) and the Henry's law constant kH,B.

Problem 12.11.10. Crovetto12.11.2 reviewed the published data for the solubility of gaseous CO2 in water, and fitted the Henry's law constant
kH,B to a function of temperature. Her recommended values of kH,B at five temperatures are 1233bar at 15.00 ∘C, 1433bar at 20.00 ∘C, 1648bar
at 25.00 ∘C, 1874bar at 30.00 ∘C, and 2111bar at 35 ∘C.

a) The partial pressure of CO2 in the atmosphere is typically about 3× 10−4bar. Assume a fugacity of 3.0× 10−4bar, and calculate the
aqueous solubility at 25.00 ∘C expressed both as a mole fraction and as a molality.

b) Find the standard molar enthalpy of solution at 25.00 ∘C.

c) Dissolved carbon dioxide exists mostly in the form of CO2molecules, but a small fraction exists as H2CO3molecules, and there is also
some ionization:
CO2(aq)+H2O(l)→H+(aq)+HCO3

−(aq)
(The equilibrium constant of this reaction is often called the first ionization constant of carbonic acid.) Combine the kH,B data with data
in Appendix H to evaluate K andΔr H ∘ for the ionization reaction at 25.00 ∘C. Use solute standard states based on molality, which are
also the solute standard states used for the values in Appendix H.

Problem 12.11.11. The solubility of gaseous O2 at a partial pressure of 1.01bar and a temperature of 310.2K, expressed as a concentration, is
1.07×10−3mol⋅dm−3 in pure water and 4.68×10−4mol⋅dm−3 in a 3.0M aqueous solution of KCl.12.11.3 This solubility decrease is the salting-
out effect. Calculate the activity coefficient 𝛾c,B of O2 in the KCl solution.

Problem 12.11.12. At 298.15K, the partial molar volume of CO2(aq) is 33cm3⋅mol−1. Use Eq. 12.8.35 to estimate the percent change in the
value of the Henry's law constant kH,B for aqueous CO2 at 298.15K when the total pressure is changed from 1.00bar to 10.00bar.

Problem 12.11.13. Rettich et al12.11.4 made high-precision measurements of the solubility of gaseous oxygen (O2) in water. Each measurement
was made by equilibrating water and oxygen in a closed vessel for a period of up to two days, at a temperature controlled within ±0.003K.
The oxygen was extracted from samples of known volume of the equilibrated liquid and gas phases, and the amount of O2 in each sample was
determined from p-V -T measurements taking gas nonideality into account. It was then possible to evaluate the mole fraction xB of O2 in the
liquid phase and the ratio (nB

g /V g) for the O2 in the gas phase.
Table 12.11.3 gives values of physical quantities at T =298.152K needed for this problem. The values of xB and (nB

g /V g) were obtained
by Rettich et al from samples of liquid and gas phases equilibrated at temperature T , as explained above. pA

∗ is the saturation vapor pressure
of pure liquid water at this temperature.

Your calculations will be similar to those used by Rettich et al to obtain values of the Henry's law constant of oxygen to six significant
figures. Your own calculations should also be carried out to six significant figures. For the gas constant, use the value R=8.31447J⋅K−1⋅mol−1.

The method you will use to evaluate the Henry's law constant kH,B= fB/xB at the experimental temperature and pressure is as follows.
The value of xB is known, and you need to find the fugacity fB of the O2 in the gas phase. fB can be calculated from 𝜙B and pB. These in
turn can be calculated from the pressure p, the mole fraction yB of O2 in the gas phase, and known values of second virial coefficients. You
will calculate p and yB by an iterative procedure. Assume the gas has the virial equation of state (V g/ng)=(RT /p)+B (Eq. 9.3.21) and use
relevant relations in Sec. 9.3.4.

a) For the equilibrated liquid-gas system, calculate initial approximate values of p and yB by assuming that pA is equal to pA
∗ and pB is

equal to (nB
g /V g)RT .

b) Use your approximate values of p and yB from part (a) to calculate 𝜙A, the fugacity coefficient of A in the gas mixture.

c) Evaluate the fugacity fA of the H2O in the gas phase. Assume p, yB, and 𝜙A have the values you calculated in parts (a) and (b). Hint:
start with the value of the saturation vapor pressure of pure water.

d) Use your most recently calculated values of p, 𝜙A, and fA to calculate an improved value of yB.

12.11.2. Ref. [34].
12.11.3. Ref. [87].
12.11.4. Ref. [118].
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1/(T /K) ln (kH,B/p∘) 1/(T /K) ln (kH,B/p∘)
0.00363029 10.0569 0.00329870 10.6738
0.00359531 10.1361 0.00319326 10.8141
0.00352175 10.2895 0.00314307 10.8673
0.00347041 10.3883 0.00309444 10.9142
0.00341111 10.4951 0.00304739 10.9564
0.00335390 10.5906

Table 12.11.4. Data for Prob. 12.11.14

e) Use your current values of p and yB to evaluate the compression factor Z of the gas mixture, taking nonideality into account.

f) Derive a general expression for p as a function of (nB
g /V g), T , yB, and Z. Use this expression to calculate an improved value of p.

g) Finally, use the improved values of p and yB to evaluate the Henry's law constant kH,B at the experimental T and p.

Problem 12.11.14. The method described in Prob. 12.11.13 has been used to obtain high-precision values of the Henry's law constant, kH,B,
for gaseous methane dissolved in water.12.11.5 Table 12.11.4 lists values of ln(kH,B/p∘) at eleven temperatures in the range 275K–328K and
at pressures close to 1bar. Use these data to evaluate Δsol,BH ∘ and Δsol,BCp

∘ at T =298.15K. This can be done by a graphical method. Better
precision will be obtained by making a least-squares fit of the data to the three-term polynomial

ln (kH,B/p∘)=a+b (1/T)+ c (1/T)2

and using the values of the coefficients a, b, and c for the evaluations.

Problem 12.11.15. Liquid water and liquid benzene have very small mutual solubilities. Equilibria in the binary water–benzene system were
investigated by Tucker, Lane, and Christian12.11.6 as follows. A known amount of distilled water was admitted to an evacuated, thermostatted
vessel. Part of the water vaporized to form a vapor phase. Small, precisely measured volumes of liquid benzene were then added incrementally
from the sample loop of a liquid-chromatography valve. The benzene distributed itself between the liquid and gaseous phases in the vessel.
After each addition, the pressure was read with a precision pressure gauge. From the known amounts of water and benzene and the total
pressure, the liquid composition and the partial pressure of the benzene were calculated. The fugacity of the benzene in the vapor phase was
calculated from its partial pressure and the second virial coefficient.

At a fixed temperature, for mole fractions xB of benzene in the liquid phase up to about 3× 10−4 (less than the solubility of benzene in
water), the fugacity of the benzene in the equilibrated gas phase was found to have the following dependence on xB:

fB
xB
=kH,B −AxB

Here kH,B is the Henry's law constant and A is a constant related to deviations from Henry's law. At 30 ∘C, the measured values were kH,B=
385.5bar and A=2.24×104bar.

a) Treat benzene (B) as the solute and find its activity coefficient on a mole fraction basis, 𝛾x,B, at 30 ∘C in the solution of composition
xB=3.00×10−4.

b) The fugacity of benzene vapor in equilibrium with pure liquid benzene at 30 ∘C is fB∗=0.1576bar. Estimate the mole fraction solubility
of liquid benzene in water at this temperature.

c) The calculation of 𝛾x,B in part (a) treated the benzene as a single solute species with deviations from infinite-dilution behavior. Tucker
et al suggested a dimerization model to explain the observed negative deviations from Henry's law. (Classical thermodynamics, of
course, cannot prove such a molecular interpretation of observed macroscopic behavior.) The model assumes that there are two solute
species, a monomer (M) and a dimer (D), in reaction equilibrium: 2M⇌D. Let nB be the total amount of C6H6 present in solution, and
define the mole fractions

xB =
def nB

nA+nB
≈ nB

nA

xM =
def nM

nA+nM+nD
≈ nM

nA
xD =

def nD
nA+nM+nD

≈ nD
nA

where the approximations are for dilute solution. In the model, the individual monomer and dimer particles behave as solutes in an
ideal-dilute solution, with activity coefficients of unity. The monomer is in transfer equilibrium with the gas phase: xM= fB/kH,B. The
equilibrium constant expression (using a mole fraction basis for the solute standard states and setting pressure factors equal to 1) is
K = xD/xM

2 . From the relation nB=nM+2 nD, and because the solution is very dilute, the expression becomes

K = xB −xM

2 xM
2

Make individual calculations of K from the values of fB measured at xB=1.00×10−4, xB=2.00×10−4, and xB=3.00×10−4. Extrapo-
late the calculated values of K to xB0 in order to eliminate nonideal effects such as higher aggregates. Finally, find the fraction of the
benzene molecules present in the dimer form at xB=3.00×10−4 if this model is correct.

12.11.5. Ref. [119].
12.11.6. Ref. [132].
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Problem 12.11.16. Use data in Appendix H to evaluate the thermodynamic equilibrium constant at 298.15K for the limestone reaction

CaCO3 (cr,calcite)+CO2 (g)+H2O (l)→Ca2+ (aq)+2HCO3
− (aq)

Problem 12.11.17. For the dissociation equilibrium of formic acid, HCO2H(aq)⇌H+ (aq)+HCO2
− (aq), the acid dissociation constant at

298.15K has the value Ka=1.77×10−4.

a) Use Eq. 12.9.7 to find the degree of dissociation and the hydrogen ion molality in a 0.01000 molal formic acid solution. You can
safely set 𝛤r and 𝛾m,HA equal to 1, and use the Debye–Hückel limiting law (Eq. 10.4.8) to calculate 𝛾±. You can do this calculation
by iteration: Start with an initial estimate of the ionic strength (in this case 0), calculate 𝛾± and 𝛼, and repeat these steps until the value
of 𝛼 no longer changes.

b) Estimate the degree of dissociation of formic acid in a solution that is 0.01000 molal in both formic acid and sodium nitrate, again
using the Debye--Hückel limiting law for 𝛾±. Compare with the value in part (a).

Problem 12.11.18. Use the following experimental information to evaluate the standard molar enthalpy of formation and the standard molar
entropy of the aqueous chloride ion at 298.15K, based on the conventions Δf H ∘(H+,aq) =0 and Sm

∘ (H+,aq)= 0 (Secs. 11.3.2 and 11.8.4).
(Your calculated values will be close to, but not exactly the same as, those listed in Appendix H, which are based on the same data combined
with data of other workers.)

• For the reaction 12H2(g)+
1
2 Cl2(g)→HCl(g), the standard molar enthalpy of reaction at 298.15K measured in a flow calorimeter12.11.7

is Δr H ∘=−92.312kJ⋅mol−1.

• The standard molar entropy of gaseous HCl at 298.15K calculated from spectroscopic data is Sm
∘ =186.902 J⋅K−1⋅mol−1.

• From five calorimetric runs,12.11.8 the average experimental value of the standard molar enthalpy of solution of gaseous HCl at 298.15K
is Δsol,B H ∘=−74.84kJ⋅mol−1.

• From vapor pressure measurements of concentrated aqueous HCl solutions,12.11.9 the value of the ratio fB/am,B for gaseous HCl in
equilibrium with aqueous HCl at 298.15K is 5.032×10−7bar.

Problem 12.11.19. The solubility of crystalline AgCl in ultrapure water has been determined from the electrical conductivity of the saturated
solution.12.11.10 The average of five measurements at 298.15K is sB= 1.337 × 10−5mol⋅dm−3. The density of water at this temperature is
𝜌A
∗=0.9970kg⋅dm−3.

a) From these data and the Debye--Hückel limiting law, calculate the solubility product Ks of AgCl at 298.15K.

b) Evaluate the standard molar Gibbs energy of formation of aqueous Ag+ ion at 298.15K, using the results of part (a) and the values
Δf G∘(Cl−,aq)=−131.22kJ⋅mol−1 and Δf G∘(AgCl,s)=−109.77kJ⋅mol−1 from Appendix H.

Problem 12.11.20. The following reaction was carried out in an adiabatic solution calorimeter by Wagman and Kilday:12.11.11

AgNO3 (s)+KCl (aq,mB=0.101mol⋅kg−1)→AgCl (s)+KNO3 (aq)

The reaction can be assumed to go to completion, and the amount of KCl was in slight excess, so the amount of AgCl formed was equal to
the initial amount of AgNO3. After correction for the enthalpies of diluting the solutes in the initial and final solutions to infinite dilution, the
standard molar reaction enthalpy at 298.15K was found to be Δr H ∘=−43.042kJ⋅mol−1. The same workers used solution calorimetry to obtain
the molar enthalpy of solution at infinite dilution of crystalline AgNO3 at 298.15K: Δsol,B H∞=22.727kJ⋅mol−1.

a) Show that the difference of these two values is the standard molar reaction enthalpy for the precipitation reaction

Ag+ (aq)+Cl− (aq)→AgCl (s)

and evaluate this quantity.

b) Evaluate the standard molar enthalpy of formation of aqueous Ag+ ion at 298.15K, using the results of part (a) and the values
Δf H ∘(Cl−, aq) = −167.08 kJ⋅mol−1 and Δf H ∘(AgCl, s) = −127.01 kJ⋅mol−1 from Appendix H. (These values come from calcula-
tions similar to those in Probs. 12.11.18 and 14.7.4.) The calculated value will be close to, but not exactly the same as, the value
listed in Appendix H, which is based on the same data combined with data of other workers.

12.11.7. Ref. [121].
12.11.8. Ref. [62].
12.11.9. Ref. [116].
12.11.10. Ref. [57].
12.11.11. Ref. [136].
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Chapter 13
The Phase Rule and Phase Diagrams

We encountered the Gibbs phase rule and phase diagrams in Chap. 8 in connection with single-substance systems. The
present chapter derives the full version of the Gibbs phase rule for multicomponent systems. It then discusses phase
diagrams for some representative types of multicomponent systems, and shows how they are related to the phase rule
and to equilibrium concepts developed in Chaps. 11 and 12.

13.1 The Gibbs Phase Rule for Multicomponent Systems

In Sec. 8.1.7, the Gibbs phase rule for a pure substance was written F=3−P. We now consider a system of more than
one substance and more than one phase in an equilibrium state. The phase rule assumes the system is at thermal and
mechanical equilibrium. We shall assume furthermore that in addition to the temperature and pressure, the only other
state functions needed to describe the state are the amounts of the species in each phase; this means for instance that
surface effects are ignored.

The derivations to follow will show that the phase rule may be written either in the form

F=2+C −P (13.1.1)

or

F=2+ s− r −P (13.1.2)

where the symbols have the following meanings:

F= the number of degrees of freedom (or variance)

= the maximum number of intensive variables that can be varied independently while the system remains in an
equilibrium state;

C = the number of components

= the minimum number of substances (or fixed-composition mixtures of substances) that could be used to pre-
pare each phase individually;

P = the number of different phases;

s = the number of different species;

r = the number of independent relations among intensive variables of individual phases other than relations needed
for thermal, mechanical, and transfer equilibrium.
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If we subdivide a phase, that does not change the number of phases P. That is, we treat noncontiguous regions of the
system that have identical intensive properties as parts of the same phase.

13.1.1 Degrees of Freedom

Consider a system in an equilibrium state. In this state, the system has one or more phases; each phase contains one or
more species; and intensive properties such as T , p, and the mole fraction of a species in a phase have definite values.
Starting with the system in this state, we can make changes that place the system in a new equilibrium state having
the same kinds of phases and the same species, but different values of some of the intensive properties. The number
of different independent intensive variables that we may change in this way is the number of degrees of freedom or
variance, F, of the system.

Clearly, the system remains in equilibrium if we change the amount of a phase without changing its temperature,
pressure, or composition. This, however, is the change of an extensive variable and is not counted as a degree of
freedom.

The phase rule, in the form to be derived, applies to a system that continues to have complete thermal, mechanical,
and transfer equilibrium as intensive variables change. This means different phases are not separated by adiabatic or
rigid partitions, or by semipermeable or impermeable membranes. Furthermore, every conceivable reaction among
the species is either at reaction equilibrium or else is frozen at a fixed advancement during the time period we observe
the system.

The number of degrees of freedom is the maximum number of intensive properties of the equilibrium system we
may independently vary, or fix at arbitrary values, without causing a change in the number and kinds of phases and
species. We cannot, of course, change one of these properties to just any value whatever. We are able to vary the value
only within a certain finite (sometimes quite narrow) range before a phase disappears or a new one appears.

The number of degrees of freedom is also the number of independent intensive variables needed to specify the
equilibrium state in all necessary completeness, aside from the amount of each phase. In other words, when we specify
values of F different independent intensive variables, then the values of all other intensive variables of the equilibrium
state have definite values determined by the physical nature of the system.

Just as for a one-component system, we can use the terms bivariant, univariant, and invariant depending on the
value of F (Sec. 8.1.7).

13.1.2 Species approach to the phase rule

This section derives an expression for the number of degrees of freedom, F, based on species. Section 13.1.3 derives
an expression based on components. Both approaches yield equivalent versions of the phase rule.

Recall that a species is an entity, uncharged or charged, distinguished from other species by its chemical formula
(Sec. 9.1.1). Thus, CO2 and CO3

2− are different species, but CO2 (aq) and CO2 (g) is the same species in different
phases.

Consider an equilibrium system of P phases, each of which contains the same set of species. Let the number of
different species be s. If we could make changes while the system remains in thermal and mechanical equilibrium, but
not necessarily in transfer equilibrium, we could independently vary the temperature and pressure of the system as a
whole and the amount of each species in each phase; there would then be 2+Ps independent variables.

The equilibrium system is, however, in transfer equilibrium, which requires each species to have the same chem-
ical potential in each phase: 𝜇i

β=𝜇i
α, 𝜇i

𝛾=𝜇i
α, and so on. There are P − 1 independent relations like this for each

species, and a total of s (P − 1) independent relations for all species. Each such independent relation introduces a
constraint and reduces the number of independent variables by one. Accordingly, taking transfer equilibrium into
account, the number of independent variables is 2+Ps− s (P−1)=2+ s.
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We obtain the same result if a species present in one phase is totally excluded from another. For example, solvent
molecules of a solution are not found in a pure perfectly-ordered crystal of the solute, undissociated molecules of a
volatile strong acid such as HCl can exist in a gas phase but not in aqueous solution, and ions of an electrolyte solute
are usually not found in a gas phase. For each such species absent from a phase, there is one fewer amount variable
and also one fewer relation for transfer equilibrium; on balance, the number of independent variables is still 2+ s.

Next, we consider the possibility that further independent relations exist among intensive variables in addition to
the relations needed for thermal, mechanical, and transfer equilibrium.13.1.1 If there are r of these additional relations,
the total number of independent variables is reduced to 2+ s− r. These relations may come from

1. reaction equilibria,

2. the requirement of electroneutrality in a phase containing ions, and

3. initial conditions determined by the way the system is prepared.

In the case of a reaction equilibrium, the relation is Δr G=∑i 𝜈i𝜇i=0, or the equivalent relation K=∏i (ai)𝜈i for the
thermodynamic equilibrium constant. Thus, r is the sum of the number of independent reaction equilibria, the number
of phases containing ions, and the number of independent initial conditions. Several examples will be given in Sec.
13.1.4.

There is an infinite variety of possible choices of the independent variables (both extensive and intensive) for the
equilibrium system, but the total number of independent variables is fixed at 2+ s− r. Keeping intensive properties
fixed, we can always vary how much of each phase is present (e.g., its volume, mass, or amount) without destroying
the equilibrium. Thus, at least P of the independent variables, one for each phase, must be extensive. It follows that
the maximum number of independent intensive variables is the difference (2+ s− r)−P.

It may be that initial conditions establish relations among the amounts of phases, as will be illus-
trated in example 2 on page 333. If present, these are relations among extensive variables that are not
counted in r. Each such independent relation decreases the total number of independent variables
without changing the number of independent intensive variables calculated from (2+ s− r)−P.

Since the maximum number of independent intensive variables is the number of degrees of freedom, our expres-
sion for F based on species is

F=2+ s− r −P (13.1.3)

13.1.3 Components approach to the phase rule
The derivation of the phase rule in this section uses the concept of components. The number of components, C, is
the minimum number of substances or mixtures of fixed composition from which we could in principle prepare each
individual phase of an equilibrium state of the system, using methods that may be hypothetical. These methods include
the addition or removal of one or more of the substances or fixed-composition mixtures, and the conversion of some
of the substances into others by means of a reaction that is at equilibrium in the actual system.

It is not always easy to decide on the number of components of an equilibrium system. The number of com-
ponents may be less than the number of substances present, on account of the existence of reaction equilibria that
produce some substances from others. When we use a reaction to prepare a phase, nothing must remain unused. For
instance, consider a system consisting of solid phases of CaCO3 and CaO and a gas phase of CO2. Assume the reaction
CaCO3(s)→CaO(s)+CO2(g) is at equilibrium. We could prepare the CaCO3 phase from CaO and CO2 by the reverse
of this reaction, but we can only prepare the CaO and CO2 phases from the individual substances. We could not use
CaCO3 to prepare either the CaO phase or the CO2 phase, because CO2 or CaO would be left over. Thus this system
has three substances but only two components, namely CaO and CO2.

13.1.1. Relations such as∑i pi= p for a gas phase or∑i xi=1 for a phase in general have already been accounted for in the derivation by the
specification of p and the amount of each species.
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In deriving the phase rule by the components approach, it is convenient to consider only intensive variables.
Suppose we have a system of P phases in which each substance present is a component (i.e., there are no reactions)
and each of the C components is present in each phase. If we make changes to the system while it remains in thermal
and mechanical equilibrium, but not necessarily in transfer equilibrium, we can independently vary the temperature
and pressure of the whole system, and for each phase we can independently vary the mole fraction of all but one of the
substances (the value of the omitted mole fraction comes from the relation∑i xi=1). This is a total of 2+P (C −1)
independent intensive variables.

When there also exist transfer and reaction equilibria, not all of these variables are independent. Each substance in
the system is either a component, or else can be formed from components by a reaction that is in reaction equilibrium
in the system. Transfer equilibria establish P − 1 independent relations for each component (𝜇i

β=𝜇i
α, 𝜇i

𝛾=𝜇i
α, etc.)

and a total of C (P − 1) relations for all components. Since these are relations among chemical potentials, which
are intensive properties, each relation reduces the number of independent intensive variables by one. The resulting
number of independent intensive variables is

F=[2+P (C −1)]−C (P−1)=2+C −P (13.1.4)

If the equilibrium system lacks a particular component in one phase, there is one fewer mole fraction variable and one
fewer relation for transfer equilibrium. These changes cancel in the calculation of F, which is still equal to 2+C −P.
If a phase contains a substance that is formed from components by a reaction, there is an additional mole fraction
variable and also the additional relation∑i 𝜈i𝜇i=0 for the reaction; again the changes cancel.

We may need to remove a component from a phase to achieve the final composition. Note that it is not
necessary to consider additional relations for electroneutrality or initial conditions; they are implicit in
the definitions of the components. For instance, since each component is a substance of zero electric
charge, the electrical neutrality of the phase is assured.

We conclude that, regardless of the kind of system, the expression for F based on components is given by F=
2+C −P. By comparing this expression and F=2+ s− r −P, we see that the number of components is related to the
number of species by

C= s− r (13.1.5)

13.1.4 Examples

13.1.4.1 Example 1: liquid water

For a single phase of pure water, P equals 1. If we treat the water as the single species H2O, s is 1 and r is 0. The phase
rule then predicts two degrees of freedom:

F = 2+ s− r −P
= 2+1−0−1=2 (13.1.6)

Since F is the number of intensive variables that can be varied independently, we could for instance vary T and p
independently, or T and 𝜌, or any other pair of independent intensive variables.

Next let us take into account the proton transfer equilibrium

2H2O(l)⇌H3O+ (aq)+OH− (aq)

and consider the system to contain the three species H2O, H3O+, and OH−. Then for the species approach to the phase
rule, we have s=3. We can write two independent relations:

1. for reaction equilibrium, −2𝜇H2O+𝜇H3O++𝜇OH−=0;

2. for electroneutrality, mH3O+=mOH−.
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Thus, we have two relations involving intensive variables only. Now s is 3, r is 2, P is 1, and the number of degrees
of freedom is given by

F=2+ s− r −P=2 (13.1.7)

which is the same value of F as before.
If we consider water to contain additional cation species (e.g., H5O2

+), each such species would add 1 to s and 1
to r, but F would remain equal to 2. Thus, no matter how complicated are the equilibria that actually exist in liquid
water, the number of degrees of freedom remains 2.

Applying the components approach to water is simple. All species that may exist in pure water are formed, in
whatever proportions actually exist, from the single substance H2O. Thus, there is only one component: C=1. The
component version of the phase rule, F=2+C −P, gives the same result as the species version: F=2.

13.1.4.2 Example 2: carbon, oxygen, and carbon oxides

Consider a system containing solid carbon (graphite) and a gaseous mixture of O2, CO, and CO2. There are four
species and two phases. If reaction equilibrium is absent, as might be the case at low temperature in the absence of
a catalyst, we have r=0 and C= s− r=4. The four components are the four substances. The phase rule tells us the
system has four degrees of freedom. We could, for instance, arbitrarily vary T , p, yO2, and yCO.

Now suppose we raise the temperature or introduce an appropriate catalyst to allow the following reaction equi-
libria to exist:

1. 2C (s)+O2 (g)⇌2CO (g)

2. C (s)+O2(g)⇌CO2 (g)

These equilibria introduce two new independent relations among chemical potentials and among activities. We could
also consider the equilibrium 2CO (g) +O2 (g)⇌ 2CO2 (g), but it does not contribute an additional independent
relation because it depends on the other two equilibria: the reaction equation is obtained by subtracting the reaction
equation for equilibrium 1 from twice the reaction equation for equilibrium 2. By the species approach, we have s=4,
r=2, and P=2; the number of degrees of freedom from these values is

F=2+ s− r −P=2 (13.1.8)

If we wish to calculate F by the components approach, we must decide on the minimum number of substances we
could use to prepare each phase separately. (This does not refer to how we actually prepare the two-phase system,
but to a hypothetical preparation of each phase with any of the compositions that can actually exist in the equilibrium
system.) Assume equilibria 1 and 2 are present. We prepare the solid phase with carbon, and we can prepare any
possible equilibrium composition of the gas phase from carbon and O2 by using the reactions of both equilibria. Thus,
there are two components (C and O2) giving the same result of two degrees of freedom.

What is the significance of there being two degrees of freedom when the reaction equilibria are present? There are
two ways of viewing the situation:

1. We can arbitrarily vary the two intensive variables T and p. When we do, the mole fractions of the three
substances in the gas phase change in a way determined by equilibria 1 and 2.

2. If we specify arbitrary values of T and p, each of the mole fractions has only one possible value that will allow
the two phases and four substances to be in equilibrium.

Now to introduce an additional complexity:Suppose we prepare the system by placing a certain amount of O2 and
twice this amount of carbon in an evacuated container, and wait for the reactions to come to equilibrium. This method
of preparation imposes an initial condition on the system, and we must decide whether the number of degrees of
freedom is affected. Equating the total amount of carbon atoms to the total amount of oxygen atoms in the equilibrated
system gives the relation

nC+nCO+nCO2=2nO2+nCO+2nCO2 or nC=2nO2+nCO2 (13.1.9)
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Either equation is a relation among extensive variables of the two phases. From them, we are unable to obtain any
relation among intensive variables of the phases. Therefore, this particular initial condition does not change the value
of r, and F remains equal to 2.

13.1.4.3 Example 3: a solid salt and saturated aqueous solution

In this example, the equilibrium system consists of crystalline PbCl2 and an aqueous phase containing the species H2O,
Pb2+ (aq), and Cl− (aq).

Applying the components approach to this system is straightforward. The solid phase is prepared from PbCl2
and the aqueous phase could be prepared by dissolving solid PbCl2 in H2O. Thus, there are two components and two
phases:

F=2+C −P=2 (13.1.10)

For the species approach, we note that there are four species (PbCl2, Pb2+, Cl−, and H2O) and two independent rela-
tions among intensive variables:

1. equilibrium for the dissolution process, −𝜇PbCl2+𝜇Pb2++2𝜇Cl−=0;

2. electroneutrality of the aqueous phase, 2mPb2+=mCl−.

We have s=4, r=2, and P=2, giving the same result as the components approach:

F=2+ s− r −P=2 (13.1.11)

13.1.4.4 Example 4: liquid water and water-saturated air

For simplicity, let “air” be a gaseous mixture of N2 and O2. The equilibrium system in this example has two phases:
liquid water saturated with the dissolved constituents of air, and air saturated with gaseous H2O.

If there is no special relation among the total amounts of N2 and O2, there are three components and the phase rule
gives

F=2+C −P=3 (13.1.12)

Since there are three degrees of freedom, we could, for instance, specify arbitrary values13.1.2 of T , p, and yN2; then
the values of other intensive variables such as the mole fractions yH2O and xN2 would have definite values.

Now suppose we impose an initial condition by preparing the system with water and dry air of a fixed composition.
The mole ratio of N2 and O2 in the aqueous solution is not necessarily the same as in the equilibrated gas phase;
consequently, the air does not behave like a single substance. The number of components is still three: H2O, N2, and
O2 are all required to prepare each phase individually, just as when there was no initial condition, giving F =3 as
before.13.1.3

We can reach the same conclusion with the species approach. The initial condition can be expressed by an equation
such as

(nN2
l +nN2

g )
(nO2

l +nO2

g )
=a (13.1.13)

where a is a constant equal to the mole ratio of N2 and O2 in the dry air. This equation cannot be changed to a relation
between intensive variables such as xN2 and xO2, so that r is zero and there are still three degrees of freedom.

Finally, let us assume that we prepare the system with dry air of fixed composition, as before, but consider the
solubilities of N2 and O2 in water to be negligible. Then nN2

l and nO2
l are zero and Eq. 13.1.13 becomes nN2

g /nO2

g =a,
or yN2=ayO2, which is a relation between intensive variables. In this case, r is 1 and the phase rule becomes

F=2+ s− r −P=2 (13.1.14)

13.1.2. Arbitrary, that is, within the limits that would allow the two phases to coexist.
13.1.3. The fact that the compositions of both phases depend on the relative amounts of the phases is illustrated in Prob. 9.9.5.
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The reduction in the value of F from 3 to 2 is a consequence of our inability to detect any dissolved N2 or O2.
According to the components approach, we may prepare the liquid phase with H2O and the gas phase with H2O and
air of fixed composition that behaves as a single substance; thus, there are only two components.

13.1.4.5 Example 5: equilibrium between two solid phases and a gas phase

Consider the following reaction equilibrium:

3CuO (s)+2NH3 (g)⇌3Cu (s)+3H2O (g)+N2(g)

According to the species approach, there are five species, one relation (for reaction equilibrium), and three phases.
The phase rule gives

F=2+ s− r −P=3 (13.1.15)

It is more difficult to apply the components approach to this example. As components, we might choose CuO and Cu
(from which we could prepare the solid phases) and also NH3 and H2O. Then to obtain the N2 needed to prepare the
gas phase, we could use CuO and NH3 as reactants in the reaction 3CuO+2NH3→3Cu+3H2O+N2 and remove the
products Cu and H2O. In the components approach, we are allowed to remove substances from the system provided
they are counted as components.

13.2 Phase Diagrams: Binary Systems

As explained in Sec. 8.2, a phase diagram is a kind of two-dimensional map that shows which phase or phases are
stable under a given set of conditions. This section discusses some common kinds of binary systems, and Sec. 13.3
will describe some interesting ternary systems.

13.2.1 Generalities

A binary system has two components; C equals 2, and the number of degrees of freedom is F=4−P. There must be
at least one phase, so the maximum possible value of F is 3. Since F cannot be negative, the equilibrium system can
have no more than four phases.

We can independently vary the temperature, pressure, and composition of the system as a whole. Instead of using
these variables as the coordinates of a three-dimensional phase diagram, we usually draw a two-dimensional phase
diagram that is either a temperature–composition diagram at a fixed pressure or a pressure–composition diagram
at a fixed temperature. The position of the system point on one of these diagrams then corresponds to a definite
temperature, pressure, and overall composition. The composition variable usually varies along the horizontal axis and
can be the mole fraction, mass fraction, or mass percent of one of the components, as will presently be illustrated by
various examples.

The way in which we interpret a two-dimensional phase diagram to obtain the compositions of individual phases
depends on the number of phases present in the system.

• If the system point falls within a one-phase area of the phase diagram, the composition variable is the composi-
tion of that single phase. There are three degrees of freedom. On the phase diagram, the value of either T or p
has been fixed, so there are two other independent intensive variables. For example, on a temperature–compo-
sition phase diagram, the pressure is fixed and the temperature and composition can be changed independently
within the boundaries of the one-phase area of the diagram.
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Figure 13.2.1. Temperature--composition phase diagram for a binary system exhibiting a eutectic point.

• If the system point is in a two-phase area of the phase diagram, we draw a horizontal tie line of constant
temperature (on a temperature–composition phase diagram) or constant pressure (on a pressure–composition
phase diagram). The lever rule applies. The position of the point at each end of the tie line, at the boundary of
the two-phase area, gives the value of the composition variable of one of the phases and also the physical state
of this phase: either the state of an adjacent one-phase area, or the state of a phase of fixed composition when
the boundary is a vertical line. Thus, a boundary that separates a two-phase area for phases α and β from a one-
phase area for phase α is a curve that describes the composition of phase α as a function of T or p when it is
in equilibrium with phase β. The curve is called a solidus, liquidus, or vaporus depending on whether phase
α is a solid, liquid, or gas.

• A binary system with three phases has only one degree of freedom and cannot be represented by an area on
a two-dimensional phase diagram. Instead, there is a horizontal boundary line between areas, with a special
point along the line at the junction of several areas. The compositions of the three phases are given by the
positions of this point and the points at the two ends of the line. The position of the system point on this line
does not uniquely specify the relative amounts in the three phases.

The examples that follow show some of the simpler kinds of phase diagrams known for binary systems.

13.2.2 Solid–liquid systems
Figure 13.2.1 on page 336 is a temperature–composition phase diagram at a fixed pressure. The composition variable
zB is the mole fraction of component B in the system as a whole. The phases shown are a binary liquid mixture of A
and B, pure solid A, and pure solid B.

The one-phase liquid area is bounded by two curves, which we can think of either as freezing-point curves for
the liquid or as solubility curves for the solids. These curves comprise the liquidus. As the mole fraction of either
component in the liquid phase decreases from unity, the freezing point decreases. The curves meet at point a, which is
a eutectic point. At this point, both solid A and solid B can coexist in equilibrium with a binary liquid mixture. The
composition at this point is the eutectic composition, and the temperature here (denoted Te) is the eutectic temperature.
Te is the lowest temperature for the given pressure at which the liquid phase is stable.13.2.1

Suppose we combine 0.60mol A and 0.40mol B (zB=0.40) and adjust the temperature so as to put the system
point at b. This point is in the one-phase liquid area, so the equilibrium system at this temperature has a single liquid
phase. If we now place the system in thermal contact with a cold reservoir, heat is transferred out of the system and
the system point moves down along the isopleth (path of constant overall composition) b–h. The cooling rate depends
on the temperature gradient at the system boundary and the system's heat capacity.

13.2.1. “Eutectic” comes from the Greek for easy melting.
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Figure 13.2.2. Temperature--composition phase diagrams with single eutectics.

a) Two pure solids and a liquid mixture.13.2.2

b) Two solid solutions and a liquid mixture.

13.2.2. Ref. [138], p. 98.

At point c on the isopleth, the system point reaches the boundary of the one-phase area and is about to enter the
two-phase area labeled A(s) + liquid. At this point in the cooling process, the liquid is saturated with respect to solid A,
and solid A is about to freeze out from the liquid. There is an abrupt decrease (break) in the cooling rate at this point,
because the freezing process involves an extra enthalpy decrease.

At the still lower temperature at point d, the system point is within the two-phase solid–liquid area. The tie line
through this point is line e–f. The compositions of the two phases are given by the values of zB at the ends of the tie
line: xB

s =0 for the solid and xB
l =0.50 for the liquid. From the general lever rule (Eq. 8.2.8 on page 170), the ratio of

the amounts in these phases is
nl

ns =
zB −xB

s

xB
l − zB

= 0.40−0
0.50−0.40 =4.0 (13.2.1)

Since the total amount is ns+nl=1.00mol, the amounts of the two phases must be ns=0.20mol and nl=0.80mol.
When the system point reaches the eutectic temperature at point g, cooling halts until all of the liquid freezes.

Solid B freezes out as well as solid A. During this eutectic halt, there are at first three phases: liquid with the eutectic
composition, solid A, and solid B. As heat continues to be withdrawn from the system, the amount of liquid decreases
and the amounts of the solids increase until finally only 0.60mol of solid A and 0.40mol of solid B are present. The
temperature then begins to decrease again and the system point enters the two-phase area for solid A and solid B; tie
lines in this area extend from zB=0 to zB=1.

Temperature–composition phase diagrams such as this are often mapped out experimentally by observing the
cooling curve (temperature as a function of time) along isopleths of various compositions. This procedure is thermal
analysis. A break in the slope of a cooling curve at a particular temperature indicates the system point has moved from
a one-phase liquid area to a two-phase area of liquid and solid. A temperature halt indicates the temperature is either
the freezing point of the liquid to form a solid of the same composition, or else a eutectic temperature.

Figure 13.2.2 on page 337 shows two temperature–composition phase diagrams with single eutectic points. The
left-hand diagram is for the binary system of chloroform and carbon tetrachloride, two liquids that form nearly ideal
mixtures. The solid phases are pure crystals, as in Fig. 13.2.1. The right-hand diagram is for the silver–copper system
and involves solid phases that are solid solutions (substitutional alloys of variable composition). The area labeled sα

is a solid solution that is mostly silver, and sβ is a solid solution that is mostly copper. Tie lines in the two-phase areas
do not end at a vertical line for a pure solid component as they do in the system shown in the left-hand diagram. The
three phases that can coexist at the eutectic temperature of 1,052 K are the melt of the eutectic composition and the
two solid solutions.
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Figure 13.2.3. Temperature--composition phase diagram for the binary system of 𝛼-naphthylamine (A) and phenol (B) at 1 bar (Ref.
[110]).

Section 12.5.4 discussed the possibility of the appearance of a solid compound when a binary liquid mixture is
cooled. An example of this behavior is shown in Fig. 13.2.3 on page 338, in which the solid compound contains equal
amounts of the two components 𝛼-naphthylamine and phenol. The possible solid phases are pure A, pure B, and
the solid compound AB. Only one or two of these solids can be present simultaneously in an equilibrium state. The
vertical line in the figure at zB=0.5 represents the solid compound. The temperature at the upper end of this line is
the melting point of the solid compound, 29 ∘C. The solid melts congruently to give a liquid of the same composition.
A melting process with this behavior is called a dystectic reaction. The cooling curve for liquid of this composition
would display a halt at the melting point.

The phase diagram in Fig. 13.2.3 has two eutectic points. It resembles two simple phase diagrams like Fig. 13.2.1
placed side by side. There is one important difference: the slope of the freezing-point curve (liquidus curve) is nonzero
at the composition of a pure component, but is zero at the composition of a solid compound that is completely disso-

Figure 13.2.4. Temperature--composition phase diagram for the binary system of H2O and NaCl at 1bar. (Data from Refs. [31] and
[139].)
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Figure 13.2.5. Temperature--composition phase diagram for the binary system of methyl acetate (A) and carbon disulfide (B) at 1bar.13.2.3

All phases are liquids. The open circle indicates the critical point.
13.2.3. Data from Ref. [47].

ciated in the liquid (as derived theoretically on page 306). Thus, the curve in Fig. 13.2.3 has a relative maximum at
the composition of the solid compound (zB=0.5) and is rounded there, instead of having a cusp—like a Romanesque
arch rather than a Gothic arch.

An example of a solid compound that does not melt congruently is shown in Fig. 13.2.4 on page 338. The solid
hydrate NaCl⋅2H2O is 61.9% NaCl by mass. It decomposes at 0 ∘C to form an aqueous solution of composition 26.3%
NaCl by mass and a solid phase of anhydrous NaCl. These three phases can coexist at equilibrium at 0 ∘C. A phase
transition like this, in which a solid compound changes into a liquid and a different solid, is called incongruent or
peritectic melting, and the point on the phase diagram at this temperature at the composition of the liquid is a peritectic
point.

Figure 13.2.4 shows there are two other temperatures at which three phases can be present simultaneously: −21 ∘C,
where the phases are ice, the solution at its eutectic point, and the solid hydrate; and 109 ∘C, where the phases are
gaseous H2O, a solution of composition 28.3% NaCl by mass, and solid NaCl. Note that both segments of the right-
hand boundary of the one-phase solution area have positive slopes, meaning that the solubilities of the solid hydrate
and the anhydrous salt both increase with increasing temperature.

13.2.3 Partially-miscible liquids
When two liquids that are partially miscible are combined in certain proportions, phase separation occurs (Sec. 11.1.6).
Two liquid phases in equilibrium with one another are called conjugate phases. Obviously the two phases must
have different compositions or they would be identical; the difference is called a miscibility gap. A binary system
with two phases has two degrees of freedom, so that at a given temperature and pressure each conjugate phase has
a fixed composition.

The typical dependence of a miscibility gap on temperature is shown in Fig. 13.2.5 on page 339. The miscibility
gap (the difference in compositions at the left and right boundaries of the two-phase area) decreases as the temper-
ature increases until at the upper consolute temperature, also called the upper critical solution temperature, the gap
vanishes. The point at the maximum of the boundary curve of the two-phase area, where the temperature is the upper
consolute temperature, is the consolute point or critical point. At this point, the two liquid phases become identical,
just as the liquid and gas phases become identical at the critical point of a pure substance. Critical opalescence (page
167) is observed in the vicinity of this point, caused by large local composition fluctuations. At temperatures at and
above the critical point, the system is a single binary liquid mixture.

Suppose we combine 6.0mol of component A (methyl acetate) and 4.0mol of component B (carbon disulfide) in a
cylindrical vessel and adjust the temperature to 200K. The overall mole fraction of B is zB=0.40. The system point is
at point a in the two-phase region. From the positions of points b and c at the ends of the tie line through point a, we
find the two liquid layers have compositions xB

α=0.20 and xB
β=0.92. Since carbon disulfide is the more dense of the
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Figure 13.2.6. Phase diagrams for the binary system of toluene (A) and benzene (B). The curves are calculated from Eqs. 13.2.6 and
13.2.7 and the saturation vapor pressures of the pure liquids.

a) Pressure–composition diagram at T =340K.

b) Temperature–composition diagram at p=1bar.

two pure liquids, the bottom layer is phase β, the layer that is richer in carbon disulfide. According to the lever rule,
the ratio of the amounts in the two phases is given by

nβ

nα =
zB −xB

α

xB
β − zB

= 0.40−0.20
0.92−0.40 =0.38 (13.2.2)

Combining this value with nα+nβ=10.0mol gives us nα=7.2mol and nβ=2.8mol.
If we gradually add more carbon disulfide to the vessel while gently stirring and keeping the temperature constant,

the system point moves to the right along the tie line. Since the ends of this tie line have fixed positions, neither phase
changes its composition, but the amount of phase β increases at the expense of phase α. The liquid–liquid interface
moves up in the vessel toward the top of the liquid column until, at overall composition zB=0.92 (point c), there is
only one liquid phase.

Now suppose the system point is back at point a and we raise the temperature while keeping the overall com-
position constant at zB=0.40. The system point moves up the isopleth a–d. The phase diagram shows that the ratio
(zB −xB

α)/(xB
β − zB) decreases during this change. As a result, the amount of phase α increases, the amount of phase β

decreases, and the liquid–liquid interface moves down toward the bottom of the vessel until at 217K (point d) there
again is only one liquid phase.

13.2.4 Liquid–gas systems with ideal liquid mixtures
Toluene and benzene form liquid mixtures that are practically ideal and closely obey Raoult's law for partial pressure.
For the binary system of these components, we can use the vapor pressures of the pure liquids to generate the liquidus
and vaporus curves of the pressure–composition and temperature–composition phase diagram. The results are shown
in Fig. 13.2.6 on page 340. The composition variable zA is the overall mole fraction of component A (toluene).

The equations needed to generate the curves can be derived as follows. Consider a binary liquid mixture of com-
ponents A and B and mole fraction composition xA that obeys Raoult's law for partial pressure (Eq. 9.4.2):

pA=xA pA
∗ pB=(1−xA) pB

∗ (13.2.3)

Strictly speaking, Raoult's law applies to a liquid–gas system maintained at a constant pressure by means of a third
gaseous component, and pA

∗ and pB
∗ are the vapor pressures of the pure liquid components at this pressure and the

temperature of the system. However, when a liquid phase is equilibrated with a gas phase, the partial pressure of a
constituent of the liquid is practically independent of the total pressure (Sec. 12.8.1), so that it is a good approximation
to apply the equations to a binary liquid–gas system and treat pA

∗ and pB
∗ as functions only of T .
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Figure 13.2.7. Liquidus and vaporus surfaces for the binary system of toluene (A) and benzene. Cross-sections through the two-phase
region are drawn at constant temperatures of 340K and 370K and at constant pressures of 1 bar and 2 bar. Two of the cross-sections
intersect at a tie line at T =370K and p=1bar, and the other cross-sections are hatched in the direction of the tie lines.

When the binary system contains a liquid phase and a gas phase in equilibrium, the pressure is the sum of pA and
pB, which from Eq. 13.2.3 is given by

p = xA pA
∗ +(1−xA) pB

∗

= pB
∗ +(pA

∗ − pB
∗)xA

(13.2.4)
(C=2, ideal liquid mixture)

where xA is the mole fraction of A in the liquid phase. Equation 13.2.4 shows that in the two-phase system, p has a
value between pA

∗ and pB
∗ , and that if T is constant, p is a linear function of xA. The mole fraction composition of the

gas in the two-phase system is given by

yA=
pA
p =

xA pA
∗

pB
∗ +(pA

∗ − pB
∗)xA

(13.2.5)

A binary two-phase system has two degrees of freedom. At a given T and p, each phase must have a fixed composi-
tion. We can calculate the liquid composition by rearranging Eq. 13.2.4:

xA=
p− pB

∗

pA
∗ − pB

∗
(13.2.6)

(C=2, ideal liquid mixture)

The gas composition is then given by

yA =
pA
p =

xA pA
∗

p

= � p− pB
∗

pA
∗ − pB

∗ �
pA
∗

p
(13.2.7)

(C=2, ideal liquid mixture)

If we know pA
∗ and pB

∗ as functions of T , we can use Eqs. 13.2.6 and 13.2.7 to calculate the compositions for any
combination of T and p at which the liquid and gas phases can coexist, and thus construct a pressure–composition or
temperature–composition phase diagram.
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Figure 13.2.8. Binary system of methanol (A) and benzene at 45 ∘C.13.2.5

a) Partial pressures and total pressure in the gas phase equilibrated with liquid mixtures. The dashed lines indicate Raoult's law
behavior.

b) Pressure–composition phase diagram at 45 ∘C. Open circle: azeotropic point at zA=0.59 and p=60.5kPa.

13.2.5. Ref. [huniniti].

In Fig. 13.2.6(a), the liquidus curve shows the relation between p and xA for equilibrated liquid and gas phases
at constant T , and the vaporus curve shows the relation between p and yA under these conditions. We see that p is a
linear function of xA but not of yA.

In a similar fashion, the liquidus curve in Fig. 13.2.6(b) shows the relation between T and xA, and the vaporus
curve shows the relation between T and yA, for equilibrated liquid and gas phases at constant p. Neither curve is linear.

A liquidus curve is also called a bubble-point curve or a boiling-point curve. Other names for a vaporus curve are
dew-point curve and condensation curve. These curves are actually cross-sections of liquidus and vaporus surfaces in
a three-dimensional T–p–zA phase diagram, as shown in Fig. 13.2.7 on page 341. In this figure, the liquidus surface
is in view at the front and the vaporus surface is hidden behind it.

13.2.5 Liquid–gas systems with nonideal liquid mixtures

Most binary liquid mixtures do not behave ideally. The most common situation is positive deviations from Raoult's
law.13.2.4 Some mixtures, however, have specific A–B interactions, such as solvation or molecular association, that
prevent random mixing of the molecules of A and B, and the result is then negative deviations from Raoult's law. If
the deviations from Raoult's law, either positive or negative, are large enough, the constant-temperature liquidus curve
exhibits a maximum or minimum and azeotropic behavior results.

Figure 13.2.8 on page 342 shows the azeotropic behavior of the binary methanol-benzene system at constant
temperature. In Fig. 13.2.8(a), the experimental partial pressures in a gas phase equilibrated with the nonideal liquid
mixture are plotted as a function of the liquid composition. The partial pressures of both components exhibit positive
deviations from Raoult's law,13.2.6 and the total pressure (equal to the sum of the partial pressures) has a maximum
value greater than the vapor pressure of either pure component. The curve of p versus xA becomes the liquidus curve

13.2.4. In the molecular model of Sec. 11.1.5, positive deviations correspond to a less negative value of kAB than the average of kAA and kBB.
13.2.6. This behavior is consistent with the statement in Sec. 12.8.2 that if one constituent of a binary liquid mixture exhibits positive devia-

tions from Raoult's law, with only one inflection point in the curve of fugacity versus mole fraction, the other constituent also has positive deviations
from Raoult's law.
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Figure 13.2.9. Liquidus and vaporus surfaces for the binary system of methanol (A) and benzene.13.2.7 Cross-sections are hatched in the
direction of the tie lines. The dashed curve is the azeotrope vapor-pressure curve.

13.2.7. Ref. [huniniti].

of the pressure–composition phase diagram shown in Fig. 13.2.8(b). Points on the vaporus curve are calculated from
p= pA/yA.

In practice, the data needed to generate the liquidus and vaporus curves of a nonideal binary system
are usually obtained by allowing liquid mixtures of various compositions to boil in an equilibrium still
at a fixed temperature or pressure. When the liquid and gas phases have become equilibrated, samples
of each are withdrawn for analysis. The partial pressures shown in Fig. 13.2.8(a) were calculated from
the experimental gas-phase compositions with the relations pA=yAp and pB= p− pA.

If the constant-temperature liquidus curve has a maximum pressure at a liquid composition not corresponding to
one of the pure components, which is the case for the methanol–benzene system, then the liquid and gas phases are
mixtures of identical compositions at this pressure. This behavior was deduced on page 319 at the end of Sec. 12.8.3.
On the pressure–composition phase diagram, the liquidus and vaporus curves both have maxima at this pressure, and
the two curves coincide at an azeotropic point. A binary system with negative deviations from Raoult's law can have
an isothermal liquidus curve with a minimum pressure at a particular mixture composition, in which case the liquidus
and vaporus curves coincide at an azeotropic point at this minimum. The general phenomenon in which equilibrated
liquid and gas mixtures have identical compositions is called azeotropy, and the liquid with this composition is an
azeotropic mixture or azeotrope (Greek: boils unchanged). An azeotropic mixture vaporizes as if it were a pure
substance, undergoing an equilibrium phase transition to a gas of the same composition.

If the liquidus and vaporus curves exhibit a maximum on a pressure–composition phase diagram, then they exhibit
a minimum on a temperature–composition phase diagram. This relation is explained for the methanol–benzene system
by the three-dimensional liquidus and vaporus surfaces drawn in Fig. 13.2.9 on page 343. In this diagram, the vaporus
surface is hidden behind the liquidus surface. The hatched cross-section at the front of the figure is the same as the
pressure–composition diagram of Fig. 13.2.8(b), and the hatched cross-section at the top of the figure is a tempera-
ture–composition phase diagram in which the system exhibits a minimum-boiling azeotrope.

A binary system containing an azeotropic mixture in equilibrium with its vapor has two species, two phases,
and one relation among intensive variables: xA= yA. The number of degrees of freedom is then F =2+ s − r − P=
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Figure 13.2.10. Temperature–composition phase diagrams of binary systems exhibiting (a) no azeotropy, (b) a minimum-boiling azeotrope,
and (c) a maximum-boiling azeotrope. Only the one-phase areas are labeled; two-phase areas are hatched in the direction of the tie lines.

2+2−1−2=1; the system is univariant. At a given temperature, the azeotrope can exist at only one pressure and have
only one composition. As T changes, so do p and zA along an azeotrope vapor-pressure curve as illustrated by the
dashed curve in Fig. 13.2.9.

Figure 13.2.10 on page 344 summarizes the general appearance of some relatively simple temperature–composi-
tion phase diagrams of binary systems. If the system does not form an azeotrope (zeotropic behavior), the equilibrated
gas phase is richer in one component than the liquid phase at all liquid compositions, and the liquid mixture can
be separated into its two components by fractional distillation. The gas in equilibrium with an azeotropic mixture,
however, is not enriched in either component. Fractional distillation of a system with an azeotrope leads to separation
into one pure component and the azeotropic mixture.

More complicated behavior is shown in the phase diagrams of Fig. 13.2.11. These are binary systems with par-
tially-miscible liquids in which the boiling point is reached before an upper consolute temperature can be observed.

13.2.6 Solid–gas systems

As an example of a two-component system with equilibrated solid and gas phases, consider the components CuSO4

and H2O, denoted A and B respectively. In the pressure–composition phase diagram shown in Fig. 13.2.12 on page
345, the composition variable zB is as usual the mole fraction of component B in the system as a whole.

The anhydrous salt and its hydrates (solid compounds) form the series of solids CuSO4, CuSO4⋅H2O, CuSO4⋅3H2O,
and CuSO4⋅5H2O. In the phase diagram these formulas are abbreviated A, AB, AB3, and AB5. The following dis-

Figure 13.2.11. Temperature–composition phase diagrams of binary systems with partially-miscible liquids exhibiting (a) the ability to be
separated into pure components by fractional distillation, (b) a minimum-boiling azeotrope, and (c) boiling at a lower temperature than the
boiling point of either pure component. Only the one-phase areas are labeled; two-phase areas are hatched in the direction of the tie lines.
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Figure 13.2.12. Pressure--composition phase diagram for the binary system of CuSO4 (A) and H2O (B) at 25 ∘C.13.2.8

13.2.8. Ref. [88]; Ref. [140], p. 263.

sociation equilibria (dehydration equilibria) are possible:

CuSO4⋅H2O (s) ⇌ CuSO4(s)+H2O (g)
1
2 CuSO4⋅3H2O (s) ⇌

1
2 CuSO4⋅H2O(s)+H2O (g)

1
2 CuSO4⋅5H2O (s) ⇌

1
2 CuSO4⋅3H2O (s)+H2O(g)

The equilibria are written above with coefficients that make the coefficient of H2O(g) unity. When one of these equi-
libria is established in the system, there are two components and three phases; the phase rule then tells us the system is
univariant and the pressure has only one possible value at a given temperature. This pressure is called the dissociation
pressure of the higher hydrate.

The dissociation pressures of the three hydrates are indicated by horizontal lines in Fig. 13.2.12. For instance,
the dissociation pressure of CuSO4⋅5H2O is 1.05×10−2 bar. At the pressure of each horizontal line, the equilibrium
system can have one, two, or three phases, with compositions given by the intersections of the line with vertical lines.
A fourth three-phase equilibrium is shown at p=3.09×10−2bar; this is the equilibrium between solid CuSO4⋅5H2O,
the saturated aqueous solution of this hydrate, and water vapor.

Consider the thermodynamic equilibrium constant of one of the dissociation reactions. At the low pressures shown
in the phase diagram, the activities of the solids are practically unity and the fugacity of the water vapor is practically
the same as the pressure, so the equilibrium constant is almost exactly equal to pd/p∘, where pd is the dissociation
pressure of the higher hydrate in the reaction. Thus, a hydrate cannot exist in equilibrium with water vapor at a pres-
sure below the dissociation pressure of the hydrate because dissociation would be spontaneous under these conditions.
Conversely, the salt formed by the dissociation of a hydrate cannot exist in equilibrium with water vapor at a pressure
above the dissociation pressure because hydration would be spontaneous.

If the system contains dry air as an additional gaseous component and one of the dissociation equilibria
is established, the partial pressure pH2O of H2O is equal (approximately) to the dissociation pressure pd

of the higher hydrate. The prior statements regarding dissociation and hydration now depend on the
value of pH2O. If a hydrate is placed in air in which pH2O is less than pd, dehydration is spontaneous;
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Figure 13.2.13. Pressure--temperature--composition behavior in the binary heptane--ethane system.13.2.9 The open circles are critical
points; the dashed curve is the critical curve. The dashed line a–b illustrates retrograde condensation at 450K.

13.2.9. Ref. [73].

this phenomenon is called efflorescence (Latin: blossoming). If pH2O is greater than the vapor pressure
of the saturated solution of the highest hydrate that can form in the system, the anhydrous salt and any
of its hydrates will spontaneously absorb water and form the saturated solution; this is deliquescence
(Latin: becoming fluid).

If the two-component equilibrium system contains only two phases, it is bivariant corresponding to one of the areas
in Fig. 13.2.12. Here both the temperature and the pressure can be varied. In the case of areas labeled with two solid
phases, the pressure has to be applied to the solids by a fluid (other than H2O) that is not considered part of the system.

13.2.7 Systems at high pressure

Binary phase diagrams begin to look different when the pressure is greater than the critical pressure of either of the
pure components. Various types of behavior have been observed in this region. One common type, that found in the
binary system of heptane and ethane, is shown in Fig. 13.2.13 on page 346. This figure shows sections of a three-
dimensional phase diagram at five temperatures. Each section is a pressure–composition phase diagram at constant T .
The two-phase areas are hatched in the direction of the tie lines. At the left end of each tie line (at low zA) is a vaporus
curve, and at the right end is a liquidus curve. The vapor pressure curve of pure ethane (zA=0) ends at the critical point
of ethane at 305.4K; between this point and the critical point of heptane at 540.5K, there is a continuous critical curve,
which is the locus of critical points at which gas and liquid mixtures become identical in composition and density.

Consider what happens when the system point is at point a in Fig. 13.2.13 and the pressure is then increased by
isothermal compression along line a–b. The system point moves from the area for a gas phase into the two-phase
gas–liquid area and then out into the gas-phase area again. This curious phenomenon, condensation followed by
vaporization, is called retrograde condensation.
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Figure 13.2.14. Pressure--temperature–composition behavior in the binary xenon--helium system.13.2.10 The open circles are critical
points; the dashed curve is the critical curve.

13.2.10. Ref. [36].

Under some conditions, an isobaric increase of T can result in vaporization followed by condensation; this is
retrograde vaporization.

A different type of high-pressure behavior, that found in the xenon–helium system, is shown in Fig. 13.2.14 on
page 347. Here, the critical curve begins at the critical point of the less volatile component (xenon) and continues to
higher temperatures and pressures than the critical temperature and pressure of either pure component. The two-phase
region at pressures above this critical curve is sometimes said to represent gas–gas equilibrium, or gas–gas immisci-
bility, because we would not usually consider a liquid to exist beyond the critical points of the pure components. Of
course, the coexisting phases in this two-phase region are not gases in the ordinary sense of being tenuous fluids, but
are instead high-pressure fluids of liquid-like densities. If we want to call both phases gases, then we have to say that
pure gaseous substances at high pressure do not necessarily mix spontaneously in all proportions as they do at ordinary
pressures.

If the pressure of a system is increased isothermally, eventually solid phases will appear; these are not shown in
Figs. 13.2.13 and Fig. 13.2.14.

13.3 Phase Diagrams: Ternary Systems

A ternary system is one with three components. We can independently vary the temperature, the pressure, and two
independent composition variables for the system as a whole. A two-dimensional phase diagram for a ternary system
is usually drawn for conditions of constant T and p.

Although we could draw a two-dimensional phase diagram with Cartesian coordinates to express the mole frac-
tions of two of the components, there are advantages in using instead the triangular coordinates shown in Fig. 13.3.1
on page 348. Each vertex of the equilateral triangle represents one of the pure components A, B, or C. A point on the

13.3 PHASE DIAGRAMS: TERNARY SYSTEMS 347

347



Figure 13.3.1. Representing the composition of a ternary system by a point in an equilateral triangle.

Figure 13.3.2. Proof that the sum of the lengths a, b, and c is equal to the height h of the large equilateral triangle ABC. ADE and FDP
are two smaller equilateral triangles. The height of triangle ADE is equal to h − a. The height of triangle FDP is equal to the height of
triangle ADE minus length b, and is also equal to length c: h − a − b= c. Therefore, a+b+c=h.

side of the triangle opposite a vertex represents a binary system of the other two components, and a point within the
triangle represents a ternary system with all three components.

To determine the mole fraction zA of component A in the system as a whole represented by a point within the
triangle, we measure the distance to the point from the side of the triangle that is opposite the vertex for pure A, then
express this distance as a fraction of the height of the triangle. We follow the same procedure to determine zB and zC.
The concept is shown in Fig. 13.3.1(a).

As an aid for the conversion between the position of a point and the overall composition, we can draw equally-
spaced lines within the triangle parallel to the sides as shown in Fig. 13.3.1(b). One of these lines, being at a constant
distance from one side of the triangle, represents a constant mole fraction of one component. In the figure, the lines
divide the distance from each side to the opposite vertex into ten equal parts; thus, adjacent parallel lines represent a
difference of 0.1 in the mole fraction of a component, starting with 0 at the side of the triangle and ending with 1 at the
vertex. Using the lines, we see that the filled circle in the figure represents the overall composition zA=0.20, zB=0.30,
and zC=0.50.

The sum of zA, zB, and zC must be 1. The method of representing composition with a point in an equilateral triangle
works because the sum of the lines drawn from the point to the three sides, perpendicular to the sides, equals the height
of the triangle. The proof is shown in Fig. 13.3.2 on page 348.

Two useful properties of this way of representing a ternary composition are as follows:

1. Points on a line parallel to a side of the triangle represent systems in which one of the mole fractions remains
constant.
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Figure 13.3.3. Ternary phase diagram for ethanol, benzene, and water at 30 ∘C and 1 bar.13.3.2 The dashed lines are tie lines; the open
circle indicates the plait point.

13.3.2. Ref. [18].

2. Points on a line passing through a vertex represent systems in which the ratio of two of the mole fractions
remains constant.

13.3.1 Three liquids

Figure 13.3.3 on page 349 is the ternary phase diagram of a system of ethanol, benzene, and water at a temperature
and pressure at which the phases are liquids. When the system point is in the area labeled P=1, there is a single liquid
phase whose composition is described by the position of the point. The one-phase area extends to the side of the
triangle representing binary mixtures of ethanol and benzene, and to the side representing binary mixtures of ethanol
and water. In other words, ethanol and benzene mix in all proportions, and so also do ethanol and water.

When the overall composition is such that the system point falls in the area labeled P=2, two liquid phases are
present. The compositions of these phases are given by the positions of the ends of a tie line through the system point.
Four representative tie lines are included in the diagram, and these must be determined experimentally. The relative
amounts of the two phases can be determined from the lever rule.13.3.1 In the limit of zero mole fraction of ethanol, the
tie line falls along the horizontal base of the triangle and displays a miscibility gap for the binary system of benzene
and water. (The conjugate phases are very nearly pure benzene and pure water).

The plait point shown as an open circle in the figure is also called a critical solution point. As the system point
approaches the plait point from within the two-phase area, the length of the tie line through the system point approaches
zero, the miscibility gap disappears, and the compositions of the two conjugate liquid phases become identical.

Suppose we have the binary system of benzene and water represented by point a. Two liquid phases are present:
one is wet benzene and the other is water containing a very small mole fraction of benzene. If we gradually stir ethanol
into this system, the system point moves along the dotted line from point a toward the vertex for pure ethanol, but can
never quite reach the vertex. At point b, there are still two phases, and we can consider the ethanol to have distributed
itself between two partially-miscible solvents, benzene and water (Sec. 12.6.3). From the position of point b relative
to the ends of the tie line passing through point b, we see that the mole fraction of ethanol is greater in the water-rich
phase. As we continue to add ethanol, the amount of the water-rich phase increases and the amount of the benzene-
rich phase decreases, until at point c the benzene-rich phase completely disappears. The added ethanol has increased
the mutual solubilities of benzene and water and resulted in a single liquid phase.

13.3.1. The lever rule works, according to the general derivation in Sec. 8.2.4, because the ratio nA/n, which is equal to zA, varies linearly
with the position of the system point along a tie line on the triangular phase diagram.
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Figure 13.3.4. Ternary phase diagram for NaCl, KCl, and water at 25 ∘C and 1bar.13.3.3 The dashed lines are tie lines in the two-phase
areas.

13.3.3. Data from Ref. [138], p. 314.

13.3.2 Two solids and a solvent
The phase diagram in Fig. 13.3.4 on page 350 is for a ternary system of water and two salts with an ion in common.
There is a one-phase area for solution, labeled sln; a pair of two-phase areas in which the phases are a single solid salt
and the saturated solution; and a triangular three-phase area. The upper vertex of the three-phase area, the eutonic
point, represents the composition of solution saturated with respect to both salts. Some representative tie lines are
drawn in the two-phase areas.

A system of three components and three phases has two degrees of freedom; at fixed values of T and p, each phase
must have a fixed composition. The fixed compositions of the phases that are present when the system point falls in
the three-phase area are the compositions at the three vertices of the inner triangle: solid NaCl, solid KCl, and solution
of the eutonic composition xNaCl=0.20 and xKCl=0.11.

From the position of the curved boundary that separates the one-phase solution area from the two-phase area for
solution and solid KCl, we can see that adding NaCl to the saturated solution of KCl decreases the mole fraction of
KCl in the saturated solution. Although it is not obvious in the phase diagram, adding KCl to a saturated solution of
NaCl decreases the mole fraction of NaCl. These decreases in solubility when a common ion is added are examples
of the common ion effect mentioned in Sec. 12.5.5.
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13.4 Problems

Problem 13.4.1. Consider a single-phase system that is a gaseous mixture of N2, H2, and NH3. For each of the following cases, find the number
of degrees of freedom and give an example of the independent intensive variables that could be used to specify the equilibrium state, apart
from the total amount of gas.

a) There is no reaction.

b) The reaction N2 (g)+3H2 (g)→2NH3 (g) is at equilibrium.

c) The reaction is at equilibrium and the system is prepared from NH3 only.

Problem 13.4.2. How many components has a mixture of water and deuterium oxide in which the equilibrium H2O+D2O⇌2HDO exists?

Problem 13.4.3. Consider a system containing only NH4Cl(s), NH3(g), and HCl(g). Assume that the equilibrium NH4Cl (s)⇌NH3 (g) +
HCl (g) exists.

a) Suppose you prepare the system by placing solid NH4Cl in an evacuated flask and heating to 400K. Use the phase rule to decide
whether you can vary the pressure while both phases remain in equilibrium at 400K.

b) According to the phase rule, if the system is not prepared as described in part (a) could you vary the pressure while both phases remain
in equilibrium at 400K? Explain.

c) Rationalize your conclusions for these two cases on the basis of the thermodynamic equilibrium constant. Assume that the gas phase
is an ideal gas mixture and use the approximate expression K = pNH3 pHCl/(p∘)2.

Problem 13.4.4. Consider the lime-kiln process CaCO3 (s)→CaO (s)+CO2 (g). Find the number of intensive variables that can be varied
independently in the equilibrium system under the following conditions:

a) The system is prepared by placing calcium carbonate, calcium oxide, and carbon dioxide in a container.

b) The system is prepared from calcium carbonate only.

c) The temperature is fixed at 1000K.

Problem 13.4.5. What are the values of C and F in systems consisting of solid AgCl in equilibrium with an aqueous phase containing
H2O, Ag+(aq), Cl−(aq), Na+(aq), and NO3−(aq) prepared in the following ways? Give examples of intensive variables that could be varied
independently.

a) The system is prepared by equilibrating excess solid AgCl with an aqueous solution of NaNO3.

b) The system is prepared by mixing aqueous solutions of AgNO3 and NaCl in arbitrary proportions; some solid AgCl forms by precipi-
tation.

Problem 13.4.6. How many degrees of freedom has a system consisting of solid NaCl in equilibrium with an aqueous phase containing H2O,
Na+(aq), Cl−(aq), H+(aq), and OH−(aq)? Would it be possible to independently vary T , p, and mOH−? If so, explain how you could do this.

Problem 13.4.7. Consult the phase diagram shown in Fig. 13.2.4 on page 338. Suppose the system contains 36.0g (2.00mol) H2O and 58.4g
(1.00mol) NaCl at 25 ∘C and 1bar.

a) Describe the phases present in the equilibrium system and their masses.

b) Describe the changes that occur at constant pressure if the system is placed in thermal contact with a heat reservoir at −30 ∘C.

c) Describe the changes that occur if the temperature is raised from 25 ∘C to 120 ∘C at constant pressure.

d) Describe the system after 200g H2O is added at 25 ∘C.

Na2SO4⋅10H2O Na2SO4
t/∘C xB t/ ∘C xB
10 0.011 40 0.058
15 0.016 50 0.056
20 0.024
25 0.034
30 0.048

Table 13.4.1. Aqueous solubilities of sodium sulfate decahydrate and anhydrous sodium sulfate13.4.1

13.4.1. Ref. [49], p. 179--180.
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Problem 13.4.8. Use the following information to draw a temperature–composition phase diagram for the binary system of H2O (A) and
Na2SO4 (B) at p=1 bar, confining t to the range −20 to 50 ∘C and zB to the range 0–0.2. The solid decahydrate, Na2SO4⋅10H2O, is stable
below 32.4 ∘C. The anhydrous salt, Na2SO4, is stable above this temperature. There is a peritectic point for these two solids and the solution
at xB=0.059 and t=32.4 ∘C. There is a eutectic point for ice, Na2SO4⋅10H2O, and the solution at xB=0.006 and t=−1.3 ∘C. Table 13.4.1 on
page 351 gives the temperature dependence of the solubilities of the ionic solids.

xA t/∘C xA t/ ∘C xA t/ ∘C
0.000 0.0 0.119 35.0 0.286 56.0
0.020 −10.0 0.143 37.0 0.289 55.0
0.032 −20.5 0.157 36.0 0.293 60.0
0.037 −27.5 0.173 33.0 0.301 69.0
0.045 −40.0 0.183 30.0 0.318 72.5
0.052 −55.0 0.195 27.4 0.333 73.5
0.053 −41.0 0.213 32.0 0.343 72.5
0.056 −27.0 0.222 32.5 0.358 70.0
0.076 0.0 0.232 30.0 0.369 66.0
0.083 10.0 0.238 35.0 0.369 80.0
0.093 20.0 0.259 50.0 0.373 100.0
0.106 30.0 0.277 55.0

Table 13.4.2. Data for Problem 13.4.9. Temperatures of saturated solutions of aqueous iron(III) chloride at p=1bar (A = FeCl3, B =
H2O)13.4.2

13.4.2. Data from Ref. [49], page 193.

Problem 13.4.9. Iron(III) chloride forms various solid hydrates, all of which melt congruently. Table 13.4.2 on page 352 lists the temperatures
t of aqueous solutions of various compositions that are saturated with respect to a solid phase.

a) Use these data to construct a t–zB phase diagram for the binary system of FeCl3 (A) and H2O (B). Identify the formula and melting
point of each hydrate. Hint: derive a formula for the mole ratio nB/nA as a function of xA in a binary mixture.

b) For the following conditions, determine the phase or phases present at equilibrium and the composition of each.

1. t=−70.0∘C and zA=0.100

2. t=50.0∘C and zA=0.275

Figure 13.4.1. Temperature--composition phase diagram for the binary system of water (A) and phenol (B) at 1 bar.13.4.3 Only liquid
phases are present.

13.4.3. Ref. [49], p. 95.

Problem 13.4.10. Figure 13.4.1 on page 352 is a temperature–composition phase diagram for the binary system of water (A) and phenol (B)
at 1bar. These liquids are partially miscible below 67 ∘C. Phenol is more dense than water, so the layer with the higher mole fraction of phenol
is the bottom layer. Suppose you place 4.0mol of H2O and 1.0mol of phenol in a beaker at 30 ∘C and gently stir to allow the layers to equilibrate.

a) What are the compositions of the equilibrated top and bottom layers?

b) Find the amount of each component in the bottom layer.
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c) As you gradually stir more phenol into the beaker, maintaining the temperature at 30 ∘C, what changes occur in the volumes and
compositions of the two layers? Assuming that one layer eventually disappears, what additional amount of phenol is needed to cause
this to happen?

t/ ∘C pA
∗ /bar pB

∗ /bar
-10.0 3.360 0.678
-20.0 2.380 0.441
-30.0 1.633 0.275

Table 13.4.3. Saturation vapor pressures of propane (A) and n-butane (B)

Problem 13.4.11. The standard boiling point of propane is −41.8 ∘C and that of n-butane is −0.2 ∘C. Table 13.4.3 on page 353 lists vapor
pressure data for the pure liquids. Assume that the liquid mixtures obey Raoult's law.

a) Calculate the compositions, xA, of the liquid mixtures with boiling points of −10.0 ∘C, −20.0 ∘C, and −30.0 ∘C at a pressure of 1bar.

b) Calculate the compositions, yA, of the equilibrium vapor at these three temperatures.

c) Plot the temperature–composition phase diagram at p=1bar using these data, and label the areas appropriately.

d) Suppose a system containing 10.0mol propane and 10.0mol n-butane is brought to a pressure of 1 bar and a temperature of −25 ∘C.
From your phase diagram, estimate the compositions and amounts of both phases.

xA yA p/kPa xA yA p/kPa
0 0 29.89 0.5504 0.3692 35.32
0.0472 0.1467 33.66 0.6198 0.3951 34.58
0.0980 0.2066 35.21 0.7096 0.4378 33.02
0.2047 0.2663 36.27 0.8073 0.5107 30.28
0.2960 0.2953 36.45 0.9120 0.6658 25.24
0.3862 0.3211 36.29 0.9655 0.8252 21.30
0.4753 0.3463 35.93 1.0000 1.0000 18.14

Table 13.4.4. Liquid and gas compositions in the two-phase system of 2-propanol (A) and benzene at 45 ∘C.13.4.4

13.4.4. Ref. [22].

Problem 13.4.12. Use the data in Table 13.4.4 on page 353 to draw a pressure–composition phase diagram for the 2-propanol–benzene system
at 45 ∘C. Label the axes and each area.

xA yA p/kPa xA yA p/kPa
0 0 39.08 0.634 0.727 36.29
0.083 0.046 37.34 0.703 0.806 38.09
0.200 0.143 34.92 0.815 0.896 40.97
0.337 0.317 33.22 0.877 0.936 42.62
0.413 0.437 33.12 0.941 0.972 44.32
0.486 0.534 33.70 1.000 1.000 45.93
0.577 0.662 35.09

Table 13.4.5. Liquid and gas compositions in the two-phase system of acetone (A) and chloroform at 35.2 ∘C13.4.6

Problem 13.4.13. Use the data in Table 13.4.5 on page 353 to draw a pressure–composition phase diagram for the acetone–chloroform system
at 35.2 ∘C. Label the axes and each area.
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Chapter 14
Galvanic Cells

An electrochemical cell is a system in which passage of an electric current through an electrical circuit is linked to
an internal cell reaction. A galvanic cell, or voltaic cell, is an electrochemical cell that, when isolated, has an electric
potential difference between its terminals; the cell is said to be a seat of electromotive force.

The cell reaction in a galvanic cell differs in a fundamental way from the same reaction (i.e., one with the same
reaction equation) taking place in a reaction vessel that is not part of an electrical circuit. In the reaction vessel, the
reactants and products are in the same phase or in phases in contact with one another, and the reaction advances in the
spontaneous direction until reaction equilibrium is reached. This reaction is the direct reaction.

The galvanic cell, in contrast, is arranged with the reactants physically separated from one another so that the cell
reaction can advance only when an electric current passes through the cell. If there is no current, the cell reaction is
constrained from taking place. When the electrical circuit is open and the cell is isolated from its surroundings, a state
of thermal, mechanical, and transfer equilibrium is rapidly reached. In this state of cell equilibrium or electrochem-
ical equilibrium, however, reaction equilibrium is not necessarily present—that is, if the reactants and products were
moved to a reaction vessel at the same activities, there might be spontaneous advancement of the reaction.

As will be shown, measurements of the cell potential of a galvanic cell are capable of yielding precise values of
molar reaction quantities of the cell reaction and thermodynamic equilibrium constants, and of mean ionic activity
coefficients in electrolyte solutions.

14.1 Cell Diagrams and Cell Reactions

14.1.1 Elements of a galvanic cell

We will treat a galvanic cell as a system. The cell has two metal wires called terminals that pass through the system
boundary. Within the cell are phases that can conduct an electric current and are collectively called electrical con-
ductors. Each terminal is attached to an electron conductor that is usually a metal, but might also be graphite or a
semiconductor. Each electron conductor is in contact with an ionic conductor, usually an electrolyte solution, through
which ions but not electrons can move. Both of the electron conductors can be in contact with the same ionic con-
ductor; or they can be in contact with separate ionic conductors, in which case the ionic conductors contact one another
at a liquid junction. The general arrangement of the physical elements of a galvanic cell is therefore

terminal – electron conductor – ionic conductor(s) – electron conductor – terminal
Both terminals must be the same metal (usually copper) in order for it to be possible to measure the electric

potential difference between them.
The combination of an electron conductor and the ionic conductor in contact with it is called an electrode,14.1.1

or half-cell. To describe a galvanic cell, it is conventional to distinguish the left and right electrodes. In this way, we
establish a left–right association with the reactants and products of the reactions at the electrodes.

14.1.1. The term “electrode” is sometimes used to refer to just the electron conductor.
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Figure 14.1.1. A galvanic cell without liquid junction.

14.1.2 Cell diagrams
Consider the galvanic cell depicted in Fig. 14.1.1 on page 356. This cell has a hydrogen electrode at the left and a
silver–silver chloride electrode at the right. The hydrogen electrode is a strip of platinum in contact with hydrogen
gas and with aqueous hydrochloric acid, which is the ionic conductor. In the type of hydrogen electrode shown in
the figure, hydrogen gas is introduced through a side tube into a closed-end glass jacket that surrounds the platinum
strip and is immersed in the hydrochloric acid; the gas bubbles out through holes near the bottom of the tube. The
silver–silver chloride electrode is a silver strip or wire that dips into the hydrochloric acid and is coated with solid
silver chloride.

The cell in Fig. 14.1.1 is compactly described by the following cell diagram:

Cu | Pt | H2(g) | H+ (aq),Cl (aq) | AgCl(s) | Ag | Cu

A cell diagram indicates which electrode is at the left and which is at the right, and shows the reactants and products
of the two electrode reactions. A single vertical bar represents a phase boundary14.1.2. Commas are used to separate
different species in the same phase.

The same cell can be described by a slightly different cell diagram that omits the copper terminals seen in the figure
and shows the electrolyte solute instead of the ion species:

Pt | H2 (g) | HCl(aq) | AgCl (s) | Ag

The reason it is not necessary to include the terminals is that the property whose value we seek, the zero-current cell
potential, is the same regardless of the metal used for the terminals.

14.1.3 Electrode reactions and the cell reaction
A cell diagram, with its designation of the left and right electrodes, allows us to write reaction equations for the cell.
These equations are written according to the convention that electrons enter at the right terminal and leave at the left
terminal.

At each electrode there is an electrode reaction, or half-reaction, one for reduction at the right electrode and
the other for oxidation at the left electrode. The reaction equations for the electrode reactions include electrons as
either a reactant (at the right terminal) or a product (at the left terminal). The cell reaction describes the overall
chemical change; its reaction equation is the sum of the equations for the two electrode reactants with cancellation of
the electrons.

14.1.2. Transcriber note: The glyph for Unicode point U+007C, VERTICAL LINE is used, although the glyph recommended in
the IUPAC Green Book differs. See Quantities, Units, and Symbols in Physical Chemistry, IUPAC Green Book, 3rd edition, https://
iupac.org/what-we-do/books/greenbook/ , Section “2.13.1 Sign and notation conventions in electrochemistry”.
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Figure 14.1.2. Zinc–copper galvanic cell with porous barrier (heavy dashed line) separating two electrolyte solutions. The dashed rec-
tangle indicates the system boundary.

a) Open circuit with isolated system in equilibrium state.

b) Closed circuit.

For instance, we can write the electrode reactions of the cell of Fig. 14.1.1 as follows.

oxidation at left: H2(g)→2H+ (aq)+2 e−

reduction at right: 2AgCl(s)+2 e−→2Ag(s)+2Cl−(aq)

As written here, the stoichiometric numbers of the electrons have the same absolute value (2) in both reaction equa-
tions. This allows the electrons to cancel when we add the electrode reactions to form the cell reaction:

H2(g)+2AgCl(s)→2H+ (aq)+2Cl− (aq)+2Ag (s)

The cell of Fig. 14.1.1 has a single electrolyte phase with essentially the same composition at both electrodes, and is
an example of a cell without liquid junction or cell without transference. As an example of a cell with transference,
consider the cell diagram

Zn | Zn2+ (aq) ¦Cu2+ (aq) | Cu

This is the zinc–copper cell depicted in Fig. 14.1.2 on page 357, sometimes called a Daniell cell. The two electrolyte
phases are separated by a liquid junction represented in the cell diagram by the dashed vertical bar14.1.3. If the liquid
junction potential can be assumed to be negligible, the liquid junction is instead represented by a pair of dashed vertical
bars14.1.4:

Zn | Zn2+ (aq) ¦¦Cu2+ (aq) | Cu

14.1.4 Advancement and charge
The electron number or charge number, z, of the cell reaction is defined as the amount of electrons entering at the
right terminal per unit advancement of the cell reaction. z is a positive dimensionless quantity equal to |𝜈e|, where 𝜈e
is the stoichiometric number of the electrons in either of the electrode reactions whose sum is the cell reaction.

Because both electrode reactions are written with the same value of |𝜈e|, the advancements of these reactions and of
the cell reaction are all described by the same advancement variable 𝜉. For an infinitesimal change d𝜉, an amount of
electrons equal to zd𝜉 enters the system at the right terminal, an equal amount of electrons leaves at the left terminal,
and there is no buildup of charge in any of the internal phases.

TheFaraday constant F is a physical constant defined as the charge per amount of protons, and is equal to the
product of the elementary charge (the charge of a proton) and the Avogadro constant: F = e NA. Its value to five
significant figures is F=96,485Cmol−1. The charge per amount of electrons is −F. Thus, the charge entering the right
terminal during advancement d𝜉 is

đQsys=−zFd𝜉 (14.1.1)

14.1.3. Transcriber note: The glyph for Unicode point U+00A6 is used to represent a single dashed vertical bar:
14.1.4. Transcriber note: The glyph for Unicode point U+00A6 is used to construct the pair of dashed vertical bars.
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14.2 Electric Potentials in the Cell
As explained at the beginning of Sec. 3.8, the electric potential 𝜙 at a point in space is defined as the change in the
electrical potential energy of an infinitesimal test charge when it is brought to this point from a position infinitely far
from other charges, divided by the charge.

We are concerned with the electric potential within a phase—the inner electric potential, or Galvani potential. We
can measure the difference between the values of this electric potential in the two terminals of a galvanic cell, provided
the terminals have the same chemical composition. If the terminals were of different metals, at least one of them would
have an unknown metal–metal contact potential in its connection to the external measuring circuit.

Since we will be applying the concept of electric potential to macroscopic phases, the value of the Galvani poten-
tial at a point in a phase should be interpreted as the average value in a small volume element at this point that is large
enough to contain many molecules.

14.2.1 Cell potential
The cell potential of a galvanic cell is the electric potential difference between terminals of the same metal, and is
defined by Eq. 3.8.6:

E =
def
𝜙R −𝜙L (14.2.1)

The subscripts R and L refer to the right and left terminals. The equilibrium cell potential, Ecell,eq, is the cell potential
measured under conditions of zero current when the cell is assumed to be in an equilibrium state.14.2.1

Over a relatively long period of time, the state of an isolated galvanic cell is found to change. Never-
theless, the assumption of an equilibrium state is valid if the changes are very slow compared to the
period during which we measure E.
The long-term changes can be of two types. If there is a liquid junction between electrolyte solutions
of different composition, slow diffusion of ions through the junction is inevitable.
In a cell without a liquid junction, the reactants of the cell reaction can react directly without the pas-
sage of an electric current.For instance, in the cell of Fig. 14.1.1 the electrolyte solution is saturated
with respect to gaseous H2 and solid AgCl, and therefore contains very small concentrations of dis-
solved H2 molecules and Ag+ ions. The direct reaction H2+2Ag+→2H++2Ag occurs irreversibly and
continuously in the solution, but is slow on account of the low concentrations.

It is entirely arbitrary whether we show a particular electrode at the left or the right of the cell diagram, although
often there is a preference to place the electrode attached to the positive terminal at the right. If we exchange the
positions of the two electrodes in the diagram, then we must reverse the reaction equations for the electrode reactions
and the cell reaction.

For example, it is found that the zinc–copper cell of Fig. 14.1.2, with typical electrolyte molalities, has its positive
terminal at the copper electrode. When we write the cell diagram as

Zn | Zn2+(aq) ¦¦Cu2+(aq) | Cu

then E and Ecell,eq are positive. If we connect the two terminals by an external resistor as depicted in Fig. 14.1.2(b),
electrons will flow from the left terminal through the external resistor and wires to the right terminal, and the cell
reaction

Zn+Cu2+(aq)→Zn2+(aq)+Cu
will occur spontaneously in the forward direction.

If, however, we draw the cell diagram the other way around:

Cu | Cu2+(aq) ¦¦Zn2+(aq) | Zn

14.2.1. The equilibrium cell potential used to be called the electromotive force, or emf. These names are deprecated by the IUPAC Green
Book (Ref. [30], p. 71) because a potential difference is not a force.
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Figure 14.2.1. Potentiometer to measure the zero-current cell potential of a galvanic cell.

a) Galvanic cell with zero current.

b) Galvanic cell included in potentiometer circuit; G is a galvanometer.

then the positive terminal is at the left, E and Ecell,eq are negative, and electrons will flow through an external resistor
from the right terminal to the left terminal. Since the cell reaction should show reduction at the right electrode and
oxidation at the left, we must now write it as

Cu+Zn2+(aq)→Cu2+(aq)+Zn

even though the arrow is not in the direction of the reaction that actually occurs spontaneously. In other words, the
cell reaction is written according to the cell diagram, not according to the direction of the spontaneous change.

14.2.2 Measuring the equilibrium cell potential
Figure 14.2.1 on page 359 shows how we can use a potentiometer to determine the equilibrium cell potential. Consider
Fig. 14.2.1(a). Outside the galvanic cell is an external circuit with a battery that allows an electric current to pass
through a slidewire resistor. The cell's negative terminal is connected to the negative terminal of the battery. Since the
cell is not part of this circuit, no current passes through the cell, and 𝜙R −𝜙L is the zero-current cell potential Ecell,eq.
The left end of the slidewire is at the same electric potential as the left terminal of the cell.

In the setup shown in Fig. 14.2.1(a), the electric potential within the slidewire is a linear function of the distance
from the left end. At some position along the slidewire, the electric potential is equal to 𝜙R. We can determine this
position by connecting the right terminal of the cell to a slidewire contact as shown in Fig. 14.2.1(b). When we place
the contact at this particular position along the slidewire, there is no electric potential gradient in the connecting wire,
and the galvanometer indicates a condition of zero current in the wire. It is a straightforward procedure to evaluate
𝜙R −𝜙L from the zero-current position of the contact; this value is still equal to Ecell,eq. When we keep the slidewire
contact in this position, no current passes through the cell; but if we displace the contact from this position in either
direction along the slidewire, current will pass in one direction or the other through the cell.

In practice, it is more convenient to measure the zero-current cell potential with a high-impedance digital voltmeter
(a voltmeter that draws negligible current) instead of with a potentiometer circuit.

14.2.3 Interfacial potential differences

What is the source of an open-circuit, zero-current cell potential? When no electric current passes through the cell,
the electric potential must be uniform within each bulk phase that is an electrical conductor, because otherwise there
would be a spontaneous movement of charged particles (electrons or ions) through the phase. Electric potential differ-
ences in a cell without current therefore exist only at phase boundaries. The equilibrium cell potential is the cumulative
result of these potential differences at interfaces between different conducting phases within the cell.
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Figure 14.2.2. Galvani potential profile across a galvanic cell (schematic). LT and RT are the left and right terminals, LE and RE are the
left and right electron conductors, and I is an ionic conductor such as an electrolyte solution.

a) Cell with zero current.

b) The same cell with finite current.

An interfacial potential difference appears as a vertical step in a profile of the Galvani potential, as shown schemat-
ically in Fig. 14.2.2(a) on page 360. The zero-current cell potential, Ecell,eq, is the algebraic sum of the interfacial
potential differences within the cell.

When an external resistor is connected to the terminals to form a circuit, current passes through the cell and the
cell performs electrical work on the surroundings. Figure 14.2.2(b) shows what happens to the potential profile in this
case: the interfacial potential differences are still present within the cell, and the internal resistance of the electrical
conductors causes E to be reduced in magnitude compared to Ecell,eq.

We shall next look briefly at the origin and consequences of potential differences at interfaces between (1) two
different metals, (2) a metal and an electrolyte solution, and (3) two different electrolyte solutions. Keep in mind that
these potential differences are theoretical concepts whose values cannot be measured experimentally.

14.2.3.1 Metal–metal contacts

An electric potential difference at an interface between two metals is called a contact potential. When two different
metals are placed in contact, the local densities of the free (mobile) electrons change so as to form an electrical double
layer with an excess positive charge on one side of the interface and an excess negative charge of equal magnitude on
the other side. The electrical double layer creates the contact potential.

To understand why a stable equilibrium state of two metals in contact includes a contact potential, we can consider
the chemical potential of the free electrons. The concept of chemical potential (i.e., partial molar Gibbs energy) applies
to the free electrons in a metal just as it does to other species. The dependence of the chemical potential 𝜇e

α of free
electrons in metal phase α on the electric potential 𝜙α of the phase is given by the relation of Eq. 10.1.6 on page 228,
with the charge number zi set equal to −1:

𝜇e
α(𝜙)=𝜇e

α(0)−F𝜙α (14.2.2)

Here 𝜇e
α(0) is the electron chemical potential in a phase with the same intensive properties as phase α but at zero

electric potential. 𝜇e
α(0) depends only on the temperature and the composition of phase α. (The dependence on

pressure is so small for a solid that we will ignore it.)
Consider two or more electron conductors that are so arranged that electrons can freely transfer among them.

There is the usual condition for transfer equilibrium in these phases: the chemical potential (in this case 𝜇e) is the same
in each phase. Thus, electron transfer equilibrium between phases α and β requires 𝜇e

α and 𝜇e
β to be equal. We equate

𝜇e
α and 𝜇e

β, substitute from Eq. 14.2.2 to obtain 𝜇e
α(0)−F𝜙α=𝜇e

β(0)−F𝜙β, and rearrange to

𝜙β −𝜙α= 𝜇e
β(0)−𝜇e

α(0)
F

(14.2.3)
(phases in electron
transfer equilibrium)

360 GALVANIC CELLS

360



The quantities on the right side of Eq. 14.2.3 are functions only of the temperature and the compositions of phases α
and β. If the phases have the same temperature and composition and are in electron transfer equilibrium, 𝜙α and 𝜙β

are equal.
For an equilibrium state of metals α and β in contact, Eq. 14.2.3 shows that the contact potential 𝜙β −𝜙α depends

only on the temperature and the compositions of the two metals.14.2.2

Equation 14.2.3 explains why a galvanic cell must have at least one electrical conductor that is not an
electron conductor. If electrons were free to pass from one terminal through the system to the other
terminal of the same temperature and composition, then in a zero-current equilibrium state 𝜇e would be
the same in both terminals. In that case there would be no potential difference between the terminals,
and the system would not be a galvanic cell.

14.2.3.2 Metal–electrolyte interfaces

An electrode reaction of a galvanic cell takes place at the interface between a metal electron conductor and an elec-
trolyte solution. In an equilibrium state of the cell, the electrode reaction is at equilibrium. The condition for this
equilibrium is∑i 𝜈i𝜇i=0, where the sum is over the reactants and products of the electrode reaction, including the
electrons. The chemical potentials of the ions and electrons in the electrode reaction are functions of the electric
potentials of their phases. Consequently, in order for the sum to be zero, the metal and solution must in general have
different electric potentials.

For example, consider the zinc–copper cell of Fig. 14.1.2. The electrode reaction of the copper electrode at the
right is

Cu2+(aq)+2e−(Cu)→Cu

where the metal phase of the electrons is indicated in parentheses. In order for this electrode reaction to be at equilib-
rium, the interfacial potential difference between the copper conductor and the solution containing Cu2+ ions must be
such that the following condition is satisfied:

𝜇(Cu)−𝜇(Cu2+)−2𝜇e(Cu)=0 (14.2.4)

The interfacial potential difference can arise from a combination of charge separation across the interface, orientation
of polar molecules on the solution side of the interface, and specific adsorption of ions. The thickness of the zones in
which properties differ from those in the bulk phases is probably no greater than 10−11m on the metal side and 10−7m
on the solution side.

14.2.3.3 Liquid junctions

Some galvanic cells contain two electrolyte solutions with different compositions. These solutions must be separated
by a porous barrier or some other kind of junction in order to prevent rapid mixing. At this liquid junction in the zero-
current cell, there is in general a liquid junction potential caused by diffusion of ions between the two bulk electrolyte
phases.

To understand this phenomenon, imagine the situation that would exist at the junction if both solution phases had
the same electric potential. An ion species with different chemical potentials in the two solutions would spontaneously
diffuse across the junction in the direction of lower chemical potential. Different ions would diffuse at different rates,
resulting in a net charge transfer across the junction and an electric potential difference. It is this electric potential
difference in the equilibrium state of the cell that prevents further net charge transfer under zero-current conditions.

The liquid junction may consist of a bridging solution in a salt bridge. A commonly used kind of salt bridge is
a glass tube filled with gel made from agar and concentrated aqueous KCl or KNO3; this type of liquid junction is
believed to reduce the liquid junction potential to several millivolts or less.

14.2.2. The temperature dependence of a contact potential between two different metals is the basis of the operation of a thermocouple or
thermopile to measure temperature (Sec. 2.3.6.4).
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14.3 Molar Reaction Quantities of the Cell Reaction
This book will denote the molar reaction Gibbs energy of a cell reaction by Δr G. This notation distinguishes it from
the molar reaction Gibbs energy Δr G of the direct reaction, which may have a different value because in the cell the
chemical potential of an ionic species is affected by the electric potential of its phase. Δr G is defined by

Δr G =
def
�

i
𝜈i𝜇i (14.3.1)

where the sum is over the reactants and products of the cell reaction. Δr G is also equal to the partial derivative
(∂G/∂𝜉)T ,p, where 𝜉 is the advancement of the cell reaction.

14.3.1 Relation between Δr Gcell and Ecell,eq

When a galvanic cell is in a zero-current equilibrium state, both electrode reactions are at reaction equilibrium. In
the electrode reaction at the left electrode, electrons are a product with stoichiometric number equal to z. At the right
electrode, electrons are a reactant with stoichiometric number equal to −z. We can write the conditions for electrode
reaction equilibria as follows:

At the left electrode: �
i
𝜈i𝜇i+ z𝜇e(LE)=0 (14.3.2)

At the right electrode: �
j
𝜈j𝜇j − z𝜇e(RE)=0 (14.3.3)

In these equations, the sum over i is for the chemical species (excluding electrons) of the electrode reaction at the left
electrode, and the sum over j is for the chemical species of the electrode reaction at the right electrode. 𝜇e(LE) is the
chemical potential of electrons in the electron conductor of the left electrode, and 𝜇e(RE) is the chemical potential of
electrons in the electron conductor of the right electrode.

Adding Eqs. 14.3.2 and 14.3.3, we obtain

�
i
𝜈i𝜇i+�

j
𝜈j𝜇j+ z [𝜇e(LE)−𝜇e(RE)]=0 (14.3.4)

The first two terms on the left side of Eq. 14.3.4 are sums over all the reactants and products of the cell reaction. From
Eq. 14.3.1, we recognize the sum of these terms as the molar reaction Gibbs energy of the cell reaction:

�
i
𝜈i𝜇i+�

j
𝜈j𝜇j=Δr G (14.3.5)

Substituting from Eq. 14.3.5 into Eq. 14.3.4 and solving for Δr G, we obtain

Δr G=−z [𝜇e(LE)−𝜇e(RE)] (14.3.6)

In a zero-current equilibrium state, there is electron transfer equilibrium between the left electron conductor and the
left terminal, and between the right electron conductor and the right terminal: 𝜇e(LE)=𝜇e(LT) and 𝜇e(RE)=𝜇e(RT),
where 𝜇e(LT) and 𝜇e(RT) are the chemical potentials of electrons in the left terminal and right terminal, respectively.
Thus we can rewrite Eq. 14.3.6 as

Δr G=−z [𝜇e(LT)−𝜇e(RT)] (14.3.7)

Making substitutions from Eq. 14.2.2 for𝜇e(LT) and 𝜇e(RT), and recognizing that𝜇e(0) is the same in both terminals
because they have the same composition, we obtain

Δr G = −zF (𝜙R −𝜙L)
= −zFEcell,eq (14.3.8)

We can see from Eq. 14.3.1 that the value of Δr G has nothing to do with the composition of the terminals. The
relations of Eq. 14.3.8 were derived for a cell with both terminals made of the same metal. We can make the following
deductions for such a cell:

1. Neither the potential difference 𝜙R −𝜙L nor the equilibrium cell potential Ecell,eq depend on the kind of metal
used for the terminals.
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2. If we interpose a metal conductor of any composition between the electron conductor and the terminal of one
of the electrodes, 𝜇e will have the same value in all three conductors and there will be no effect on the value
of Ecell,eq.

Equation 14.3.8 can be derived by a different route. According to Eq. 5.8.6 on page 119, reversible
electrical work at constant T and p is equal to the Gibbs energy change: đwel,rev=dG. Making the sub-
stitution đwel,rev=Ecell,eqđQsys (from Eq. 3.8.8), with đQsys set equal to −zFd𝜉 (Eq. 14.1.1), followed
by division by d𝜉, gives
−zFEcell,eq=(∂G/∂𝜉)T ,p, or Δr G=−zFEcell,eq.
Strictly speaking, this derivation applies only to a cell without a liquid junction. In a cell with a liquid
junction, the electric current is carried across the junction by different ions depending on the direction
of the current, and the cell is therefore not reversible.

14.3.2 Relation between Δr Gcell and Δr G
Suppose we have a galvanic cell in a particular zero-current equilibrium state. Each phase of the cell has the same
temperature and pressure and a well-defined chemical composition. The activity of each reactant and product of the
cell reaction therefore has a definite value in this state.

Now imagine a reaction vessel that has the same temperature and pressure as the galvanic cell, and contains the
same reactants and products at the same activities as in the cell. This reaction vessel, unlike the cell, is not part of
an electrical circuit. In it, the reactants and products are in direct contact with one another, so there is no constraint
preventing a spontaneous direct reaction. For example, the reaction vessel corresponding to the zinc–copper cell of
Fig. 14.1.2 would have zinc and copper strips in contact with a solution of both ZnSO4 and CuSO4. Another example
is the slow direct reaction in a cell without liquid junction described on page 358.

Let the reaction equation of the direct reaction be written with the same stoichiometric numbers 𝜈i as in the reaction
equation for the cell reaction. The direct reaction in the reaction vessel is described by this equation or its reverse,
depending on which direction is spontaneous for the given activities.

The question now arises whether the molar reaction Gibbs energy Δr G of the cell reaction is equal to the molar
reaction Gibbs energy Δr G of the direct reaction. Both Δr G and ΔrG are defined by the sum∑i 𝜈i𝜇i. Both reactions
have the same values of 𝜈i, but the values of 𝜇i for charged species are in general different in the two systems because
the electric potentials are different.

Consider first a cell without a liquid junction. This kind of cell has a single electrolyte solution, and all of the
reactant and product ions of the cell reaction are in this solution phase. The same solution phase is present in the
reaction vessel during the direct reaction. When all ions are in the same phase, the value of ∑i 𝜈i𝜇i is independent
of the electric potentials of any of the phases (see the comment following Eq. 11.8.4 on page 278), so that the molar
reaction Gibbs energies are the same for the cell reaction and the direct reaction:

Δr G=Δr G
(14.3.9)

(no liquid junction)

Next, consider a cell with two electrolyte solutions separated by a liquid junction. For the molar reaction Gibbs energy
of the cell reaction, we write

Δr G=�
i
𝜈i𝜇i(𝜙i)+�

j
𝜈j𝜇j(𝜙j) (14.3.10)

The sums here include all of the reactants and products appearing in the cell reaction, those with index i being at the
left electrode and those with index j at the right electrode. Let the solution at the left electrode be phase α and the
solution at the right electrode be phase β. Then making the substitution 𝜇i(𝜙)=𝜇i(0)+ zi F𝜙 (Eq. 10.1.6) gives us

Δr G=�
i
𝜈i𝜇i(0)+�

j
𝜈j𝜇j(0)+�

i
𝜈i zi F𝜙α+�

j
𝜈j zj F𝜙β (14.3.11)
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The sum of the first two terms on the right side of Eq. 14.3.11 is the molar reaction Gibbs energy of a reaction in
which the reactants and products are in phases of zero electric potential. According to the comment following Eq.
11.8.4, the molar reaction Gibbs energy would be the same if the ions were in a single phase of any electric potential.
Consequently the sum∑i 𝜈i𝜇i(0)+∑j 𝜈j𝜇j(0) is equal to Δr G for the direct reaction.

The conservation of charge during advancement of the electrode reactions at the left electrode and the right elec-
trode is expressed by∑i 𝜈i zi− z=0 and∑j 𝜈j zj+ z=0, respectively. Equation 14.3.11 becomes

Δr G=Δr G− zFEj
(14.3.12)

(cell with liquid junction)

where Ej=𝜙β −𝜙α is the liquid junction potential.
Finally, in Eqs. 14.3.9 and 14.3.12 we replace Δr G by −zFEcell,eq (Eq. 14.3.8) and solve for Ecell,eq:

Ecell,eq=−Δr G
zF

(14.3.13)
(cell without liquid junction)

Ecell,eq=−Δr G
zF +Ej

(14.3.14)
(cell with liquid junction)

Ecell,eq can be measured with great precision. If a reaction can be carried out in a galvanic cell without liquid junction,
Eq. 14.3.13 provides a way to evaluate Δr G under given conditions. If the reaction can only be carried out in a cell
with a liquid junction, Eq. 14.3.14 can be used for this purpose provided that the liquid junction potential Ej can be
assumed to be negligible or can be estimated from theory.

Note that the cell has reaction equilibrium only if Δr G is zero. The cell has thermal, mechanical, and transfer
equilibrium when the electric current is zero and the cell potential is the zero-current cell potential Ecell,eq. Equations
14.3.13 and 14.3.14 show that in order for the cell to also have reaction equilibrium, Ecell,eq must equal the liquid
junction potential if there is a liquid junction, or be zero otherwise. These are the conditions of an exhausted, “dead”
cell that can no longer do electrical work.

14.3.3 Standard molar reaction quantities
Consider a hypothetical galvanic cell in which each reactant and product of the cell reaction is in its standard state at
unit activity, and in which a liquid junction if present has a negligible liquid junction potential. The equilibrium cell
potential of this cell is called the standard cell potential of the cell reaction, Ecell,eq

∘ . An experimental procedure for
evaluating Ecell,eq

∘ will be described in Sec. 14.5.
In this hypothetical cell, Δr G is equal to the standard molar reaction Gibbs energy Δr G∘. From Eq. 14.3.13, or

Eq. 14.3.14 with Ej assumed equal to zero, we have

Δr G∘=−zFEcell,eq
∘ (14.3.15)

Δr G∘ is the molar reaction Gibbs energy when each reactant and product is at unit activity and, if it is an ion, is in a
phase of zero electric potential. Since Δr G∘ is equal to −RT lnK (Eq. 11.8.10), we can write

lnK= zF
RTEcell,eq

∘ (14.3.16)

Equation 14.3.16 allows us to evaluate the thermodynamic equilibrium constant K of the cell reaction by a noncalori-
metric method. Consider for example the cell

Ag | Ag+ (aq) ¦¦Cl− (aq) | AgCl(s) | Ag

in which the pair of dashed vertical bars indicates a liquid junction of negligible liquid junction potential. The elec-
trode reactions are

Ag (s) → Ag+ (aq)+e−

AgCl(s)+e− → Ag (s)+Cl− (aq)
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and the cell reaction is
AgCl(s)→Ag+ (aq)+Cl− (aq)

The equilibrium constant of this reaction is the solubility product Ks of silver chloride (Sec. 12.5.5). At 298.15K,
the standard cell potential is found to be Ecell,eq

∘ =−0.5770V. We can use this value in Eq. 14.3.16 to evaluate Ks at
298.15K (see Prob. 14.7.5).

Equation 14.3.16 also allows us to evaluate the standard molar reaction enthalpy by substitution in Eq. 12.1.13 on
page 293:

Δr H∘ = RT 2 dlnK
dT

= zF (((((((T dEcell,eq
∘

dT −Ecell,eq
∘ )))))))

(14.3.17)
(no solute standard states
based on concentration)

Finally, by combining Eqs. 14.3.15 and 14.3.17 with Δr G∘=Δr H∘−TΔrS∘, we obtain an expression for the standard
molar reaction entropy:

Δr S∘= zF
dEcell,eq
∘

dT

(14.3.18)
(no solute standard states
based on concentration)

Because G, H, and S are state functions, the thermodynamic equilibrium constant and the molar reaction quantities
evaluated from Ecell,eq

∘ and dEcell,eq
∘ /dT are the same quantities as those for the reaction when it takes place in a reaction

vessel instead of in a galvanic cell. However, the heats at constant T and p are not the same (page 254). During a
reversible cell reaction, dS must equal đq/T , and đq/d𝜉 is therefore equal to T Δr S∘ during a cell reaction taking
place reversibly under standard state conditions at constant T and p.

14.4 The Nernst Equation
The standard cell potential Ecell,eq

∘ of a cell reaction is the equilibrium cell potential of the hypothetical galvanic cell
in which each reactant and product of the cell reaction is in its standard state and there is no liquid junction potential.
The value of Ecell,eq

∘ for a given cell reaction with given choices of standard states is a function only of temperature.
The measured equilibrium cell potential Ecell,eq of an actual cell, however, depends on the activities of the reactants
and products as well as on temperature and the liquid junction potential, if present.

To derive a relation between Ecell,eq and activities for a cell without liquid junction, or with a liquid junction
of negligible liquid junction potential, we substitute expressions for Δr G and for Δr G∘ from Eqs. 14.3.13 and Eq.
14.3.15 into Δr G=Δr G∘+RT lnQrxn (Eq. 11.8.8 on page 278) and solve for Ecell,eq:

Ecell,eq=Ecell,eq
∘ − RT

zF lnQrxn
(14.4.1)

(no liquid junction, or Ej=0)

Equation 14.4.1 is the Nernst equation for the cell reaction. Here Qrxn is the reaction quotient for the cell reaction
defined by Eq. 11.8.6: Qrxn=∏i ai

𝜈i.
The rest of this section will assume that the cell reaction takes place in a cell without liquid junction, or in one in

which Ej is negligible.
If each reactant and product of the cell reaction is in its standard state, then each activity is unity and lnQrxn is

zero. We can see from the Nernst equation that the equilibrium cell potential Ecell,eq in this case has its standard value
Ecell,eq
∘ , as expected. A decrease in product activities or an increase in reactant activities decreases the value of lnQrxn

and increases Ecell,eq, as we would expect since Ecell,eq should be greater when the forward cell reaction has a greater
tendency for spontaneity.

If the cell reaction comes to reaction equilibrium, as it will if we short-circuit the cell terminals with an external
wire, the value of Qrxn becomes equal to the thermodynamic equilibrium constant K, and the Nernst equation becomes
Ecell,eq=Ecell,eq

∘ −(RT /zF) lnK. The term (RT /zF) lnK is equal to Ecell,eq
∘ (Eq. 14.3.16), so Ecell,eq becomes zero—the

cell is “dead” and is incapable of performing electrical work on the surroundings.
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At T =298.15K (25.00 ∘C), the value of RT /F is 0.02569V, and we can write the Nernst equation in the compact
form

Ecell,eq=Ecell,eq
∘ − 0.02569V

z lnQrxn
(14.4.2)

(T =298.15K)

As an illustration of an application of the Nernst equation, consider the reaction equation

H2(g)+2AgCl(s)→2H+(aq)+2Cl−(aq)+2Ag (s)

This reaction takes place in a cell without liquid junction (Fig. 14.1.1), and the electrolyte solution can be aqueous
HCl. The expression for the reaction quotient is

Qrxn=
a+2 a−

2 aAg
2

aH2 aAgCl
2 (14.4.3)

We may usually with negligible error approximate the pressure factors of the solids and solutes by unity. The activities
of the solids are then 1, the solute activities are a+=𝛾+m+/m∘ and a−=𝛾−m−/m∘, and the hydrogen activity is aH2=
fH2/p∘. The ion molalities m+ and m− are equal to the HCl molality mB. The expression for Qrxn becomes

Qrxn=
𝛾+2𝛾−

2(mB/m∘)4
fH2/p∘

= 𝛾±
4(mB/m∘)4
fH2/p∘

(14.4.4)

and the Nernst equation for this cell is

Ecell,eq = Ecell,eq
∘ − RT

2F ln
𝛾±4(mB/m∘)4

fH2/p∘

= Ecell,eq
∘ − 2RT

F ln𝛾±− 2RT
F ln mB

m∘ +
RT
2F ln

fH2

p∘ (14.4.5)

By measuring Ecell,eq for a cell with known values of mB and fH2, and with a derived value of Ecell,eq
∘ , we can use

this equation to find the mean ionic activity coefficient 𝛾± of the HCl solute. This is how the experimental curve for
aqueous HCl in Fig. 10.4.2 on page 235 was obtained.

We can always multiply each of the stoichiometric coefficients of a reaction equation by the same pos-
itive constant without changing the meaning of the reaction. How does this affect the Nernst equation
for the reaction equation above? Suppose we decide to multiply the stoichiometric coefficients by one-
half:

1
2 H2 (g)+AgCl(s)→H+(aq)+Cl−(aq)+Ag(s)

With this changed reaction equation, the value of z is changed from 2 to 1 and the Nernst equation
becomes

Ecell,eq=Ecell,eq
∘ − RT

F ln
𝛾±2(mB/m∘)2

( fH2/p∘)1/2
(14.4.6)

which yields the same value of Ecell,eq for given cell conditions as Eq. 14.4.5. This value must of course
be unchanged, because physically the cell is the same no matter how we write its cell reaction, and
measurable physical quantities such as Ecell,eq are unaffected. However, molar reaction quantities such
as Δr G and ΔrG∘ do depend on how we write the cell reaction, because they are changes per extent of
reaction.

14.5 Evaluation of the Standard Cell Potential
As we have seen, the value of the standard cell potential Ecell,eq

∘ of a cell reaction has useful thermodynamic applica-
tions. The value of Ecell,eq

∘ for a given cell reaction depends only on temperature. To evaluate it, we can extrapolate
an appropriate function to infinite dilution where ionic activity coefficients are unity.
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Figure 14.5.1. E′ (defined by Eq. 14.5.2) as a function of HCl molality for the cell of Fig. 14.1.1 at 298.15K.14.5.1 The dashed line is a
least-squares fit to a linear relation.

14.5.1. Data from Ref. [64] with fH2 set equal to pH2 and the parameter a set equal to 4.3×10−10m.

To see how this procedure works, consider again the cell reaction H2(g)+ 2AgCl (s)→2H+ (aq)+ 2Cl− (aq)+
2Ag (s). The cell potential depends on the molality mB of the HCl solute according to Eq. 14.4.5. We can rearrange
the equation to

Ecell,eq
∘ =Ecell,eq+

2RT
F ln𝛾±+

2RT
F ln mB

m∘ − RT
2F ln

fH2

p∘ (14.5.1)

For given conditions of the cell, we can measure all quantities on the right side of Eq. 14.5.1 except the mean ionic
activity coefficient 𝛾± of the electrolyte. We cannot know the exact value of ln𝛾± for any given molality until we have
evaluated Ecell,eq

∘ . We do know that as mB approaches zero, 𝛾± approaches unity and ln𝛾± must approach zero. The
Debye–Hückel formula of Eq. 10.4.7 on page 234 is a theoretical expression for ln𝛾± that more closely approximates
the actual value the lower is the ionic strength. Accordingly, we define the quantity

E′=Ecell,eq+
2RT

F ((((((((((((((−
A mB√
1+Ba mB� ))))))))))))))+

2RT
F ln mB

m∘ − RT
2F ln

fH2

p∘ (14.5.2)

The expression in parentheses is the Debye–Hückel formula for ln𝛾± with Im replaced by mB. The constants A and
B have known values at any temperature (Sec. 10.4), and a is an ion-size parameter for which we can choose a
reasonable value. At a given temperature, we can evaluate E′ experimentally as a function of mB.

The expression on the right side of Eq. 14.5.1 differs from that of Eq. 14.5.2 by contributions to (2RT /F)ln𝛾± not
accounted for by the Debye–Hückel formula. Since these contributions approach zero in the limit of infinite dilution,
the extrapolation of measured values of E′ to mB=0 yields the value of Ecell,eq

∘ .
Figure 14.5.1 on page 367 shows this extrapolation using data from the literature. The extrapolated value indicated

by the filled circle is Ecell,eq
∘ =0.2222V, and the uncertainty is on the order of only 0.1m⋅V.

14.6 Standard Electrode Potentials
Section 14.5 explained how, by measuring the equilibrium cell potential of a galvanic cell at different electrolyte
molalities, we can evaluate the standard cell potential Ecell,eq

∘ of the cell reaction. It is not necessary to carry out this
involved experimental procedure for each individual cell reaction of interest. Instead, we can calculate Ecell,eq

∘ from
standard electrode potentials.

By convention, standard electrode potentials use a standard hydrogen electrode as a reference electrode. A stan-
dard hydrogen electrode is a hydrogen electrode, such as the electrode shown at the left in Fig. 14.1.1, in which the
species H2(g) and H+(aq) are in their standard states. Since these are hypothetical gas and solute standard states, the
standard hydrogen electrode is a hypothetical electrode—not one we can actually construct in the laboratory.
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A standard electrode potential E ∘ is defined as the standard cell potential of a cell with a hydrogen electrode at
the left and the electrode of interest at the right. For example, the cell in Fig. 14.1.1 with cell diagram

Pt | H2 (g) | HCl(aq) | AgCl (s) | Ag

has a hydrogen electrode at the left and a silver–silver chloride electrode at the right. The standard electrode potential
of the silver–silver chloride electrode, therefore, is equal to the standard cell potential of this cell.

Since a cell with hydrogen electrodes at both the left and right has a standard cell potential of zero, the standard
electrode potential of the hydrogen electrode is zero at all temperatures. The standard electrode potential of any other
electrode is nonzero and is a function only of temperature.

Consider the following three cells constructed from various combinations of three different electrodes: a hydrogen
electrode, and two electrodes denoted L and R.

• Cell 1 has electrode L at the left and electrode R at the right.

• Cell 2 has the hydrogen electrode at the left and electrode L at the right; its standard cell potential is the
standard electrode potential EL

∘ of electrode L.

• Cell 3 has the hydrogen electrode at the left and electrode R at the right; its standard cell potential is the
standard electrode potential ER

∘ of electrode R.

We wish to calculate the standard cell potential Ecell,eq
∘ of cell 1 from the standard electrode potentials EL

∘ and ER
∘.

If we write the cell reactions of cells 1 and 2 using the same value of the electron number z for both, we find that
their sum is the cell reaction for cell 3 with the same value of z. Call these reactions 1, 2, and 3, respectively:

(reaction 1)+(reaction 2)=(reaction 3) (14.6.1)

The relation of Eq. 14.6.1 shows that an infinitesimal advancement d𝜉 of reaction 1 combined with an equal advance-
ment of reaction 2 causes the same changes in amounts as the advancement d𝜉 of reaction 3. Because Δr G∘ for each
reaction is the rate at which G changes with 𝜉 at constant T when the reactants and products are in their standard states,
the following relation applies when the reactions take place at the same temperature:

Δr G∘ (reaction 1)+Δr G∘ (reaction 2)=Δr G∘ (reaction 3) (14.6.2)

Making the substitutionΔrG∘=−zFEcell,eq
∘ (Eq. 14.3.15), with the same value of z for each reaction, gives us Ecell,eq

∘ +
EL
∘=ER

∘, or

Ecell,eq
∘ =ER

∘ −EL
∘ (14.6.3)

where Ecell,eq
∘ , ER

∘, and EL
∘ all refer to cell 1.

Equation 14.6.3 is a general relation applicable to any galvanic cell. It should be apparent that we can use the
relation to calculate the standard electrode potential of an electrode from the standard electrode potential of a different
electrode and the standard cell potential of a cell that contains both electrodes. Neither electrode has to be a hydrogen
electrode, which is difficult to work with experimentally.

Using Eq. 14.6.3 to calculate standard cell potentials from standard electrode potentials saves a lot of experimental
work. For example, measurement of Ecell,eq

∘ for ten different cells, only one of which needs to include a hydrogen
electrode, provides values of E∘ for ten electrodes other than E∘=0 for the hydrogen electrode. From these ten values
of E∘, values of Ecell,eq

∘ can be calculated for 35 other cells without hydrogen electrodes.
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14.7 Problems
Problem 14.7.1. The state of a galvanic cell without liquid junction, when its temperature and pressure are uniform, can be fully described
by values of the variables T , p, and 𝜉. Find an expression for dG during a reversible advancement of the cell reaction, and use it to derive the
relation Δr G=−zFEcell,eq (Eq. 14.3.8). (Hint: Eq. 3.8.8.)

Problem 14.7.2. Before 1982 the standard pressure was usually taken as 1atm For the cell shown in Fig. 14.1.1, what correction is needed, for
a value of Ecell,eq

∘ obtained at 25 ∘C and using the older convention, to change the value to one corresponding to a standard pressure of 1bar?
Equation 14.3.15 can be used for this calculation.

Problem 14.7.3. Careful measurements14.7.1 of the equilibrium cell potential of the cell

Pt | H2(g) | HCl (aq) | AgCl (s) | Ag

yielded, at 298.15K and using a standard pressure of 1 bar, the values Ecell,eq
∘ = 0.22217V and dEcell,eq

∘ /dT = −6.462 × 10−4V⋅K-1. (The
requested calculated values are close to, but not exactly the same as, the values listed in Appendix H, which are based on the same data
combined with data of other workers.)

a) Evaluate Δr G∘, Δr S∘, and Δr H ∘ at 298.15K for the reaction
1
2 H2(g)+AgCl (s)→H+ (aq)+Cl− (aq)+Ag (s)

b) Problem 12.11.18 showed how the standard molar enthalpy of formation of the aqueous chloride ion may be evaluated based on the
conventionΔf H ∘(H+, aq)=0. If this value is combined with the value ofΔr H ∘ obtained in part a of the present problem, the standard
molar enthalpy of formation of crystalline silver chloride can be evaluated. Carry out this calculation for T =298.15K using the value
Δf H ∘(Cl−, aq)=−167.08kJ⋅mol−1 (Appendix H).

c) By a similar procedure, evaluate the standard molar entropy, the standard molar entropy of formation, and the standard molar Gibbs
energy of formation of crystalline silver chloride at 298.15K. You need the following standard molar entropies evaluated from spec-
troscopic and calorimetric data:

Sm
∘ (H2, g)=130.68 J⋅K−1⋅mol−1 Sm

∘ (Cl2, g)=223.08J⋅K−1⋅mol−1
Sm
∘ (Cl−, aq)=56.60J⋅K−1⋅mol−1 Sm

∘ (Ag, s)=42.55J⋅K−1⋅mol−1

Problem 14.7.4. The standard cell potential of the cell

Ag | AgCl (s) | HCl (aq) | Cl2 (g) | Pt

has been determined over a range of temperature.14.7.2 At T =298.15K, the standard cell potential was found to be Ecell,eq
∘ =1.13579V, and its

temperature derivative was found to be dEcell,eq
∘ /dT =−5.9863×10−4V⋅K−1.

a) Write the cell reaction for this cell.

b) Use the data to evaluate the standard molar enthalpy of formation and the standard molar Gibbs energy of formation of crystalline silver
chloride at 298.15K. (Note that this calculation provides values of quantities also calculated in Prob. 14.14.7.3 using independent
data.)

Problem 14.7.5. Use data in Sec. 14.3.3 to evaluate the solubility product of silver chloride at 298.15K.

Problem 14.7.6. The equilibrium cell potential of the galvanic cell

Pt | H2 (g, f =1bar) | HCl (aq, 0.500mol⋅kg−1) | Cl2(g, f =1bar) | Pt

is found to be Ecell,eq=1.410V at 298.15K. The standard cell potential is Ecell,eq
∘ =1.360V.

a) Write the cell reaction and calculate its thermodynamic equilibrium constant at 298.15K.

b) Use the cell measurement to calculate the mean ionic activity coefficient of aqueous HCl at 298.15K and a molality of 0.500mol⋅kg−1.

Problem 14.7.7. Consider the following galvanic cell, which combines a hydrogen electrode and a calomel electrode:

Pt | H2 (g) | HCl (aq) | Hg2Cl2 (s) | Hg(l) | Pt

a) Write the cell reaction.

b) At 298.15K, the standard cell potential of this cell is Ecell,eq
∘ =0.2680V. Using the value of Δf G∘ for the aqueous chloride ion in

Appendix H, calculate the standard molar Gibbs energy of formation of crystalline mercury(I) chloride (calomel) at 298.15K.

c) Calculate the solubility product of mercury(I) chloride at 298.15K. The dissolution equilibrium is Hg2Cl2(s)⇌Hg2
2+(aq)+2 Cl− (aq).

Take values for the standard molar Gibbs energies of formation of the aqueous ions from Appendix H.

14.7.1. Ref. [4].
14.7.2. Ref. [45].
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mB / (mol kg-1) Ecell,eq / V
0.0004042 0.47381
0.0008444 0.43636
0.0008680 0.43499
0.0013554 0.41243
0.001464 0.40864
0.001850 0.39667
0.002396 0.38383
0.003719 0.36173

Table 14.7.1. Equilibrium cell potential as a function of HBr molality mB.

Problem 14.7.8. Table 14.7.1 on page 370 lists equilibrium cell potentials obtained with the following cell at 298.15K:14.7.3

P*t | H2(g, 1.01bar) | HBr (aq, mB) | AgBr(s) | Ag

Use these data to evaluate the standard electrode potential of the silver-silver bromide electrode at this temperature to the nearest millivolt.
(Since the electrolyte solutions are quite dilute, you may ignore the term Ba mB� in Eq. 14.5.2.)

Problem 14.7.9. The cell diagram of a mercury cell can be written

Zn(s) | ZnO (s) | NaOH(aq) | HgO (s) | Hg(l)

a) Write the electrode reactions and cell reaction with electron number z=2.

b) Use data in Appendix H to calculate the standard molar reaction quantities Δr H ∘, Δr G∘, and Δr S∘ for the cell reaction at 298.15K.

c) Calculate the standard cell potential of the mercury cell at 298.15K to the nearest 0.01V.

d) Evaluate the ratio of heat to advancement, đq/d𝜉, at a constant temperature of 298.15K and a constant pressure of 1bar, for the cell
reaction taking place in two different ways: reversibly in the cell, and spontaneously in a reaction vessel that is not part of an electrical
circuit.

e) Evaluate dEcell,eq
∘ /dT , the temperature coefficient of the standard cell potential.

14.7.3. Ref. [76].
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Appendix A
Definitions of the SI Base Units

This appendix gives two definitions for each of the seven SI base units. The previous definitions are from the 2007
IUPAC Green Book.A.0.1 The revised definitions are from the SI revision effective beginning 20 May 2019.A.0.2 Values
of the defining constants referred to in the revised definitions are listed in Appendix huniniti.

The second, symbol s, is the SI unit of time.

• Previous definition: The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the cesium-133 atom.

• Revised definition: No change from the previous definition. The number 9 192 631 770 is the numerical value
of the defining constant Δ𝜈Cs expressed in units of s-1.

The meter,A.0.3 symbol m, is the SI unit of length.

• Previous definition: The meter is the length of path traveled by light in vacuum during a time interval of
1/(299 792 458) of a second.

• Revised definition: No change from the previous definition. The number 299 792 458 is the numerical value
of the defining constant c expressed in units of m s-1.

The kilogram, symbol kg, is the SI unit of mass.

• Previous definition: The kilogram is equal to the mass of the international prototype of the kilogram in Sèvres,
France.

• Revised definition: The kilogram is defined using the defining constant h and the definitions of second and
meter.

The kelvin, symbol K, is the SI unit of thermodynamic temperature.

• Previous definition: The kelvin is the fraction 1/273.16 of the thermodynamic temperature of the triple point
of water.

• Revised definition: The kelvin is equal to the change of thermodynamic temperature T that results in a change
of the translational energy (3/2) k T of an ideal gas molecule by (3/2) 1.380 649 × 10−23 J. The number
1.380 649×10−23 is the numerical value of the defining constant k expressed in units of JK-1.

The mole, symbol mol, is the SI unit of amount of substance.

• Previous definition: The mole is the amount of substance of a system which contains as many elementary
entities as there are atoms in 0.012 kilogram of carbon 12.

• Revised definition: One mole contains exactly 6.022 140 76 × 1023 elementary entities. This number is the
numerical value of the defining constant NA expressed in the unit mol-1.

A.0.1. Ref. [30], Sec. 3.3.
A.0.2. Ref. [129]
A.0.3. An alternative spelling is metre.
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The ampere, symbol A, is the SI unit of electric current.

• Previous definition: The ampere is that constant current which, if maintained in two straight parallel conduc-
tors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would produce
between these conductors a force equal to 2×10−7 newton per meter of length.

• Revised definition: The ampere is defined as the electric current in which
1/(1.602 176 634×10−19) elementary charges travel across a given point in one second. The number 1.602 176 634×
10−19 is the numerical value of the defining constant e expressed in coulombs.

The candela, symbol cd, is the SI unit of luminous intensity.

• Previous definition: The candela is the luminous intensity, in a given direction, of a source that emits monochro-
matic radiation of frequency 540×1012s−1 and that has a radiant intensity in that direction of (1/683)m2⋅kg⋅s−3

per steradian.

• Revised definition: No change from the previous definition. The meter, kilogram, and second in this definition
are defined in terms of the defining constants c, h, and Δ𝜈Cs.
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Appendix B
Physical Contants
The following table lists values of fundamental physical constants used to define SI base units or needed in thermo-
dynamic calculations. The 2019 SI revision treats the first six constants (Δ𝜈Cs through NA) as defining constants or
fundamental constants whose values are exact by definition.

Constant Symbol Value in SI units
cesium-133 hyperfine transition frequency Δ𝜈Cs 9.192 631 770×109 s−1

speed of light in vacuum c 2.997 924 58×108m⋅s−1

Planck constant h 6.626 070 15×10−34 J⋅s
elementary charge e 1.602 176 634×10−19C
Boltzmann constant k 1.380 649×10−23 J⋅K−1

Avogadro constant NA 6.022 140 76×1023mol−1

gas constant B.0.1 R 8.314 462. . . J⋅K−1⋅mol−1

Faraday constant B.0.2 F 9.648 533. . . ×104C⋅mol−1

electric constant B.0.3 𝜖0 8.854 187. . . ×10−12C2⋅J−1⋅m−1

standard acceleration of free fall B.0.4 gn 9.806 65m⋅s−2

Table B.0.1.
B.0.1. or molar gas constant; R is equal to NA k
B.0.2. F is equal to NA e
B.0.3. or permittivity of vacuum; 𝜖0 is equal to 10−7/(4𝜋 c2)
B.0.4. or standard acceleration of gravity
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Appendix C

Symbols for Physical Quantities

This appendix lists the symbols for most of the variable physical quantities used in this book. The symbols are those
recommended in the IUPAC Green Book (Ref. [100]) except for quantities followed by an asterisk (∗).

Symbol Physical quantity SI unit
A Helmholtz energy J
Ar relative atomic mass (atomic weight) (dimensionless)
As surface area m2

a activity (dimensionless)
B second virial coefficient m3⋅mol−1

C number of components* (dimensionless)
Cp heat capacity at constant pressure J⋅K−1

CV heat capacity at constant volume J⋅K−1

c concentration mol⋅m3

E energy J
electrode potential V

𝑬 electric field strength V⋅m−1

Ecell cell potential V
Ej liquid junction potential V
Esys system energy in a lab frame J
F force N

number of degrees of freedom* (dimensionless)
f fugacity Pa
g acceleration of free fall m⋅s−2

G Gibbs energy J

Table C.0.1. Symbols – Roman letters (A through G)
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Symbol Physical quantity SI unit
h height, elevation m
H enthalpy J
𝑯 magnetic field strength A⋅m−1

I electric current A
Im ionic strength, molality basis mol⋅kg−1

Ic ionic strength, concentration basis mol⋅m−3

K thermodynamic equilibrium constant (dimensionless)
Ka acid dissociation constant (dimensionless)
Kp equilibrium constant, pressure basis Pa∑𝜈

Ks solubility product (dimensionless)

kH,i
Henry's law constant of species i,

mole fraction basis Pa

kc,i
Henry's law constant of species i,

concentration basis* Pa⋅m3⋅mol−1

km,i
Henry's law constant of species i,

molality basis* Pa⋅kg⋅mol−1

l length, distance m
L relative partial molar enthalpy* J⋅mol−1

M molar mass kg⋅mol−1

𝑴 magnetization A⋅m−1

Mr relative molecular mass (molecular weight) (dimensionless)
m mass kg
mi molality of species i mol⋅kg−1

Table C.0.2. Symbols – Roman letters (h through m)
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Symbol Physical quantity SI unit

N number of entities (molecules, atoms, ions,
formula units, etc.) (dimensionless)

n amount of substance mol
P number of phases* (dimensionless)
p pressure Pa

partial pressure Pa
𝑷 dialectric polarization C⋅m−2

Q electric charge C
Qsys charge entering system at right conductor* C
Qrxn reaction quotient* (dimensionless)
q heat J
Rel electric resistance* Ω
S entropy J⋅K−1

s solubility mol⋅m−3

number of species* (dimensionless)
T thermodynamic temperature K
t time s

Celsius temperature JC
U internal energy J
V volume m3

v specific volume m3⋅kg−1

velocity, speed m⋅s−1

Table C.0.3. Symbols – Roman letters (N through v)

Symbol Physical quantity SI unit
w work J

mass fraction (weight fraction) (dimensionless)
wel electrical work* J
w′ nonexpansion work* J
x mole fraction in a phase (dimensionless)

Cartesian space coordinate m
y mole fraction in gas phase (dimensionless)

Cartesian space coordinate m
Z compression factor (compressibility factor) (dimensionless)
z mole fraction in multiphase system* (dimensionless)

charge number of an ion (dimensionless)
electron number of cell reaction (dimensionless)
Cartesian space coordinate (dimensionless)

Table C.0.4. Symbols – Roman letters (w through z)
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Symbol Physical quantity SI unit
alpha
𝛼 degree of reaction, dissociation, etc. (dimensionless)

cubic expansion coefficient K−1

gamma
𝛾 surface tension N⋅m−1, J⋅m−2

𝛾i
activity coefficient of species i,

pure liquid or solid standard state* (dimensionless)

𝛾m,i
activity coefficient of species i,

molality basis (dimensionless)

𝛾c,i
activity coefficient of species i,

concentration basis (dimensionless)

𝛾x,i
activity coefficient of species i,

mole fraction basis (dimensionless)

𝛾± mean ionic activity coefficient (dimensionless)
𝛤 pressure factor (activity of a refernce state)* (dimensionless)
epsilon
𝜖 efficiency of a heat engine (dimensionless)
theta
𝜗 angle of rotation (dimensionless)

Table C.0.5. Symbols – Greek letters (alpha through theta)
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Symbol Physical quantity SI unit
kappa
𝜅 reciprocal radius of ionic atmosphere m−1

𝜅T isothermal compressibility Pa−1

mu
𝜇 chemical potential J⋅mol−1

𝜇JT Joule–Thomson coefficient K⋅Pa−1

nu

𝜈 number of ions per formula unit
stoichiometric number (dimensionless)

𝜈+ number of cations per formula unit (dimensionless)
𝜈− number of anions per formula unit (dimensionless)
xi
𝜉 advancement (extent of reaction) mol
pi
Π osmotic pressure Pa
rho
𝜌 density kg⋅m−3

tau
𝜏 torque* J
phi
𝜙 fugacity coefficient (dimensionless)

electric potential V
Δ𝜙 electric potential difference V
𝜙m osmotic coefficient, molality basis (dimensionless)
ΦL relative apparent molar enthalpy of solute* J⋅mol−1

omega
𝜔 angular velocity s−1

Table C.0.6. Symbols – Greek letters (kappa through omega)
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Appendix D
Miscellaneous Abbreviations and Symbols
These abbreviations for physical states (states of aggregation) may be appended in parentheses to chemical formulas
or used as superscripts to symbols for physical quantities. All but “mixt” are listed in the IUPAC Green Book (Ref.
[30], p. 54).

g gas or vapor
l liquid
f fluid (gas or liquid)
s solid
cd condensed phase (liquid or solid)
cr crystalline
mixt mixture
sln solution
aq aqueous solution
aq,∞ aqueous solution at infinite dilution
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D.1 Subscripts for Chemical Processes
These abbreviations are used as subscripts to the Δ symbol. They are listed in the IUPAC Green Book (Ref. [30], p.
59–60).

The combination Δp, where “p” is any one of the abbreviations below, can be interpreted as an operator:
Δp =

def
∂/∂𝜉p where 𝜉p is the advancement of the given process at constant temperature and pressure. For example,

Δc H=(∂H/∂𝜉c)T ,p is the molar differential enthalpy of combustion.
vap vaporization, evaporation (l→ g)
sub sublimation (s→ g)
fus melting, fusion (s→ l)
trs transition between two phases
mix mixing of fluids
sol solution of a solute in solvent
dil dilution of a solution
ads adsorption
dpl displacement
imm immersion
r reaction in general
at atomization
c combustion reaction
f formation reaction
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D.2 Superscripts
These abbreviations and symbols are used as superscripts to symbols for physical quantities. All but ′, int, and ref are
listed as recommended superscripts in the IUPAC Green Book (Ref. [30], p. 60).

J standard
∗ pure substance
′ Legendre transform of a thermodynamic potential
∞ infinite dilution
id ideal
int integral
E excess quantity
ref reference state
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Appendix E
Calculus Review

E.1 Derivatives
Let f be a function of the variable x, and let Δ f be the change in f when x changes by Δ x. Then the derivative
d f /dx is the ratio Δ f /Δx in the limit asΔx approaches zero. The derivative d f /dx can also be described as the rate
at which f changes with x, and as the slope of a curve of f plotted as a function of x.

The following is a short list of formulas likely to be needed. In these formulas, u and v are arbitrary functions of
x, and a is a constant.

d(ua)
dx = aua−1 du

dx
d(uv)

dx = u dv
dx +v du

dx
d(u/v)

dx = � 1
v2
��v du

dx −u dv
dx�

dln (ax)
dx = 1x

d(eax)
dx = aeax

d f (u)
dx = d f (u)

du ⋅ du
dx

E.2 Partial Derivatives
If f is a function of the independent variables x, y, and z, the partial derivative (∂ f /∂x)y,z is the derivative d f /dx
with y and z held constant. It is important in thermodynamics to indicate the variables that are held constant, as
(∂ f /∂x)y,z is not necessarily equal to (∂ f /∂x)a,b where a and b are variables different from y and z.

The variables shown at the bottom of a partial derivative should tell you which variables are being used as the
independent variables. For example, if the partial derivative is �∂ f

∂y�a,b
then f is being treated as a function of y, a,

and b.
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E.3 Integrals
Let f be a function of the variable x. Imagine the range of x between the limits x′ and x′′ to be divided into many small
increments of size Δxi(i=1,2, . . . ). Let fi be the value of f when x is in the middle of the range of the ith increment.
Then the integral

�
x ′

x ′′
f dx

is the sum∑i fiΔxi in the limit as each Δxi approaches zero and the number of terms in the sum approaches infinity.
The integral is also the area under a curve of f plotted as a function of x, measured from x=x′ to x=x′′. The function
f is the integrand, which is integrated over the integration variable x.

This book uses the following integrals:

�
x ′

x ′′
dx = x′′−x′

�
x ′

x ′′ dx
x = ln �x′′x′ �

�
x ′

x ′′
xa dx = 1

a+1 [(x′′)
a+1− (x′)a+1] (a is a constant other than −1)

�
x'

x'' dx
ax+b =

1
a ln �

ax ' '+b
ax '+b � (a is a constant)

Here are examples of the use of the expression for the third integral with a set equal to 1 and to −2:

�
x ′

x ′′
x dx = 12 [(x′′)

2− (x′)2]

�
x ′

x ′′ dx
x2
= −� 1x′′ −

1
x′�

E.4 Line Integrals
A line integral is an integral with an implicit single integration variable that constraints the integration to a path.

The most frequently-seen line integral in this book, ∫pdV , will serve as an example. The integral can be evaluated
in three different ways:

1. The integrand p can be expressed as a function of the integration variable V , so that there is only one variable.
For example, if p equals c/V where c is a constant, the line integral is given by ∫p dV = c∫V1

V2 (1/V) dV =
c ln (V2/V1).

2. If p and V can be written as functions of another variable, such as time, that coordinates their values so that
they follow the desired path, this new variable becomes the integration variable.

3. The desired path can be drawn as a curve on a plot of p versus V ; then ∫pdV is equal in value to the area under
the curve.
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Figure F.2.1.

Appendix F
Mathematical Properties of State Functions
A state function is a property of a thermodynamic system whose value at any given instant depends only on the state
of the system at that instant (Sec. huniniti).

F.1 Differentials
The differential d f of a state function f is an infinitesimal change of f . Since the value of a state function by definition
depends only on the state of the system, integrating d f between an initial state 1 and a final state 2 yields the change
in f , and this change is independent of the path:

�
f1

f2
d f = f2− f1=Δ f (F.1.1)

A differential with this property is called an exact differential. The differential of a state function is always exact.

F.2 Total Differential
A state function f treated as a dependent variable is a function of a certain number of independent variables that
are also state functions. The total differential of f is d f expressed in terms of the differentials of the independent
variables and has the form

d f =�∂ f
∂x�dx+�∂ f

∂y�dy+�∂ f
∂ z�dz+ . . . (F.2.1)

There are as many terms in the expression on the right side as there are independent variables. Each partial derivative
in the expression has all independent variables held constant except the variable shown in the denominator.

Figure F.2.1 on page 387 interprets this expression for a function f of the two independent variables x and y. The
shaded plane represents a small element of the surface f = f (x,y).
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Consider a system with three independent variables. If we choose these independent variables to be x, y, and z,
the total differential of the dependent state function f takes the form

d f =adx+bdy+cdz (F.2.2)
where we can identify the coefficients as

a=�∂ f
∂x�y,z

b=�∂ f
∂y�x,z

c=�∂ f
∂ z�x,y

(F.2.3)

These coefficients are themselves, in general, functions of the independent variables and may be differentiated to give
mixed second partial derivatives; for example:

�∂a
∂y�x,z

= ∂
2f

∂y∂x �∂b
∂x�y,z

= ∂
2f

∂x∂y (F.2.4)

The second partial derivative ∂2f /∂y∂x, for instance, is the partial derivative with respect to y of the partial derivative
of f with respect to x. It is a theorem of calculus that if a function f is single valued and has continuous derivatives, the
order of differentiation in a mixed derivative is immaterial. Therefore the mixed derivatives ∂2f /∂y∂x and ∂2f /∂x∂y,
evaluated for the system in any given state, are equal:

�∂a
∂y�x,z

=�∂b
∂x�y,z

(F.2.5)

The general relation that applies to a function of any number of independent variables is

�∂X
∂y �=�

∂Y
∂x� (F.2.6)

where x and y are any two of the independent variables, X is ∂ f /∂x, Y is ∂ f /∂y, and each partial derivative has all
independent variables held constant except the variable shown in the denominator. This general relation is the Euler
reciprocity relation, or reciprocity relation for short. A necessary and sufficient condition for d f to be an exact
differential is that the reciprocity relation is satisfied for each pair of independent variables.

F.3 Integration of a Total Differential
If the coefficients of the total differential of a dependent variable are known as functions of the independent variables,
the expression for the total differential may be integrated to obtain an expression for the dependent variable as a
function of the independent variables.

For example, suppose the total differential of the state function f (x,y, z) is given by Eq. F.2.2 and the coefficients
are known functions a(x,y, z), b(x,y, z), and c (x,y,z). Because f is a state function, its change between f (0,0,0) and
f (x′, y′, z′) is independent of the integration path taken between these two states. A convenient path would be one
with the following three segments:

1. integration from (0, 0,0) to (x′, 0,0): ∫0
x ′a (x, 0, 0)dx

2. integration from (x′, 0,0) to (x′, y′, 0): ∫0
y′b (x′,y, 0)dy

3. integration from (x′, y′, 0) to (x′,y′, z′): ∫0
z′c (x′,y′, z)dz

The expression for f (x,y, z) is then the sum of the three integrals and a constant of integration.
Here is an example of this procedure applied to the total differential

d f =(2 xy)dx+(x2+ z)dy+(y−9 z2)dz (F.3.1)

An expression for the function f in this example is given by the sum

f = �
0

x ′
(2x ⋅ 0)dx+�

0

y′
[(x′)2+0]dy+�

0

z′
(y′−9 z2)dz+C

= 0+x2y+(y z −9 z3/3)+C
= x2y+y z −3 z3+C (F.3.2)
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where primes are omitted on the second and third lines because the expressions are supposed to apply to any values
of x, y, and z. C is an integration constant. You can verify that the third line of Eq. F.3.2 gives the correct expression
for f by taking partial derivatives with respect to x, y, and z and comparing with Eq. F.3.1.

In chemical thermodynamics, there is not likely to be occasion to perform this kind of integration. The fact that it
can be done, however, shows that if we stick to one set of independent variables, the expression for the total differential
of an independent variable contains the same information as the independent variable itself.

A different kind of integration can be used to express a dependent extensive property in terms of independent
extensive properties. An extensive property of a thermodynamic system is one that is additive, and an intensive prop-
erty is one that is not additive and has the same value everywhere in a homogeneous region (Sec. 2.1.1). Suppose we
have a state function f that is an extensive property with the total differential

d f =adx+bdy+cdz+ . . . (F.3.3)

where the independent variables x,y,z, . .. are extensive and the coefficients a,b,c, . .. are intensive. If the independent
variables include those needed to describe an open system (for example, the amounts of the substances), then it is
possible to integrate both sides of the equation from a lower limit of zero for each of the extensive functions while
holding the intensive functions constant:

�
0

f ′
d f =a�

0

x ′
dx+b�

0

y′
dy+c�

0

z′
dz+ . . . (F.3.4)

f ′=ax′+by′+cz′+ . . . (F.3.5)

Note that a term of the form cdu where u is intensive becomes zero when integrated with intensive functions held
constant, because du is this case is zero.

F.4 Legendre Transforms
A Legendre transform of a state function is a linear change of one or more of the independent variables made by
subtracting products of conjugate variables.

To understand how this works, consider a state function f whose total differential is given by

d f =adx+bdy+cdz (F.4.1)

In the expression on the right side, x, y, and z are being treated as the independent variables. The pairs a and x, b and
y, and c and z are conjugate pairs. That is, a and x are conjugates, b and y are conjugates, and c and z are conjugates.

For the first example of a Legendre transform, we define a new state function f1 by subtracting the product of the
conjugate variables a and x:

f1 =
def

f −ax (F.4.2)

The function f1 is a Legendre transform of f . We take the differential of Eq. F.4.2

d f1=d f −adx −x da (F.4.3)
and substitute for d f from Eq. F.4.1:

d f1 = (adx+bdy+cdz)−adx −x da
= −x da+bdy+cdz (F.4.4)

Equation F.4.4 gives the total differential of f1 with a, y, and z as the independent variables. The functions x and a
have switched places as independent variables. What we did in order to let a replace x as an independent variable was
to subtract from f the product of the conjugate variables a and x.

Because the right side of Eq. F.4.4 is an expression for the total differential of the state function f1, we can use the
expression to identify the coefficients as partial derivatives of f1 with respect to the new set of independent variables:

−x=�∂ f1
∂a �y,z

b=�∂ f1
∂y �a,z

c=�∂ f1
∂ z �a,y

(F.4.5)
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We can also use Eq. F.4.4 to write new reciprocity relations, such as

−�∂x
∂y�a,z

=�∂b
∂a�y,z

(F.4.6)

We can make other Legendre transforms of f by subtracting one or more products of conjugate variables. A second
example of a Legendre transform is

f2 =
def

f −by−cz (F.4.7)

whose total differential is

d f2 = d f −bdy−ydb−cdz − z dc
= adx −ydb− z dc (F.4.8)

Here b has replaced y and c has replaced z as independent variables. Again, we can identify the coefficients as partial
derivatives and write new reciprocity relations.

If we have an algebraic expression for a state function as a function of independent variables, then a Legendre
transform preserves all the information contained in that expression. To illustrate this, we can use the state function f
and its Legendre transform f2 described above. Suppose we have an expression for f (x, y, z)—this is f expressed as
a function of the independent variables x, y, and z. Then by taking partial derivatives of this expression, we can find
according to Eq. F.2.3 expressions for the functions a (x,y, z), b (x, y, z), and c (x,y, z).

Now we perform the Legendre transform of Eq. F.4.7: f2= f −by−cz with total differential d f2=adx −ydb− zdc
(Eq. F.4.8). The independent variables have been changed from x, y, and z to x, b, and c.

We want to find an expression for f2 as a function of these new variables, using the information available from
the original function f (x,y, z). To do this, we eliminate z from the known functions b (x,y, z) and c (x,y, z) and solve
for y as a function of x, b, and c. We also eliminate y from b (x, y, z) and c (x, y, z) and solve for z as a function of x,
b, and c. This gives us expressions for y (x,b, c) and z(x,b, c) which we substitute into the expression for f (x, y, z),
turning it into the function f (x,b, c). Finally, we use the functions of the new variables to obtain an expression for
f2(x,b,c)= f (x,b,c)−by (x,b,c)−c z(x,b, c).

The original expression for f (x,y,z) and the new expression for f2(x,b,c) contain the same information. We could
take the expression for f2(x,b,c) and, by following the same procedure with the Legendre transform f = f2+by+c z,
retrieve the expression for f (x,y, z). Thus no information is lost during a Legendre transform.
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Appendix G
Forces, Energy, and Work

The aim of this appendix is to describe a simple model that will help to clarify the meaning of energy and mechanical
work in macroscopic systems. The appendix applies fundamental principles of classical mechanics to a collection of
material particles representing a closed system and its surroundings. Although classical mechanics cannot duplicate all
features of a chemical system—for instance, quantum properties of atoms are ignored—the behavior of the particles
and their interactions will show us how to evaluate the thermodynamic work in a real system.

In broad outline the derivation is as follows. An inertial reference frame in which Newton's laws of motion are
valid is used to describe the positions and velocities of the particles. The particles are assumed to exert central forces
on one another, such that between any two particles the force is a function only of the interparticle distance and is
directed along the line between the particles.

We define the kinetic energy of the collection of particles as the sum for all particles of 12 m v2 (where m is mass
and v is velocity). We define the potential energy as the sum over pairwise particle–particle interactions of potential
functions that depend only on the interparticle distances. The total energy is the sum of the kinetic and potential
energies. With these definitions and Newton's laws, a series of mathematical operations leads to the principle of the
conservation of energy: the total energy remains constant over time.

Continuing the derivation, we consider one group of particles to represent a closed thermodynamic system and the
remaining particles to constitute the surroundings. The system particles may interact with an external force field, such
as a gravitational field, created by some of the particles in the surroundings. The energy of the system is considered to
be the sum of the kinetic energy of the system particles, the potential energy of pairwise particle–particle interactions
within the system, and the potential energy of the system particles in any external field or fields. The change in the
system energy during a time interval is then found to be given by a certain sum of integrals which, in the transition
to a macroscopic model, becomes the sum of heat and thermodynamic work in accord with the first law of thermody-
namics.

A similar derivation, using a slightly different notation, is given in Ref. [37].

G.1 Forces between Particles

A material particle is a body that has mass and is so small that it behaves as a point, without rotational energy or
internal structure. We assume each particle has a constant mass, ignoring relativistic effects that are important only
when the particle moves at a speed close to the speed of light.

Consider a collection of an arbitrary number of material particles that have interactions only among themselves
and with no other particles. Later we will consider some of the particles to constitute a thermodynamic system and the
others to be the surroundings.

Newton's laws of motion are obeyed only in an inertial reference frame. A reference frame that is fixed or moving
at a constant velocity relative to local stars is practically an inertial reference frame. To a good approximation, a
reference frame fixed relative to the earth's surface is also an inertial system (the necessary corrections are discussed
in Sec. G.10). This reference frame will be called simply the lab frame, and treated as an inertial frame in order that
we may apply Newton's laws.
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It will be assumed that the Cartesian components of all vector quantities appearing in Sections G.1–G.4 are mea-
sured in an inertial lab frame.

Classical mechanics is based on the idea that one material particle acts on another by means of a force that is
independent of the reference frame. Let the vector 𝑭ij denote the force exerted on particle i by particle j.G.1.1 The net
force 𝑭i acting on particle i is the vector sum of the individual forces exerted on it by the other particles:G.1.2

𝑭i=�
j=/ i
𝑭ij (G.1.1)

(The term in which j equals i has to be omitted because a particle does not act on itself.) According to Newton's second
law of motion, the net force 𝑭i acting on particle i is equal to the product of its mass mi and its acceleration:

𝑭i=mi
d𝒗i
dt (G.1.2)

Here 𝒗i is the particle's velocity in the lab frame and t is time.
A nonzero net force causes particle i to accelerate and its velocity and position to change. The work done by the

net force acting on the particle in a given time interval is defined by the integralG.1.3

Wi=�𝑭i•d𝒓i (G.1.3)

where 𝒓i is the position vector of the particle—a vector from the origin of the lab frame to the position of the particle.

The integral on the right side of Eq. G.1.3 is an example of a line integral. It indicates that the scalar
product of the net force acting on the particle and the particle's displacement is to be integrated over
time during the time interval. The integral can be written without vectors in the form ∫Fi cos𝛼 (ds/
dt)dt where Fi is the magnitude of the net force, ds/dt is the magnitude of the velocity of the particle
along its path in three-dimensional space, and 𝛼 is the angle between the force and velocity vectors.
The three quantities Fi, cos𝛼, and ds/dt are all functions of time, t, and the integration is carried out
with time as the integration variable.

By substituting the expression for 𝑭i (Eq. G.1.2) in Eq. G.1.3, we obtain

Wi = mi�
d𝒗i
dt •d𝒓i=mi�

d𝒓i
dt •d𝒗i=mi�𝒗i•d𝒗i=mi�vi dvi

= Δ� 12mivi
2� (G.1.4)

where vi is the magnitude of the velocity.
The quantity 12 mi vi

2 is called the kinetic energy of particle i. This kinetic energy depends only on the magnitude
of the velocity (i.e., on the speed) and not on the particle's position.

The total work Wtot done by all forces acting on all particles during the time interval is the sum of Wi for all
particles: Wtot=∑iWi.G.1.4 Equation G.1.4 then gives us

Wtot=�
i
Δ� 12 mivi

2�=Δ((((((((((((�i

1
2 mivi

2)))))))))))) (G.1.5)

G.1.1. This and the next two footnotes are included for readers who are not familiar with vector notation. The quantity 𝑭ij is printed in boldface
to indicate it is a vector having both magnitude and direction.

G.1.2. The rule for adding vectors, as in the summation shown here, is that the sum is a vector whose component along each axis of a Cartesian
coordinate system is the sum of the components along that axis of the vectors being added. For example, the vector 𝑪=𝑨+𝑩 has components
Cx=Ax+Bx, Cy=Ay+By, and Cz=Az+Bz.

G.1.3. The dot between the vectors in the integrand indicates a scalar product or dot product, which is a nonvector quantity. The general
definition of the scalar product of two vectors, 𝑨 and 𝑩, is 𝑨•𝑩=ABcos𝛼 where A and B are the magnitudes of the two vectors and 𝛼 is the angle
between their positive directions.

G.1.4. The work Wtot defined here is not the same as the thermodynamic work appearing in the first law of thermodynamics.
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Equation G.1.5 shows that the total work during a time interval is equal to the change in the total kinetic energy in this
interval. This result is called the “work-energy principle” by physicists.G.1.5

From Eqs. G.1.1 and G.1.3 we obtain a second expression for Wtot:

Wtot=�
i

Wi=�
i
��

j=/ i
𝑭ij •d𝒓i=�

i
�
j=/ i
�𝑭ij •d𝒓i (G.1.6)

The double sum in the right-most expression can be written as a sum over pairs of particles, the term for the pair i and
j being

�𝑭ij •d𝒓i+�𝑭ji•d𝒓j = �𝑭ij •d𝒓i −�𝑭ij •d𝒓j

= �𝑭ij •d(𝒓i − 𝒓j)=�(𝑭ij •𝒆ij)drij (G.1.7)

Here we have used the relations 𝑭ji=−𝑭ij (from Newton's third law) and (𝒓i − 𝒓j)= 𝒆ij rij, where 𝒆ij is a unit vector
pointing from j to i and rij is the distance between the particles. Equation G.1.6 becomes

Wtot=�
i
�
j=/ i
�𝑭ij •d𝒓i=�

i
�
j>i
�(𝑭ij •𝒆ij)drij (G.1.8)

Next we look in detail at the force that particle j exerts on particle i. This force depends on the nature of the two
particles and on the distance between them. For instance, Newton's law of universal gravitation gives the magnitude
of a gravitational force as Gmi mj/rij

2, where G is the gravitational constant. Coulomb's law gives the magnitude of
an electrical force between stationary charged particles as QiQj/(4𝜋𝜖0 rij

2), where Qi and Qj are the charges and 𝜖0 is
the electric constant (or permittivity of vacuum). These two kinds of forces are central forces that obey Newton's third
law of action and reaction, namely, that the forces exerted by two particles on one another are equal in magnitude and
opposite in direction and are directed along the line joining the two particles. (In contrast, the electromagnetic force
between charged particles in relative motion does not obey Newton's third law.)

We will assume the force 𝑭ij exerted on particle i by particle j has a magnitude that depends only on the inter-
particle distance rij and is directed along the line between i and j, as is true of gravitational and electrostatic forces
and on intermolecular forces in general. Then we can define a potential function, 𝛷ij, for this force that will be a
contribution to the potential energy. To see how 𝛷ij is related to 𝑭ij, we look at Eq. G.1.7. The left-most expression,
∫𝑭ij •d𝒓i+∫𝑭ji•d𝒓j, is the change in the kinetic energies of particles i and j during a time interval (see Eq. G.1.4). If
these were the only particles, their total energy should be constant for conservation of energy; thus Δ𝛷ij should have
the same magnitude and the opposite sign of the kinetic energy change:

Δ𝛷ij=−�(𝑭ij •𝒆ij)drij (G.1.9)

The value of 𝛷ij at any interparticle distance rij is fully defined by Eq. G.1.9 and the choice of an arbitrary zero.
The quantity (𝑭ij • 𝒆ij) is simply the component of the force along the line between the particles, and is negative for
an attractive force (one in which 𝑭ij points from i to j) and positive for a repulsive force. If the force is attractive,
the value of 𝛷ij increases with increasing rij; if the force is repulsive, 𝛷ij decreases with increasing rij. Since 𝛷ij is a
function only of rij, it is independent of the choice of reference frame.

Equations G.1.8 and G.1.9 can be combined to give

Wtot=−�
i
�
j>i
Δ𝛷ij=−Δ((((((((((((�i

�
j>i
𝛷ij)))))))))))) (G.1.10)

By equating the expressions for Wtot given by Eqs. G.1.5 and G.1.10 and rearranging, we obtain

Δ((((((((((((�i

1
2 mivi

2))))))))))))+Δ((((((((((((�i
�
j>i
𝛷ij))))))))))))=0 (G.1.11)

G.1.5. Ref. [125], p. 95.
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Figure G.2.1. Assignment of particles to groups, and some representative particle--particle potential functions (schematic). The closed
dashed curve represents the system boundary.

a) The open circles represent particles in the system, and the filled circles are particles in the surroundings.

b) The filled triangles are particles in the surroundings that are the source of a conservative force field for particles in the system.

This equation shows that the quantity

Etot=�
i

1
2 mi vi

2+�
i
�
j>i
𝛷ij (G.1.12)

is constant over time as the particles move in response to the forces acting on them. The first term on the right side of
Eq. G.1.12 is the total kinetic energy of the particles. The second term is the pairwise sum of particle–particle potential
functions; this term is called the potential energy of the particles. Note that the kinetic energy depends only on particle
speeds and the potential energy depends only on particle positions.

The significance of Eq. G.1.11 is that the total energy Etot defined by Eq. G.1.12 is conserved. This will be true
provided the reference frame used for kinetic energy is inertial and the only forces acting on the particles are those
responsible for the particle–particle potential functions.

G.2 The System and Surroundings

Now we are ready to assign the particles to two groups: particles in the system and those in the surroundings. This
section will use the following convention: indices i and j refer to particles in the system; indices k and l refer to
particles in the surroundings. This division of particles is illustrated schematically in Fig. G.2.1(a). With this change
in notation, Eq. G.1.12 becomes

Etot=�
i

1
2 mi vi

2+�
i
�
j>i
𝛷ij+�

i
�

k
𝛷ik+�

k

1
2 mk vk

2+�
k
�
l>k
𝛷kl (G.2.1)

A portion of the surroundings may create a time-independent conservative force field (an “external” field) for a particle
in the system. In order for such a field to be present, its contribution to the force exerted on the particle and to the
particle's potential energy must depend only on the particle's position in the lab frame. The usual gravitational and
electrostatic fields are of this type.

In order to clarify the properties of a conservative external field, the index k′ will be used for those particles in the
surroundings that are not the source of an external field, and k′′ for those that are, as indicated in Fig. G.2.1(b). Then
the force exerted on system particle i due to the field is 𝑭i

field=∑k ′′ 𝑭ik ′′. If this were the only force acting on particle
i, the change in its kinetic energy during a time interval would be ∫𝑭i

field•d𝒓i (Eq. G.1.4). For conservation of energy,
the potential energy change in the time interval should have the same magnitude and the opposite sign:

Δ𝛷i
field=−�𝑭i

field•d𝒓i (G.2.2)

Only if the integral ∫𝑭i
field •d𝒓i has the same value for all paths between the initial and final positions of the particle

does a conservative force field exist; otherwise the concept of a potential energy 𝛷i
field is not valid.
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Taking a gravitational field as an example of a conservative external field, we replace 𝑭i
field and 𝛷i

field by 𝑭i
grav and

𝛷i
grav: Δ𝛷i

grav=−∫𝑭i
grav •d𝒓i. The gravitational force on particle i is, from Newton's second law, the product of the

particle mass and its acceleration −g𝒆z in the gravitational field: 𝑭i
grav=−mig𝒆z where g is the acceleration of free fall

and 𝒆z is a unit vector in the vertical (upward) z direction. The change in the gravitational potential energy given by
Eq. G.2.2 is

Δ𝛷i
grav=mig�𝒆z •d𝒓i=mi gΔ zi (G.2.3)

(The range of elevations of the system particles is assumed to be small compared with the earth's radius, so that each
system particle experiences essentially the same constant value of g.) Thus we can define the gravitational potential
energy of particle i, which is a function only of the particle's vertical position in the lab frame, by 𝛷i

grav=mi g zi+Ci

where Ci is an arbitrary constant.
Returning to Eq. G.2.1 for the total energy, we can now write the third term on the right side in the form

�
i
�

k
𝛷ik=�

i
�
k ′
𝛷ik ′+�

i
𝛷i

field (G.2.4)

To divide the expression for the total energy into meaningful parts, we substitute Eq. G.2.4 in Eq. G.2.1 and rearrange
in the form

Etot = [[[[[[[[[[[[[[�i

1
2 mivi

2+�
i
�
j>i
𝛷ij+�

i
𝛷i

field]]]]]]]]]]]]]]
= +[[[[[[[[[[[[�i

�
k ′
𝛷ik ′]]]]]]]]]]]]+[[[[[[[[[[[[�k

1
2 mk vk

2+�
k
�
l>k
𝛷kl]]]]]]]]]]]] (G.2.5)

The terms on the right side of this equation are shown grouped with brackets into three quantities. The first quantity
depends only on the speeds and positions of the particles in the system, and thus represents the energy of the system:

Esys=�
i

1
2mivi

2+�
i
�
j>i
𝛷ij+�

i
𝛷i

field (G.2.6)

The three terms in this expression for Esys are, respectively, the kinetic energy of the system particles relative to the
lab frame, the potential energy of interaction among the system particles, and the total potential energy of the system
in the external field.

The last bracketed quantity on the right side of Eq. G.2.5 depends only on the speeds and positions of all the
particles in the surroundings, so that this quantity is the energy of the surroundings, Esurr. Thus, an abbreviated form
of Eq. G.2.5 is

Etot=Esys+�
i
�
k ′

𝛷ik ′+Esurr (G.2.7)

The quantity∑i∑k ′𝛷ik ′ represents potential energy shared by both the system and surroundings on account of forces
acting across the system boundary, other than gravitational forces or forces from other external fields. The forces
responsible for the quantity∑i∑k ′ 𝛷ik ′ are generally significant only between particles in the immediate vicinity of
the system boundary, and will presently turn out to be the crucial forces for evaluating thermodynamic work.

G.3 System Energy Change

This section derives an important relation between the change ΔEsys of the energy of the system measured in a lab
frame, and the forces exerted by the surroundings on the system particles. The indices i and j will refer to only the
particles in the system.

We write the net force on particle i in the form

𝑭i=�
j=/ i
𝑭ij+𝑭i

field+𝑭i
sur (G.3.1)
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where 𝑭ij is the force exerted on particle i by particle j, both particles being in the system, and 𝑭i
sur=∑k ′ 𝑭ik ′ is the

net force exerted on particle i by the particles in the surroundings that are not the source of an external field. During
a given period of time, the work done by forces acting on only the system particles is

�
i
�𝑭i•d𝒓i=�

i
�
j=/ i
�𝑭ij •d𝒓i+�

i
�𝑭i

field •d𝒓i+�
i
�𝑭i

sur •d𝒓i (G.3.2)

We can replace the first three sums in this equation with new expressions. Using Eq. G.1.4, we have

�
i
�𝑭i•d𝒓i=Δ((((((((((((�i

1
2 mi vi

2)))))))))))) (G.3.3)

From Eqs. G.1.8 and G.1.9 we obtain

�
i
�
j=/ i
�𝑭ij •d𝒓i=−Δ((((((((((((�i

�
j>i
𝛷ij)))))))))))) (G.3.4)

where the sums are over the system particles. From Eq. G.2.2 we can write

�
i
�𝑭i

field •d𝒓i=−Δ((((((((((((�i
𝛷i

field)))))))))))) (G.3.5)

Combining Eqs. G.3.2–G.3.5 and rearranging, we obtain

�
i
�𝑭i

sur •d𝒓i=Δ((((((((((((((�i

1
2 mivi

2+�
i
�
j>i
𝛷ij+�

i
𝛷i

field)))))))))))))) (G.3.6)

Comparison of the expression on the right side of this equation with Eq. G.2.6 shows that the expression is the same
as the change of Esys:

ΔEsys=�
i
�𝑭i

sur•d𝒓i (G.3.7)

Recall that the vector 𝑭i
sur is the force exerted on particle i, in the system, by the particles in the surroundings other than

those responsible for an external field. Thus ΔEsys is equal to the total work done on the system by the surroundings,
other than work done by an external field such as a gravitational field.

It might seem strange that work done by an external field is not included in ΔEsys. The reason it is
not included is that 𝛷i

field was defined to be a potential energy belonging only to the system, and is thus
irrelevant to energy transfer from or to the surroundings.
As a simple example of how this works, consider a system consisting of a solid body in a gravitational
field. If the only force exerted on the body is the downward gravitational force, then the body is in
free fall but ΔEsys in the lab frame is zero; the loss of gravitational potential energy as the body falls is
equal to the gain of kinetic energy. On the other hand, work done on the system by an external force
that opposes the gravitational force is included in ΔEsys. For example, if the body is pulled upwards at
a constant speed with a string, its potential energy increases while its kinetic energy remains constant,
and Esys increases.

G.4 Macroscopic Work
In thermodynamics we are interested in the quantity of work done on macroscopic parts of the system during a process,
rather than the work done on individual particles. Macroscopic work is the energy transferred across the system
boundary due to concerted motion of many particles on which the surroundings exert a force. Macroscopic mechan-
ical work occurs when there is displacement of a macroscopic portion of the system on which a short-range contact
force acts across the system boundary. This force could be, for instance, the pressure of an external fluid at a surface
element of the boundary multiplied by the area of the surface element, or it could be the tension in a cord at the point
where the cord passes through the boundary.
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Figure G.4.1. Position vectors within the system. Segment 𝜏 of the interaction layer lies within the heavy curve (representing the system
boundary) and the dashed lines. Open circle: origin of lab frame; open square: point fixed in system boundary at segment 𝜏; filled circle:
particle i.

The symbol wlab will refer to macroscopic work measured with displacements in the lab frame.
At any given instant, only the system particles that are close to the boundary will have nonnegligible contact forces

exerted on them. We can define an interaction layer, a thin shell-like layer within the system and next to the system
boundary that contains all the system particles with appreciable contact forces. We imagine the interaction layer to
be divided into volume elements, or segments, each of which either moves as a whole during the process or else is
stationary. Let 𝑹𝜏 be a position vector from the origin of the lab frame to a point fixed in the boundary at segment 𝜏,
and let 𝒓i𝜏 be a vector from this point to particle i (Fig. G.4.1). Then the position vector for particle i can be written
𝒓i=𝑹𝜏+ 𝒓i𝜏. Let 𝑭𝜏sur be the total contact force exerted by the surroundings on the system particles in segment 𝜏:
𝑭𝜏sur=∑i δi𝜏𝑭i

sur, where δi𝜏 is equal to 1 when particle i is in segment 𝜏 and is zero otherwise.
The change in the system energy during a process is, from Eq. G.3.7,

ΔEsys = �
i
�𝑭i

sur•d𝒓i=�
𝜏
�

i
�δi𝜏𝑭i

sur •d(𝑹𝜏+𝒓i𝜏)

= �
𝜏
�𝑭𝜏sur•d𝑹𝜏+�

𝜏
�

i
�δi𝜏𝑭i

sur •d𝒓i𝜏 (G.4.1)

We recognize the integral ∫𝑭𝜏sur•d𝑹𝜏 as the macroscopic work at surface element 𝜏, because it is the integrated scalar
product of the force exerted by the surroundings and the displacement. The total macroscopic work during the process
is then given by

wlab=�
𝜏
�𝑭𝜏sur•d𝑹𝜏 (G.4.2)

Heat, qlab, can be defined as energy transfer to or from the system that is not accounted for by macroscopic work.
This transfer occurs by means of chaotic motions and collisions of individual particles at the boundary. With this
understanding, Eq. G.4.1 becomes

ΔEsys=qlab+wlab (G.4.3)

with wlab given by the expression in Eq. G.4.2 and qlab given by

qlab=�
𝜏
�

i
�δi𝜏𝑭i

sur •d𝒓i𝜏 (G.4.4)

G.5 The Work Done on the System and Surroundings
An additional comment can be made about the transfer of energy between the system and the surroundings. We
may use Eq. G.4.2, with appropriate redefinition of the quantities on the right side, to evaluate the work done on the
surroundings. This work may be equal in magnitude and opposite in sign to the work wlab done on the system. A nec-
essary condition for this equality is that the interacting parts of the system and surroundings have equal displacements;
that is, that there be continuity of motion at the system boundary. We expect there to be continuity of motion when a
fluid contacts a moving piston or paddle.
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Figure G.6.1. Vectors in the lab and local reference frames. Open circle: origin of lab frame; open triangle: origin of local frame; open
square: point fixed in system boundary at segment 𝜏; filled circle: particle i. The thin lines are the Cartesian axes of the reference frames.

Suppose, however, that the system is stationary and an interacting part of the surroundings moves. Then according
to Eq. G.4.2, wlab is zero, whereas the work done on or by that part of the surroundings is not zero. How can this be,
considering that Etot remains constant? One possibility, discussed by Bridgman,G.5.1 is sliding friction at the boundary:
energy lost by the surroundings in the form of work is gained by the system and surroundings in the form of thermal
energy. Since the effect on the system is the same as a flow of heat from the surroundings, the division of energy
transfer into heat and work can be ambiguous when there is sliding friction at the boundary.G.5.2

Another way work can have different magnitudes for system and surroundings is a change in potential energy
shared by the system and surroundings. This shared energy is associated with forces acting across the boundary, other
than from a time-independent external field, and is represented in Eq. G.2.7 by the sum∑i∑k ′𝛷ik ′. In the usual types
of processes this sum is either practically constant, or else each term falls off so rapidly with distance that the sum is
negligible. Since Etot is constant, during such processes the quantity Esys+Esurr remains essentially constant.

G.6 The Local Frame and Internal Energy
As explained in Sec. 2.6.2, a lab frame may not be an appropriate reference frame in which to measure changes in the
system's energy. This is the case when the system as a whole moves or rotates in the lab frame, so that Esys depends in
part on external coordinates that are not state functions. In this case it may be possible to define a local frame moving
with the system in which the energy of the system is a state function, the internal energy U.

As before, 𝒓i is the position vector of particle i in a lab frame. A prime notation will be used for quantities measured
in the local frame. Thus the position of particle i relative to the local frame is given by vector 𝒓i′, which points from
the origin of the local frame to particle i (see Fig. G.6.1). The velocity of the particle in the local frame is 𝒗i′=d𝒓i′/dt.

We continue to treat the earth-fixed lab frame as an inertial frame, although this is not strictly true (Sec. G.10). If
the origin of the local frame moves at constant velocity in the lab frame, with Cartesian axes that do not rotate with
respect to those of the lab frame, then the local frame is also inertial but U is not equal to Esys and the change ΔU
during a process is not necessarily equal to ΔEsys.

If the origin of the local frame moves with nonconstant velocity in the lab frame, or if the local frame rotates with
respect to the lab frame, then the local frame has finite acceleration and is noninertial. In this case the motion of particle
i in the local frame does not obey Newton's second law as it does in an inertial frame. We can, however, define an
effective net force 𝑭i

eff whose relation to the particle's acceleration in the local frame has the same form as Newton's
second law:

𝑭i
eff=mi

d𝒗i′
dt (G.6.1)

G.5.1. Ref. [21], p. 47--56.
G.5.2. The ambiguity can be removed by redefining the system boundary so that a thin stationary layer next to the sliding interface, on the side

that was originally part of the system, is considered to be included in the surroundings instead of the system. The layer removed from the system by
this change can be so thin that the values of the system's extensive properties are essentially unaffected. With this redefined boundary, the energy
transfer across the boundary is entirely by means of heat.
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To an observer who is stationary in the local frame, the effective force will appear to make the particle's motion obey
Newton's second law even though the frame is not inertial.

The net force on particle i from interactions with other particles is given by Eq. G.3.1: 𝑭i=∑j=/ i 𝑭ij+𝑭i
field+𝑭i

sur.
The effective force can be written

𝑭i
eff=𝑭i+𝑭i

accel (G.6.2)

where 𝑭i
accel is the contribution due to acceleration. 𝑭i

accel is not a true force in the sense of resulting from the interac-
tion of particle i with other particles. Instead, it is an apparent or fictitious force introduced to make it possible to write
Eq. G.6.1 which resembles Newton's second law. The motion of particle i in an inertial frame is given by mid𝒗i/dt=𝑭i,
whereas the motion in the local frame is given by mid𝒗i′/dt=𝑭i+𝑭i

accel.
A simple example may make these statements clear. Consider a small unattached object suspended in the “weight-

less” environment of an orbiting space station. Assume the object is neither moving nor spinning relative to the station.
Let the object be the system, and fix the local frame in the space station. The local frame rotates with respect to local
stars as the station orbits around the earth; the local frame is therefore noninertial. The only true force exerted on the
object is a gravitational force directed toward the earth. This force explains the object's acceleration relative to local
stars. The fact that the object has no acceleration in the local frame can be explained by the presence of a fictitious
centrifugal force having the same magnitude as the gravitational force but directed in the opposite direction, so that
the effective force on the object as a whole is zero.

The reasoning used to derive the equations in Secs. G.1–G.4 can be applied to an arbitrary local frame. To carry
out the derivations we replace 𝑭i by 𝑭i

eff, 𝒓i by 𝒓i′, and 𝒗i by 𝒗i′, and use the local frame to measure the Cartesian
components of all vectors. We need two new potential energy functions for the local frame, defined by the relations

Δ𝛷i
′field =

def
−�𝑭i

field•d𝒓 'i (G.6.3)

Δ𝛷i
accel =

def
−�𝑭i

accel•d𝒓i′ (G.6.4)

Both 𝛷i
′field and 𝛷accel must be time-independent functions of the position of particle i in the local frame in order to be

valid potential functions. (If the local frame is inertial, 𝑭i
accel and 𝛷i

accel are zero.)
The detailed line of reasoning in Secs. G.1–G.4 will not be repeated here, but the reader can verify the fol-

lowing results. The total energy of the system and surroundings measured in the local frame is given by Etot′ =U +
∑i∑k ′ 𝛷ik ′+Esurr′ where the index k′ is for particles in the surroundings that are not the source of an external field
for the system. The energy of the system (the internal energy) is given by

U=�
i

1
2mi(vi′)2+�

i
�
j>i
𝛷ij+�

i
𝛷i
′field+�

i
𝛷i

accel (G.6.5)

where the indices i and j are for system particles. The energy of the surroundings measured in the local frame is

Esurr′ =�
k

1
2 mk(vk′)2+�

k
�
l>k
𝛷kl+�

k
𝛷k

accel (G.6.6)

where k and l are indices for particles in the surroundings. The value of Etot′ is found to be constant over time, meaning
that energy is conserved in the local frame. The internal energy change during a process is the sum of the heat q
measured in the local frame and the macroscopic work w in this frame:

ΔU=q+w (G.6.7)

The expressions for q and w, analogous to Eqs. G.4.4 and G.4.2, are found to be

q=�
𝜏
�

i
�δi𝜏𝑭i

sur•d𝒓i𝜏 (G.6.8)

w=�
𝜏
�𝑭𝜏sur•d𝑹𝜏′ (G.6.9)

In these equations 𝑹𝜏′ is a vector from the origin of the local frame to a point fixed in the system boundary at segment
𝜏, and 𝒓i𝜏 is a vector from this point to particle i (see Fig. G.6.1).
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We expect that an observer in the local frame will find the laws of thermodynamics are obeyed.For instance, the
Clausius statement of the second law (Sec. 4.2.2) is as valid in a manned orbiting space laboratory as it is in an earth-
fixed laboratory: nothing the investigator can do will allow energy to be transferred by heat from a colder to a warmer
body through a device operating in a cycle. Equation G.6.7 is a statement of the first law of thermodynamics (box on
page 47) in the local frame. Accordingly, we may assume that the thermodynamic derivations and relations treated
in the body of this book are valid in any local frame, whether or not it is inertial, when U and w are defined by Eqs.
G.6.5 and G.6.9.

In the body of the book, w is called the thermodynamic work, or simply the work. Note the following features
brought out by the derivation of the expression for w:

• The equation w=∑𝜏 ∫𝑭𝜏
sur •d𝑹𝜏′ has been derived for a closed system.

• The equation shows how we can evaluate the thermodynamic work w done on the system. For each moving
surface element of the system boundary at segment 𝜏 of the interaction layer, we need to know the contact
force 𝑭𝜏sur exerted by the surroundings and the displacement d𝑹𝜏′ in the local frame.

• We could equally well calculate w from the force exerted by the system on the surroundings. According to
Newton's third law, the force 𝑭𝜏

sys exerted by segment 𝜏 has the same magnitude as 𝑭𝜏sur and the opposite
direction: 𝑭𝜏

sys=−𝑭𝜏sur.

•
During a process, a point fixed in the system boundary at segment 𝜏 is either stationary or traverses a path

in three-dimensional space. At each intermediate stage of the process, let s𝜏 be the length of the path that began
in the initial state. We can write the infinitesimal quantity 𝑭𝜏sur •d𝑹𝜏′ in the form F𝜏surcos𝛼𝜏ds𝜏, where F𝜏sur is
the magnitude of the force, ds𝜏 is an infinitesimal change of the path length, and 𝛼𝜏 is the angle between the
directions of the force and the displacement. We then obtain the following integrated and differential forms of
the work:

w=�
𝜏
�F𝜏surcos𝛼𝜏ds𝜏 đw=�

𝜏
F𝜏surcos𝛼𝜏ds𝜏 (G.6.10)

•
If only one portion of the boundary moves in the local frame, and this portion has linear motion parallel to

the x′ axis, we can replace 𝑭𝜏sur •d𝑹𝜏′ by Fx ′
surdx′, where Fx ′

sur is the x′ component of the force exerted by the
surroundings on the moving boundary and dx′ is an infinitesimal displacement of the boundary. In this case
we can write the following integrated and differential forms of the work:

w=�Fx ′
surdx′ đw=Fx ′

surdx′ (G.6.11)

• The work w does not include work done internally by one part of the system on another part.

• In the calculation of work with Eqs. G.6.9–G.6.11, we do not include forces from an external field such as a
gravitational field, or fictitious forces 𝑭i

accel if present.

G.7 Nonrotating Local Frame
Consider the case of a nonrotating local frame whose origin moves in the lab frame but whose Cartesian axes x′,
y′, z′ remain parallel to the axes x, y, z of the lab frame. In this case the Cartesian components of 𝑭i

sur for particle i
are the same in both frames, and so also are the Cartesian components of the infinitesimal vector displacement d𝒓i𝜏.
According to Eqs. G.4.4 and G.6.8, then, for an arbitrary process the value of the heat q in the local frame is the same
as the value of the heat qlab in the lab frame.

From Eqs. G.4.3 and G.6.7 with qlab set equal to q, we obtain the useful relation

ΔU −ΔEsys=w−wlab (G.7.1)

This equation is not valid if the local frame has rotational motion with respect to the lab frame.
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Figure G.8.1. Position vectors in a lab frame and a center-of-mass frame. Open circle: origin of lab frame; open triangle: center of mass;
filled circle: particle i. The thin lines represent the Cartesian axes of the two frames.

The vector 𝑹𝜏′ has the same Cartesian components in the lab frame as in the nonrotating local frame, so we can
write 𝑹𝜏−𝑹𝜏′ =𝑹loc where 𝑹loc is the position vector in the lab frame of the origin of the local frame (see Fig. G.6.1).
From Eqs. G.4.2 and G.6.9, setting (𝑹𝜏−𝑹𝜏′ ) equal to 𝑹loc, we obtain the relation

w−wlab=�
𝜏
�𝑭𝜏sur •d(𝑹𝜏′ −𝑹𝜏)=−�((((((((((((�𝜏 𝑭𝜏

sur))))))))))))•d𝑹loc (G.7.2)

The sum∑𝜏𝑭𝜏
sur is the net contact force exerted on the system by the surroundings. For example, suppose the system

is a fluid in a gravitational field. Let the system boundary be at the inner walls of the container, and let the local frame
be fixed with respect to the container and have negligible acceleration in the lab frame. At each surface element of
the boundary, the force exerted by the pressure of the fluid on the container wall is equal in magnitude and opposite
in direction to the contact force exerted by the surroundings on the fluid. The horizontal components of the contact
forces on opposite sides of the container cancel, but the vertical components do not cancel because of the hydrostatic
pressure. The net contact force is mg𝒆z, where m is the system mass and 𝒆z is a unit vector in the vertical +z direction.
For this example, Eq. G.7.2 becomes

w−wlab=−mgΔ zloc (G.7.3)

where zloc is the elevation in the lab frame of the origin of the local frame.

G.8 Center-of-mass Local Frame
If we use a center-of-mass frame (cm frame) for the local frame, the internal energy change during a process is related
in a particularly simple way to the system energy change measured in a lab frame. A cm frame has its origin at the
center of mass of the system and its Cartesian axes parallel to the Cartesian axes of a lab frame. This is a special case
of the nonrotating local frame discussed in Sec. G.7. Since the center of mass may accelerate in the lab frame, a cm
frame is not necessarily inertial.

The indices i and j in this section refer only to the particles in the system.
The center of mass of the system is a point whose position in the lab frame is defined by

𝑹cm =
def ∑i mi 𝒓i

m (G.8.1)

where m is the system mass: m=∑i mi. The position vector of particle i in the lab frame is equal to the sum of the
vector𝑹cm from the origin of the lab frame to the center of mass and the vector 𝒓i′ from the center of mass to the particle
(see Fig. G.8.1):

𝒓i=𝑹cm+𝒓i′ (G.8.2)

We can use Eqs. G.8.1 and G.8.2 to derive several relations that will be needed presently. Because the Cartesian axes
of the lab frame and cm frame are parallel to one another (that is, the cm frame does not rotate), we can add vectors
or form scalar products using the vector components measured in either frame. The time derivative of Eq. G.8.2 is
d𝒓i/dt=d𝑹cm/dt+d𝒓i′/dt, or

𝒗i=𝒗cm+𝒗i′ (G.8.3)
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where the vector 𝒗cm gives the velocity of the center of mass in the lab frame. Substitution from Eq. G.8.2 into the
sum∑i mi 𝒓i gives∑i mi 𝒓i=m𝑹cm+∑i mi 𝒓i′, and a rearrangement of Eq. G.8.1 gives∑i mi 𝒓i=m𝑹cm. Comparing
these two equalities, we see the sum∑i mi 𝒓i′must be zero. Therefore the first and second derivatives of∑i mi 𝒓i′ with
respect to time must also be zero:

�
i

mi𝒗i′=0 �
i

mi
d𝒗i′
dt =0 (G.8.4)

From Eqs. G.1.2, G.6.1, G.6.2, and G.8.3 we obtain

𝑭i
accel=mi

d(𝒗i′−𝒗i)
dt =−mi

d𝒗cm
dt (G.8.5)

Equation G.8.5 is valid only for a nonrotating cm frame.
The difference between the energy changes of the system in the cm frame and the lab frame during a process is

given, from Eqs. G.2.6 and G.6.5, by

ΔU −ΔEsys=Δ[[[[[[[[[[[[�i

1
2 mi(vi′)2−�

i

1
2 mi vi

2]]]]]]]]]]]]
+Δ((((((((((((�i

𝛷i
′field −�

i
𝛷i

field))))))))))))+Δ((((((((((((�i
𝛷i

accel))))))))))))
(G.8.6)

We will find new expressions for the three terms on the right side of this equation.
The first term is the difference between the total kinetic energy changes measured in the cm frame and lab frame.

We can derive an important relation, well known in classical mechanics, for the kinetic energy in the lab frame:

�
i

1
2 mi vi

2=�
i

1
2 mi (𝒗cm+𝒗i′) •(𝒗cm+𝒗i′)

=12 mvcm
2 +�

i

1
2 mi(vi′)2+𝒗cm•((((((((((((�i

mi𝒗i′))))))))))))
(G.8.7)

The quantity 12 m vcm
2 is the bulk kinetic energy of the system in the lab frame—that is, the translational energy of a

body having the same mass as the system and moving with the center of mass. The sum∑i mi𝒗i′ is zero (Eq. G.8.4).
Therefore the first term on the right side of Eq. G.8.6 is

Δ[[[[[[[[[[[[�i

1
2 mi (vi′)2−�

i

1
2 mivi

2]]]]]]]]]]]]=−Δ� 12mvcm
2 � (G.8.8)

Only by using a nonrotating local frame moving with the center of mass is it possible to derive such a simple relation
among these kinetic energy quantities.

The second term on the right side of Eq. G.8.6, with the help of Eqs. G.2.2, G.6.3, and G.8.2 becomes

Δ((((((((((((�i
𝛷i
′field −�

i
𝛷i

field))))))))))))=−�
i
�𝑭i

field •d(𝒓 'i − 𝒓i)

=�((((((((((((�i
𝑭i

field))))))))))))•d𝑹cm

(G.8.9)

Suppose the only external field is gravitational: 𝑭i
field=𝑭i

grav=−mig𝒆z where 𝒆z is a unit vector in the vertical (upward)
+z direction. In this case we obtain

Δ((((((((((((�i
𝛷i
′field −�

i
𝛷i

field))))))))))))=−�((((((((((((�i
mi))))))))))))g 𝒆z •d𝑹cm

=−mg�𝒆z •d𝑹cm=−mg�dzcm
=−mgΔzcm

(G.8.10)

where zcm is the elevation of the center of mass in the lab frame. The quantity mgΔ zcm is the change in the system's
bulk gravitational potential energy in the lab frame—the change in the potential energy of a body of mass m under-
going the same change in elevation as the system's center of mass.
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Figure G.9.1. Relation between the Cartesian axes x, y, z of a lab frame and the axes x′, y′, z of a rotating local frame. The filled circle
represents particle i.

The third term on the right side of Eq. G.8.6 can be shown to be zero when the local frame is a cm frame. The
derivation uses Eqs. G.6.4 and G.8.5 and is as follows:

Δ((((((((((((�i
𝛷i

accel))))))))))))=−�
i
�𝑭i

accel•d𝒓i′=�
i
�mi

d𝒗cm
dt •d𝒓i′
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mi

d𝒓i′
dt ))))))))))))))•d𝒗cm=�((((((((((((�i

mi𝒗i′))))))))))))•d𝒗cm

(G.8.11)

The sum∑i mi𝒗i′ in the integrand of the last integral on the right side is zero (Eq. G.8.4) so the integral is also zero.
With these substitutions, Eq. G.8.6 becomes ΔU −ΔEsys=−12 mΔ(vcm

2 )−mgΔzcm. Since ΔU −ΔEsys is equal to
w−wlab when the local frame is nonrotating (Eq. G.7.1), we have

w−wlab=− 12mΔ(vcm
2 )−mgΔ zcm (G.8.12)

G.9 Rotating Local Frame
A rotating local frame is the most convenient to use in treating the thermodynamics of a system with rotational motion
in a lab frame. A good example of such a system is a solution in a sample cell of a spinning ultracentrifuge (Sec. 9.8.2).

We will make several simplifying assumptions. The rotating local frame has the same origin and the same z axis
as the lab frame, as shown in Fig. G.9.1. The z axis is vertical and is the axis of rotation for the local frame. The local
frame rotates with constant angular velocity 𝜔=d𝜗/dt, where 𝜗 is the angle between the x axis of the lab frame and
the x′ axis of the local frame. There is a gravitational force in the −z direction; this force is responsible for the only
external field, whose potential energy change in the local frame during a process is Δ𝛷i

′ grav=migΔzi (Eq. G.2.3).
The contribution to the effective force acting on particle i due to acceleration when 𝜔 is constant can be shown to

be given byG.9.1

𝑭i
accel=𝑭i

centr+𝑭i
Cor (G.9.1)

where 𝑭i
centr is the so-called centrifugal force and 𝑭i

Cor is called the Coriolis force.
The centrifugal force acting on particle i is given by

𝑭i
centr=mi𝜔2 ri𝒆i (G.9.2)

Here ri is the radial distance of the particle from the axis of rotation, and 𝒆i is a unit vector pointing from the particle
in the direction away from the axis of rotation (see Fig. G.9.1). The direction of 𝒆i in the local frame changes as the
particle moves in this frame.

G.9.1. The derivation, using a different notation, can be found in Ref. [90], Chap. 10.
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The Coriolis force acting on particle i arises only when the particle is moving relative to the rotating frame. This
force has magnitude 2mi𝜔vi′ and is directed perpendicular to both 𝒗i′ and the axis of rotation.

In a rotating local frame, the work during a process is not the same as that measured in a lab frame. The heats q
and qlab are not equal to one another as they are when the local frame is nonrotating, nor can general expressions using
macroscopic quantities be written for ΔU −ΔEsys and w−wlab.

G.10 Earth-Fixed Reference Frame
In the preceding sections of Appendix G, we assumed that a lab frame whose coordinate axes are fixed relative to the
earth's surface is an inertial frame. This is not exactly true, because the earth spins about its axis and circles the sun.
Small correction terms, a centrifugal force and a Coriolis force, are needed to obtain the effective net force acting on
particle i that allows Newton's second law to be obeyed exactly in the lab frame.G.10.1

The earth's movement around the sun makes only a minor contribution to these correction terms. The Coriolis
force, which occurs only if the particle is moving in the lab frame, is usually so small that it can be neglected.

This leaves as the only significant correction the centrifugal force on the particle from the earth's spin about its
axis. This force is directed perpendicular to the earth's axis and has magnitude mi𝜔2 ri, where 𝜔 is the earth's angular
velocity, mi is the particle's mass, and ri is the radial distance of the particle from the earth's axis. The correction can
be treated as a small modification of the gravitational force acting on the particle that is at most, at the equator, only
about 0.3% of the actual gravitational force. Not only is the correction small, but it is completely taken into account
in the lab frame when we calculate the effective gravitational force from 𝑭i

grav=−mig𝒆z, where g is the acceleration of
free fall and 𝒆z is a unit vector in the +z (upward) direction. The value of g is an experimental quantity that includes
the effect of 𝑭i

centr, and thus depends on latitude as well as elevation above the earth's surface. Since 𝑭i
grav depends

only on position, we can treat gravity as a conservative force field in the earth-fixed lab frame.

G.10.1. Ref. [58], Sec. 4--9.
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Appendix H

Standard Molar Thermodynamic Properties

The values in this table are for a temperature of 298.15K (25.00 ∘C) and the standard pressure p∘=1 bar. Solute
standard states are based on molality. A crystalline solid is denoted by cr.

Most of the values in this table come from a project of the Committee on Data for Science and Technology
(CODATA) to establish a set of recommended, internally consistent values of thermodynamic properties. The values
of Δf H∘ and Sm

∘ shown with uncertainties are values recommended by CODATA.H.0.1

Species Δf H∘
kJ⋅mol−1

Sm∘

J⋅K−1⋅mol−1
Δf G∘

kJ⋅mol−1

Inorganic substances
Ag (cr) 0 42.55±0.20 0
AgCl (cr) −127.01±0.05 96.25±0.20 −109.77
C (cr,graphite) 0 5.74±0.10 0
CO (g) −110.53±0.17 197.660±0.004 −137.17
CO2 (g) −393.51±0.13 213.785±0.010 −394.41
Ca (cr) 0 41.59±0.40 0
CaCO3 (cr,calcite) −1206.9 92.9 −1128.8
CaO (cr) −634.92±0.90 38.1±0.4 −603.31
Cl2(g) 0 223.081±0.010 0
F2 (g) 0 202.791±0.005 0
H2 (g) 0 130.680±0.003 0
HCl (g) −92.31±0.10 186.902±0.005 −95.30
HF (g) −273.30±0.70 173.779±0.003 −275.40
HI (g) 26.50±0.10 206.590±0.004 1.70
H2O (l) −285.830±0.040 69.96±0.03 −237.16
H2O (g) −241.826±0.040 188.835±0.010 −228.58
H2S (g) −20.6±0.5 205.81±0.05 −33.44
Hg (l) 0 75.90±0.12 0
Hg (g) 61.38±0.04 174.971±0.005 31.84
HgO(cr, red) −90.79±0.12 70.25±0.30 −58.54

Table H.0.1. Inorganic substances, Ag (cr) through HgO(cr, red)

H.0.1. Ref. [32]; also available online at http://www.codata.info/resources/databases/key1.html.
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Species Δf H∘
kJ⋅mol−1

Sm∘

J⋅K−1⋅mol−1
Δf G∘

kJ⋅mol−1

Inorganic substances
Hg2Cl2(cr) −265.37±0.40 191.6±0.8 −210.72
I2 (cr) 0 116.14±0.30 0
K (cr) 0 64.68±0.20 0
KI (cr) −327.90 106.37 −323.03
KOH (cr) −424.72 78.90 −378.93
N2 (g) 0 191.609±0.004 0
NH3 (g) −45.94±0.35 192.77±0.05 −16.41
NO2 (g) 33.10 240.04 51.22
N2O4 (g) 9.08 304.38 97.72
Na (cr) 0 51.30 0
NaCl (cr) −411.12 72.10 −384.02
O2 (g) 0 205.152±0.005 0
O3 (g) 142.67 238.92 163.14
P (cr,white) 0 41.09±0.25 0
S (cr, rhombic) 0 32.054±0.050 0
SO2 (g) −296.81±0.20 248.223±0.050 −300.09
Si (cr) 0 18.81±0.08 0
SiF4 (g) −1615.0±0.8 282.76±0.50 −1572.8
SiO2 (cr,𝛼-quartz) −910.7±1.0 41.46±0.20 −856.3
Zn (cr) 0 41.63±0.15 0
ZnO (cr) −350.46±0.27 43.65±0.40 −320.48

Table H.0.2. Inorganic substances (cont'd), HgO (cr, red) through ZnO (cr)

Species Δf H∘
kJ⋅mol−1

Sm∘

J⋅K−1⋅mol−1
Δf G∘

kJ⋅mol−1

Organic compounds
CH4(g) −74.87 186.25 −50.77
CH3OH(l) −238.9 127.2 −166.6
CH3CH2OH(l) −277.0 159.9 −173.8
C2H2(g) 226.73 200.93 209.21
C2H4(g) 52.47 219.32 68.43
C2H6(g) −83.85 229.6 −32.00
C2H8(g) −104.7 270.31 −24.3
C2H6(l,benzene) 49.04 173.26 124.54

Table H.0.3. Organic compounds, CH4 (g) through C6H6 (l,benzene)
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Species Δf H∘
kJ⋅mol−1

Sm∘

J⋅K−1⋅mol−1
Δf G∘

kJ⋅mol−1
Ionic solutes
Ag+ (aq) 105.79±0.08 73.45±0.40 77.10
CO3

2− () −675.23±0.25 −50.0±1.0 −527.90

Ca2+ (aq) −543.0±1.0 −56.2±1.0 −552.8
Cl− (aq) −167.08±0.10 56.60±0.20 −131.22
F− (aq) −335.35±0.65 −13.8±0.8 −281.52
H+ (aq) 0 0 0
HCO3

− (aq) −689.93±2.0 98.4±0.5 −586.90
HS− (aq) −16.3±1.5 67±5 12.2
HSO4

− (aq) −886.9±1.0 131.7±3.0 −755.4
Hg2

2+ (aq) 116.87±0.50 65.74±0.80 153.57
I− (aq) −56.78±0.05 106.45±0.30 −51.72
K+ (aq) −252.14±0.08 101.20±0.20 −282.52
NH4

+ (aq) −133.26±0.25 111.17±0.40 −79.40
NO3

− (aq) −206.85±0.40 146.70±0.40 −110.84
Na+ (aq) −240.34±0.06 58.45±0.15 −261.90
OH− (aq) −230.015±0.040 −10.90±0.20 −157.24

S2− (aq) 33.1 −14.6 86.0
SO4

2− (aq) −909.34±0.40 18.50±0.40 −744.00

Table H.0.4. Ionic solutes, Ag+ (aq) through SO2
2− (aq)
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