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Chapter 1

Introduction

1.1 Physical Quantities, Units, and Symbols

Thermodynamics is a quantitative subject. It allows us to derive relations between the values of numerous physical
quantities. Some physical quantities, such as mole fraction, are dimensionless; the value of one of these quantities
is a pure number. Most quantities, however, are not dimensionless and their values must include one or more units.
This chapter describes the SI system of units, which are the preferred units in science applications. The chapter then
discusses some useful mathematical manipulations of physical quantities using quantity calculus, and certain general
aspects of dimensional analysis.

1.1.1 The International System of Units

There is international agreement that the units used for physical quantities in science and technology should be those
of the International System of Units, or SI (standing for the French Systéeme International d'Unités).

Physical quantities and units are denoted by symbols. This book will, with a few exceptions, use symbols rec-
ommended in the third edition of what is known, from the color of its cover, as the [IUPAC Green Book!!!. 1 This
publication is a manual of recommended symbols and terminology based on the SI and produced by the International
Union of Pure and Applied Chemistry (IUPAC). The symbols for physical quantities are listed for convenient refer-
ence in Appendices C and D.

The SI includes the seven base units listed in Table 1.1.1.

Physical quantity SI unit Symbol
time second S
length meter? m
mass kilogram kg
thermodynamic temperature  kelvin K
amount of substance mole mol
electric current ampere A
luminous intensity candela cd

“or metre

Table 1.1.1. SI base units

1.1.1. Ref. [36]. The references are listed in the Bibliography at the back of the book.
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16 INTRODUCTION

These base units are for seven independent physical quantities that are sufficient to describe all other physical
quantities. Definitions of the base units are given in Appendix A. (The candela, the SI unit of luminous intensity, is
usually not needed in thermodynamics and is not used in this book.)

1.1.2 Amount of substance and amount

The physical quantity formally called amount of substance is a counting quantity for specified elementary entities.
An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.
The SI base unit for amount of substance is the mole.

Before 2019, the mole was defined as the amount of substance containing as many elementary entities as the
number of atoms in exactly 12 grams of pure carbon-12 nuclide, '>C. This definition was such that one mole of H,O
molecules, for example, has a mass of 18.02 grams, where 18.02 is the relative molecular mass of H,O, and contains
6.022 x 102> mol~"! is N4, the Avogadro constant (values given to four significant digits). The same statement can be
made for any other substance if 18.02 is replaced by the appropriate relative atomic mass or molecular mass value
(Sec. 2.3.2).

The SI revision of 2019 (Sec. 1.1.3) redefines the mole as exactly 6.022 14076 x 10>} elementary entities. The
mass of this number of carbon-12 atoms is 12 grams to within 5x 107 gram,-!'2 so the revision makes a negligible
change to calculations involving the mole.

The symbol for amount of substance is n. It is admittedly awkward to refer to n (H,O) as “the amount of substance
of water.” This book simply shortens “amount of substance” to amount, a usage condoned by the [IUPAC.!-!3 Thus,
“the amount of water in the system” refers not to the mass or volume of water, but to the number of H,O molecules
expressed in a counting unit such as the mole.

1.1.3 The SI revision of 2019

At a General Conference on Weights and Measures held in Versailles, France in November 2018, metrologists from
over fifty countries agreed on a major revision of the International System of Units. The revision became official on 20
May 2019. It redefines the base units for mass, thermodynamic temperature, amount of substance, and electric current.

The SI revision bases the definitions of the base units (Appendix A) on a set of six defining constants with values
(listed in Appendix B) treated as exact, with no uncertainty.

Previously, the kilogram had been defined as the mass of a physical artifact, the international prototype of the
kilogram. The international prototype is a platinum-iridium cylinder manufactured in 1879 in England and stored
since 1889 in a vault of the International Bureau of Weights and Measures in Sevres, near Paris, France. As itis subject
to surface contamination and other slow changes of mass, it is not entirely suitable as a standard.

The 2019 ST revision instead defines the kilogram in terms of the Planck constant 4.!-1# As a defining constant, the
value of 7 was chosen to agree with the mass of the international prototype with an uncertainty of only several parts
in 10%. Thus, as apractical matter, the SI revision has a negligible effect on the value of a mass.

The SI revision defines the kelvin in terms of the Boltzmann constant k, the mole in terms of the Avogadro con-
stant N, and the ampere in terms of the elementary charge e. The values of these defining constants were chosen to
closely agree with the previous base unit definitions. Consequently, the SI revision has a negligible effect on values
of thermodynamic temperature, amount of substance, and electric current.

1.1.2. Ref [166]. Appendix 2.
1.1.3. Ref [126]. An alternative name suggested for n is “chemical amount”.

1.1.4. The manner in which this is done using a Kibble balance is described on page 29.
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1.1 PHYSICAL QUANTITIES, UNITS, AND SYMBOLS 17

Physical quantity Unit Symbol Definition of unit
force newton N IN=1 msl;g
pressure pascal Pa 1Pa=1 % =1 I:iz
Celsius temperature  degree Celsius °C % = % -273.15
energy joule J 1J=1N-m=1 %
power watt w 1W=1 % =1 m;kg
frequency hertz Hz 1Hz=1 % =1s7!
electric charge coulomb C 1C=1A:s

electric potential volt \Y% 1V=1i=1 I:j:ig
electric resistance ohm Q 1Q=1 % =1 %

Table 1.1.2. SI derived units

1.1.4 Derived units and prefixes

Table 1.1.2 lists derived units for some physical quantities used in thermodynamics. The derived units have exact
definitions in terms of SI base units, as given int he last column of the table.

The units listed in Table 1.1.3 are sometimes used in thermodynamics but are not part of the SI. They do, however,
have exact definitions in terms of SI units and so offer no problems of numerical conversion to or from SI units.

Physical quantity Unit Symbol Definition of unit

volume liter* L’ 1L=1dm3=10"3m3

pressure bar bar 1 bar=10°Pa

pressure atmosphere atm latm=101,325Pa=1.01325bar
pressure torr Torr 1 Torr= (%0) atm= ( 1071’6?)25 ) Pa
energy calorie® cal’ 1cal=4.184]J

%r litre Yor1 c‘or thermochemical calorie “or caly,

Table 1.1.3. Non-SI derived units

Fraction Prefix Symbol Multiple Prefix Symbol
107! deci d 10 deka da
1072 centi ¢ 102 hecto h
1073 milli  m 10° kilo  k
1076 micro 106 mega M
107° nano n 10° giga G
10712 pico p 10"2 tera T
10715 femto f 10 peta P
10718 atto  a 1018 exa E
1072 zepto  z 102! zetta Z
10724 yocto 'y 10 yotta Y

Table 1.1.4. SI prefixes
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18 INTRODUCTION

Any of the symbols for units listed in Tables 1.1.1-1.1.3, except kg and °C, may be preceded by one of the prefix
symbols of Table 1.1.4 to construct a decimal fraction or multiple of the unit. (The symbol g may be preceded by a
prefix symbol to construct a fraction or multiple of the gram.) The combination of prefix symbol and unit symbol is
taken as a new symbol that can be raised to a power without parentheses, as in the following examples:

Img = 1x1073g
lem = 1x1072m

lem? (1x1072m)3=1x10"%m?>

1.2 Quantity Calculus

This section gives examples of how we may manipulate physical quantities by the rules of algebra. The method is
called quantity calculus, although a better term might be “quantity algebra.”

Quantity calculus is based on the concept that a physical quantity, unless it is dimensionless, has a value equal to
the product of a numerical value (a pure number) and one or more units:

(physical quantity) = (numerical value) x (units) (1.2.1)

(If the quantity is dimensionless, it is equal to a pure number without units.) The physical property may be denoted
by a symbol, but the symbol does not imply a particular choice of units. For instance, this book uses the symbol p for
density, but p can be expressed in any units having the dimensions of mass divided by volume.

A simple example illustrates the use of quantity calculus. We may express the density of water at 25 °C to four
significant digits in SI base units by the equation

2
p=9.970 x 1021%3 =9.970x 10kg:m3 (12.2)
and in different density units by the equation

p= 0.9970% =0.9970 g-cm™3 (1.2.3)

We may divide both sides of the last equation by 1g-cm™ to obtain a new equation

P -3
= -em~=0.9970 1.2.4
o~ P/gem (12:4)
Now the pure number 0.9970 appearing in this equation is the number of grams in one cubic centimeter of water, so
we may call the ratio p/g-cm™ “the number of grams per cubic centimeter.” By the same reasoning, p /kg-m™ is
the number of kilograms per cubic meter. In general, a physical quantity divided by particular units for the physical
quantity is a pure number representing the number of those units.

Just as it would be incorrect to call p “the number of grams per cubic centimeter,” because that would
refer to a particular choice of units for p, the common practice of calling n “the number of moles” is
also strictly speaking not correct. It is actually the ratio ﬁ that is the number of moles.

In a table, the ratio p /g-cm™ makes a convenient heading for a column of density values because the column can
then show pure numbers. Likewise, it is convenient to use p/g-cm™ as the label of a graph axis and to show pure
numbers at the grid marks of the axis. You will see many examples of this usage in the tables and figures of this book.

A major advantage of using SI base units and SI derived units is that they are coherent. That is, values of a physical
quantity expressed in different combinations of these units have the same numerical value.

For example, suppose we wish to evaluate the pressure of a gas according to the ideal gas equation'->!

_nRT (1.2.5)
P="y (ideal gas)

1.2.1. This is the first equation in this book that, like many others to follow, shows conditions of validity in parentheses immediately below
the equation number ont he right. Thus, Eq. 1.2.5 is valid for an ideal gas.

18



1.3 DIMENSIONAL ANALYSIS 19

In this equation, p, n, T, and V are the symbols for the physical quantities pressure, amount (amount of substance),
thermodynamic temperature, and volume, respectively, and R is the gas constant.
The calculation of p for 5.000 moles of an ideal gas at a temperature of 298.15 kelvins, in a volume of 4.000 cubic

meters, is
J
K-mol

4.000m3

(5.000mol) - (8.3145
p:

)-(298.15 K)

~3.099x 103% (1.2.6)

The mole and kelvin units cancel, and we are left with units of %, a combination of an SI derived unit (the joule) and
an SI base unit (the meter). The units % must have dimensions of pressure, but are not commonly used to express
pressure.

To convert % to the SI derived unit of pressure, the pascal (Pa), we can use the following relations from Table
1.1.2:

1J = IN'm 1.2.7
1Pa = 1% (1.2.8)
When we divide both sides of the first relation by 1] and divide both sides of the second relation by 1%, we obtain
two new relations
| = (IN'm) (1.2.9)
J

1Pa
[T] =1 (1.2.10)

‘m?

The ratios in the parentheses are conversion factors. When a physical quantity is multiplied by a conversion factor that,
like these, is equal to the pure number 1, the physical quantity changes its units but not its value. When we multiply
Eq. 1.2.6 by both of these conversion factors, all units cancel except Pa:

J N-m 1Pa

p

3.099 Pa (1.2.11)

This example illustrates the fact that to calculate a physical quantity, we can simply enter into a calculator numer-
ical values expressed in SI units, and the result is the numerical value of the calculated quantity expressed in SI units.
In other words, as long as we use only SI base units and SI derived units (without prefixes), all conversion factors are
unity.

Of course we do not have to limit the calculation to SI units. Suppose we wish to express the calculated pressure
in torrs, a non-SI unit. In this case, using a conversion factor obtained from the definition of the torr in Table 1.1.3,
the calculation becomes

<
Il

3 760 Torr )
(3.099x 10 Pa)x(—ml&s})a

23.24 Torr (1.2.12)

1.3 Dimensional Analysis
Sometimes you can catch an error in the form of an equation or expression, or in the dimensions of a quantity used for
a calculation, by checking for dimensional consistency. Here are some rules that must be satisfied:

e both sides of an equation have the same dimensions

o all terms of a sum or difference have the same dimensions

o logarithms and exponentials, and arguments of logarithms and exponentials, are dimensionless

19



20 INTRODUCTION

e aquantity used as a power is dimensionless

In this book the differential of a function, such as df, refers to an infinitesimal quantity. If one side of an equation
is an infinitesimal quantity, the other side must also be. Thus, the equation d f =adx +bdy (where ax and by have the
same dimensions as f) makes mathematical sense, but df =ax + bdy does not.

Derivatives, partial derivatives, and integrals have dimensions that we must take into account when determining
the overall dimensions of an expression that includes them. For instance:

o the derivative ﬁ and the partial derivative ( aT) have the same dimeinsions as ﬂT

?
o the partial second derivative ( aT[;) has the same dimensions as F

o the integral [ 7dT has the same dimensions as 7>

Some examples of applying these principles are given here using symbols described in Sec. 1.2.

Example 1.3.1.

Since the gas constant R may be expressed in units of ., it has dimensions of energy divided by thermodynamic
temperature and amount. Thus, RT has dimensions of energy d1V1ded by amount, and nR T has dimensions of energy.
The products RT and nRT appear frequently in thermodynamic expressions.

Example 1.3.2.

What are the dimensions of the quantity nRT ln(%) and of p° in this expression? The quantity has the same
dimensions as n R T (or energy) because the logarithm is dimensionless. Furthermore, p° in this expression has dimen-
sions of pressure in order to make the argument of the logarithm, pﬂa, dimensionless.

Example 1.3.3.
Find the dimensions of the constants g and b in the van der Waals equation
__hRT n‘a
P=V=up ™2

Dimensional analysis tells us that, because n b is subtracted from V, nb has dimensions of volume and therefore b has
f % Furthermore, since the right side of the equation is a difference 2of two terms, these terms have
the same dimensions as th eleft side, which is pressure. Therefore, the second term —- has dimensions of pressure,

and a has dimensions of (pressure) x x (volume)? x (amount) ™2

dimensions o

Example 1.3.4.
Consider an equation of the form

(61n (x)) _y

oT /), R
What are the SI units of y? Inx is dimensionless, so the left side of the equation has the dlmenswns , and its ST units
are K~!. The SI units of the right side are therefore also K~'. Since R has the units ——, the SI umts of y are —w—

K2-mol "

Problem 1.3.1. Consider the following equations for the pressure of a real gas. For each equation, find the dimensions of the constants a and
b and express these dimensions in SI units.

a) The Dieterici equation:

an

RTe™ )
(3)-b
b) The Redlich—-Kwong equation:
RT an?

p= (D)=p T V-(Vinb)
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Chapter 2

Systems and Their Properties

This chapter begins by explaining some basic terminology of thermodynamics. It discusses macroscopic properties
of matter in general and properties distinguishing different physical states of matter in particular. Virial equations
of state of a pure gas are introduced. The chapter goes on to discuss some basic macroscopic properties and their
measurement. Finally, several important concepts needed in later chapters are described: thermodynamic states and
state functions, independent and dependent variables, processes, and internal energy.

2.1 The System, Surroundings, and Boundary

Chemists are interested in systems containing matter—that which has mass and occupies physical space. Classical
thermodynamics looks at macroscopic aspects of matter. It deals with the properties of aggregates of vast numbers of
microscopic particles (molecules, atoms, and ions). The macroscopic viewpoint, in fact, treats matter as a continuous
material medium rather than as the collection of discrete microscopic particles we know are actually present. Although
this book is an exposition of classical thermodynamics, at times it will point out connections between macroscopic
properties and molecular structure and behavior.

A thermodynamic system is any three-dimensional region of physical space on which we wish to focus our atten-
tion. Usually we consider only one system at a time and call it simply “the system.” The rest of the physical universe
constitutes the surroundings of the system.

The boundary is the closed three-dimensional surface that encloses the system and separates it from the surround-
ings. The boundary may (and usually does) coincide with real physical surfaces: the interface between two phases, the
inner or outer surface of the wall of a flask or other vessel, and so on. Alternatively, part or all of the boundary may
be an imagined intangible surface in space, unrelated to any physical structure. The size and shape of the system, as
defined by its boundary, may change in time. In short, our choice of the three-dimensional region that constitutes the
system is arbitrary—but it is essential that we know exactly what this choice is.

We usually think of the system as a part of the physical universe that we are able to influence only indirectly
through its interaction with the surroundings, and the surroundings as the part of the universe that we are able to
directly manipulate with various physical devices under our control. That is, we (the experimenters) are part of the
surroundings, not the system.

For some purposes we may wish to treat the system as being divided into subsystems, or to treat the combination
of two or more systems as a supersystem.

If over the course of time matter is transferred in either direction across the boundary, the system is open; other-
wise it is closed. If the system is open, matter may pass through a stationary boundary, or the boundary may move
through matter that is fixed in space.

If the boundary allows heat transfer between the system and surroundings, the boundary is diathermal. An adi-
abatic>!'! boundary, on the other hand, is a boundary that does not allow heat transfer. We can, in principle, ensure
that the boundary is adiabatic by surrounding the system with an adiabatic wall—one with perfect thermal insulation
and a perfect radiation shield.

2.1.1. Greek: impassable
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22 SYSTEMS AND THEIR PROPERTIES

Symbol Physical quantity SI unit
E energy J

m mass kg

n amount of substance mol

)4 pressure Pa

T thermodynamic temperature K

Vv volume m?

U internal energy J

p density %

Table 2.1.1. Symbols and SI units for some common properties

An isolated system is one that exchanges no matter, heat, or work with the surroundings, so that the system's mass
and total energy remain constant over time.2 -2 A closed system with an adiabatic boundary, constrained to do no work
and to have no work done on it, is an isolated system.

The constraints required to prevent work usually involve forces between the system and surroundings.
In that sense a system may interact with the surroundings even though it is isolated. For instance, a
gas contained within rigid, thermally-insulated walls is an isolated system; the gas exerts a force on
each wall, and the wall exerts an equal and opposite force on the gas. An isolated system may also
experience a constant external field, such as a gravitational field.

The term body usually implies a system, or part of a system, whose mass and chemical composition are constant
over time.

2.1.1 Extensive and intensive properties

A quantitative property of a system describes some macroscopic feature that, although it may vary with time, has a
particular value at any given instant of time.

Table 2.1.1 lists the symbols of some of the properties discussed in this chapter and the SI units in which they may
be expressed. A much more complete table is found in Appendix C.

Most of the properties studied by thermodynamics may be classified as either extensive or intensive. We can
distinguish these two types of properties by the following considerations.

If we imagine the system to be divided by an imaginary surface into two parts, any property of the system that is
the sum of the property for the two parts is an extensive property. That is, an additive property is extensive. Examples
are mass, volume, amount, energy, and the surface area of a solid.

Sometimes a more restricted definition of an extensive property is used: The property must be not only
additive, but also proportional to the mass or the amount when intensive properties remain constant.
According to this definition, mass, volume, amount, and energy are extensive, but surface area is not.

If we imagine a homogeneous region of space to be divided into two or more parts of arbitrary size, any property
that has the same value in each part and the whole is an intensive property; for example density, concentration,
pressure (in a fluid), and temperature. The value of an intensive property is the same everywhere in a homogeneous
region, but may vary from point to point in a heterogeneous region—it is a local property.

2.1.2. The energy in this definition of an isolated system is measured in a local reference frame, as will be explained in Sec. 2.6.2.
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2.2 PHASES AND PHYSICAL STATES OF MATTER 23

Since classical thermodynamics treats matter as a continuous medium, whereas matter actually contains discrete
microscopic particles, the value of an intensive property at a point is a statistical average of the behavior of many
particles. For instance, the density of a gas at one point in space is the average mass of a small volume element at that
point, large enough to contain many molecules, divided by the volume of that element.

Some properties are defined as the ratio of two extensive quantities. If both extensive quantities refer to a homoge-
neous region of the system or to a small volume element, the ratio is an intensive property. For example concentration,
defined as the ratio amount/volume, is intensive. A mathematical derivative of one such extensive quantity with
respect to another is also intensive.

A special case is an extensive quantity divided by the mass, giving an intensive specific quantity; for example

(Specific volume) :X:l 2.1.1)
m.p
If the symbol for the extensive quantity is a capital letter, it is customary to use the corresponding lower-case letter as
the symbol for the specific quantity. Thus the symbol for specific volume is v.

Another special case encountered frequently in this book is an extensive property for a pure, homogeneous sub-
stance divided by the amount n. The resulting intensive property is called, in general, a molar quantity or molar
property. To symbolize a molar quantity, this book follows the recommendation of the IUPAC: The symbol of the
extensive quantity is followed by subscript m, and optionally the identity of the substance is indicated either by a
subscript or a formula in parentheses. Examples are

(Molar volume) = %: |7 (2.1.2)
(Molar volume of substance i) = nX =Vm.i (2.1.3)
(Molar volume of H,O) = V,,;, (H,O) 2.1.4)

In the past, especially in the United States, molar quantities were commonly denoted with an overbar (e.g., V).

2.2 Phases and Physical States of Matter

A phase is a region of the system in which each intensive property (such as temperature and pressure) has at each
instant either the same value throughout (a uniform or homogeneous phase), or else a value that varies continuously
from one point to another. Whenever this book mentions a phase, it is a uniform phase unless otherwise stated. Two
different phases meet at an interface surface, where intensive properties have a discontinuity or change value over a
small distance.

Some intensive properties (e.g., refractive index and polarizability) can have directional characteristics. A uniform
phase may be either isotropic, exhibiting the same values of these properties in all directions, or anisotropic, as in the
case of some solids and liquid crystals. A vacuum is a uniform phase of zero density.

Suppose we have to deal with a nonuniform region in which intensive properties vary continuously in space
along one or more directions—for example, a tall column of gas in a gravitational field whose density decreases with
increasing altitude. There are two ways we may treat such a nonuniform, continuous region: either as a single nonuni-
form phase, or else as an infinite number of uniform phases, each of infinitesimal size in one or more dimensions.

2.2.1 Physical states of matter

We are used to labeling phases by physical state, or state of aggregation. It is common to say that a phase is a solid if
itis relatively rigid, a liquid if it is easily deformed and relatively incompressible, and a gas if it is easily deformed and
easily compressed. Since these descriptions of responses to external forces differ only in degree, they are inadequate
to classify intermediate cases.
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Figure 2.2.1. Experimental procedure for producing shear stress in a phase (shaded). Blocks at the upper and lower surfaces of the phase
are pushed in opposite directions, dragging the adjacent portions of the phase with them.

A more rigorous approach is to make a primary distinction between a solid and a fluid, based on the phase's
response to an applied shear stress, and then use additional criteria to classify a fluid as a liquid, gas, or supercritical
fluid. Shear stress is a tangential force per unit area that is exerted on matter on one side of an interior plane by the
matter on the other side. We can produce shear stress in a phase by applying tangential forces to parallel surfaces of
the phase as shown in Fig. 2.2.1.

¢ A solid responds to shear stress by undergoing momentary relative motion of its parts, resulting in deforma-
tion—a change of shape. If the applied shear stress is constant and small (not large enough to cause creep or
fracture), the solid quickly reaches a certain degree of deformation that depends on the magnitude of the stress
and maintains this deformation without further change as long as the shear stress continues to be applied. On
the microscopic level, deformation requires relative movement of adjacent layers of particles (atoms, mole-
cules, or ions). The shape of an unstressed solid is determined by the attractive and repulsive forces between
the particles; these forces make it difficult for adjacent layers to slide past one another, so that the solid resists
deformation.

¢ A fluid responds to shear stress differently, by undergoing continuous relative motion (flow) of its parts. The
flow continues as long as there is any shear stress, no matter how small, and stops only when the shear stress
is removed.

Thus, a constant applied shear stress causes a fixed deformation in a solid and continuous flow in a fluid. We say that
a phase under constant shear stress is a solid if, after the initial deformation, we are unable to detect a further change
in shape during the period we observe the phase.

Usually this criterion allows us to unambiguously classify a phase as either a solid or a fluid. Over a sufficiently
long time period, however, detectable flow is likely to occur in any material under shear stress of any magnitude.
Thus, the distinction between solid and fluid actually depends on the time scale of observation. This fact is obvious
when we observe the behavior of certain materials (such as Silly Putty, or a paste of water and cornstarch) that exhibit
solid-like behavior over a short time period and fluid-like behavior over a longer period. Such materials, that resist
deformation by a suddenly-applied shear stress but undergo flow over a longer time period, are called viscoelastic
solids.

2.2.2 Phase coexistence and phase transitions

This section considers some general characteristics of systems containing more than one phase.

Suppose we bring two uniform phases containing the same constituents into physical contact at an interface sur-
face. If we find that the phases have no tendency to change over time while both have the same temperature and the
same pressure, but differ in other intensive properties such as density and composition, we say that they coexist in
equilibrium with one another. The conditions for such phase coexistence are the subject of later sections in this book,
but they tend to be quite restricted. For instance, the liquid and gas phases of pure H,O at a pressure of 1bar can coexist
at only one temperature, 99.61 °C.

A phase transition of a pure substance is a change over time in which there is a continuous transfer of the
substance from one phase to another. Eventually one phase can completely disappear, and the substance has been
completely transferred to the other phase. If both phases coexist in equilibrium with one another, and the temper-
ature and pressure of both phases remain equal and constant during the phase transition, the change is an equilibrium
phase transition. For example, H,O at 99.61 °C and 1 bar can undergo an equilibrium phase transition from liquid
to gas (vaporization) or from gas to liquid (condensation). During an equilibrium phase transition, there is a transfer
of energy between the system and its surroundings by means of heat or work.
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Figure 2.2.2. Pressure—temperature phase diagram of a pure substance (schematic). Point cp is the critical point, and point tp is the triple
point. Each area is labeled with the physical state that is stable under the pressure-temperature conditions that fall within the area. A
solid curve (coexistence curve) separating two areas is the locus of pressure-temperature conditions that allow the phases of these areas
to coexist at equilibrium. Path ABCD illustrates continuity of states.

2.2.3 Fluids

It is usual to classify a fluid as either a liquid or a gas. The distinction is important for a pure substance because the
choice determines the treatment of the phase's standard state (see Sec. 7.7). To complicate matters, a fluid at high
pressure may be a supercritical fluid. Sometimes a plasma (a highly ionized, electrically conducting medium) is
considered a separate kind of fluid state; it is the state found in the earth's ionosphere and in stars.

In general, and provided the pressure is not high enough for supercritical phenomena to exist—usually true of
pressures below 25 bar except in the case of He or H—we can make the distinction between liquid and gas simply on
the basis of density. A liquid has a relatively high density that is insensitive to changes in temperature and pressure.
A gas, on the other hand, has a relatively low density that is sensitive to temperature and pressure and that approaches
zero as pressure is reduced at constant temperature.

This simple distinction between liquids and gases fails at high pressures, where liquid and gas phases may have
similar densities at the same temperature. Figure 2.2.2 shows how we can classify stable fluid states of a pure substance
in relation to a liquid—gas coexistence curve and a critical point. If raising the temperature of a fluid at constant
pressure causes a phase transition to a second fluid phase, the original fluid was a liquid and the transition occurs at
the liquid—gas coexistence curve. This curve ends at a critical point, at which all intensive properties of the coexisting
liquid and gas phases become identical. The fluid state of a pure substance at a temperature greater than the critical
temperature and a pressure greater than the critical pressure is called a supercritical fluid.

The term vapor is sometimes used for a gas that can be condensed to a liquid by increasing the pressure at constant
temperature. By this definition, the vapor state of a substance exists only at temperatures below the critical tempera-
ture.

The designation of a supercritical fluid state of a substance is used more for convenience than because of any
unique properties compared to a liquid or gas. If we vary the temperature or pressure in such a way that the substance
changes from what we call a liquid to what we call a supercritical fluid, we observe only a continuous density change
of a single phase, and no phase transition with two coexisting phases. The same is true for a change from a supercritical
fluid to a gas. Thus, by making the changes described by the path ABCD shown in Fig. 2.2.2, we can transform a pure
substance from a liquid at a certain pressure to a gas at the same pressure without ever observing an interface between
two coexisting phases! This curious phenomenon is called continuity of states.

Chapter 6 will take up the discussion of further aspects of the physical states of pure substances.

If we are dealing with a fluid mixture (instead of a pure substance) at a high pressure, it may be difficult to classify
the phase as either liquid or gas. The complexity of classification at high pressure is illustrated by the barotropic effect,
observed in some mixtures, in which a small change of temperature or pressure causes what was initially the more
dense of two coexisting fluid phases to become the less dense phase. In a gravitational field, the two phases switch
positions.
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2.2.4 The equation of state of a fluid

Suppose we prepare a uniform fluid phase containing a known amount »; of each constituent substance i, and adjust
the temperature 7" and pressure p to definite known values. We expect this phase to have a definite, fixed volume V.
If we change any one of the properties 7', p, or n;, there is usually a change in V. The value of V is dependent on the
other properties and cannot be varied independently of them. Thus, for a given substance or mixture of substances in a
uniform fluid phase, V is a unique function of 7, p, and {n;}, where {n;} stands for the set of amounts of all substances
in the phase. We may be able to express this relation in an explicit equation: V = f(T, p, {n;}). This equation (or a
rearranged form) that gives a relation among V, T, p, and {n;} is the equation of state of the fluid.

We may solve the equation of state, implicitly or explicitly, for any one of the quantities V, T, p, n; in terms of the
other quantities. Thus, of the 3 + s quantities (where s is the number of substances), only 2 + s are independent.

The ideal gas equation, p = &‘;T (Eq. 1.2.5 on page 18), is an equation of state. It is found experimentally that the
behavior of any gas in the limit of low pressure, as temperature is held constant, approaches this equation of state. This
limiting behavior is also predicted by kinetic-molecular theory.

If the fluid has only one constituent (i.e., is a pure substance rather than a mixture), then at a fixed T and p the
volume is proportional to the amount. In this case, the equation of state may be expressed as a relation among 7', p,
and the molar volume V;,, = % The equation of state for a pure ideal gas may be written p = %.

The Redlich—Kwong equation is a two-parameter equation of state frequently used to describe, to good accuracy,
the behavior of a pure gas at a pressure where the ideal gas equation fails:

__RT a
PV "V (Ve b) - T

(2.2.1)

In this equation, a and b are constants that are independent of temperature and depend on the substance.
The next section describes features of virial equations, an important class of equations of state for real (nonideal)
gases.

2.2.5 Virial equations of state for pure gases

In later chapters of this book there will be occasion to apply thermodynamic derivations to virial equations of state of
a pure gas or gas mixture. These formulas accurately describe the gas at low and moderate pressures using empirically
determined, temperature-dependent parameters. The equations may be derived from statistical mechanics, so they
have a theoretical as well as empirical foundation.

There are two forms of virial equations for a pure gas: one a series in powers of VLm:

p-Vm=R-T-(1+V£1n+V£I%+---) (2.2.2)
and the other a series in powers of p:

p-Va=R-T-(1+B,p+Cpp>+---) (223)
The parameters B, C, ... are called the second, third, . ..virial coefficients, and the parameters B, Cp, ... are a set

of pressure virial coefficients. Their values depend on the substance and are functions of temperature. (The first
virial coefficient in both power series is 1, because p V;,, must approach RT as VLH or p approach zero at constant 7.)
Coeflicients beyond the third virial coefficient are small and rarely evaluated.

The values of the virial coefficients for a gas at a given temperature can be determined from the dependence of p
on Vy, at this temperature. The value of the second virial coefficient B depends on pairwise interactions between the
atoms or molecules of the gas, and in some cases can be calculated to good accuracy from statistical mechanics theory
and a realistic intermolecular potential function.

To find the relation between the virial coefficients of Eq. 2.2.2 and the parameters B, C,,... in Eq. 2.2.3, we solve
Eq. 2.2.2 for p in terms of V,,

1 B
sz'T'(V_m+V_,g+"') (2.2.4)
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Figure 2.2.3.

a) Compression factor of CO; as a function of pressure at three temperatures. At 700K, the Boyle temperature, the initial slope is
zero.

b) Second virial coefficient of CO; as a function of temperature.

and substitute in the right side of Eq. 2.2.3:

2
1+B,R-T- (L+£+---)+CP-(R-T)2- (L+£+) +.-

p-Vu=R-T-
" Vo V2 Vo V2

(2.2.5)

Then we equate coefficients of equal powers of VL in Egs. 2.2.2 and 2.2.5 (since both equations must yield the same
value of p-V;, for any value of VL):

B=R-T-B, (2.2.6)
C=B,R-T-B+C,-(R-T)*=(R-T)* (B} +C,) (2227

In the last equation, we have substituted B from Eq. 2.2.6.

At pressures up to at least one bar, the terms beyond B, - p in the pressure power series of Eq. 2.2.3 are negligible;
then p - V,,, may be approximated by R-T - (1 + B, - p), giving, with the help of Eq. 2.2.6, the simple approximate
equation of state>>!

_R-T (2.2.8)
Ch 4 vB (pure gas, p < 1bar)

The compression factor (or compressibility factor) Z of a gas is defined by

df p-V__p-Vm (2.2.9)
“ n-R-T  RT (gas)

When a gas is at a particular temperature and pressure satisfies the ideal gas equation, the value of Z is 1. The virial
equations rewritten using Z are

B C
Z_1+V_m+v_[%+... (2.2.10)
Z=1+B, p+Cp-p*+--- (2.2.11)

These equations show that the second virial coefficient B is the initial slope of the curve of a plot of Z versus VL at
constant 7', and B, is the initial slope of Z versus p at constant T'.
The way in which Z varies with p at different temperatures is shown for the case of carbon dioxide in Fig. 2.2.3(a).

2.2.1. Guggenheim (Ref [76]) calls a gas with this equation of state a slightly imperfect gas.

27



28 SYSTEMS AND THEIR PROPERTIES

A temperature at which the initial slope is zero is called the Boyle temperature, which for CO, is 700K. Both B
and B, must be zero at the Boyle temperature. Atlower temperatures B and B, are negative, and at higher temperatures
they are positive—see Fig. 2.2.3(b). This kind of temperature dependence is typical for other gases. Experimentally,
and also according to statistical mechanical theory, B and B, for a gas can be zero only at a single Boyle temperature.

The fact that at any temperature other than the Boyle temperature B is nonzero is significant since it
means that in the limit as p approaches zero at constant 7" and the gas approaches ideal-gas behavior, the
difference between the actual molar volume Vi, and the ideal-gas molar volume R—',T does not approach
zero. Instead, Vm—¥ approaches the nonzero value B (see Eq. 2.2.8). However, the ratio of the
actual and ideal molar volumes, Vi

(%)

Virial equations of gas mixtures will be discussed in Sec. 9.3.4.

approaches unity in this limit.

2.2.6 Solids

A solid phase responds to a small applied stress by undergoing a small elastic deformation. When the stress is removed,
the solid returns to its initial shape and the properties return to those of the unstressed solid. Under these conditions
of small stress, the solid has an equation of state just as a fluid does, in which p is the pressure of a fluid surrounding
the solid (the hydrostatic pressure) as explained in Sec. 2.3.5. The stress is an additional independent variable. For
example, the length of a metal spring that is elastically deformed is a unique function of the temperature, the pres-
sure of the surrounding air, and the stretching force.

If, however, the stress applied to the solid exceeds its elastic limit, the response is plastic deformation. This
deformation persists when the stress is removed, and the unstressed solid no longer has its original properties. Plastic
deformation is a kind of hysteresis, and is caused by such microscopic behavior as the slipping of crystal planes past
one another in a crystal subjected to shear stress, and conformational rearrangements about single bonds in a stretched
macromolecular fiber. Properties of a solid under plastic deformation depend on its past history and are not unique
functions of a set of independent variables; an equation of state does not exist.

2.3 Some Basic Properties and Their Measurement

This section discusses aspects of the macroscopic properties mass, amount of substance, volume, density, pressure,
and temperature, with examples of how these properties can be measured.

2.3.1 Mass

The SI unit of mass is the kilogram. The practical measurement of the mass of a body is with a balance utilizing the
downward force exerted on the body by the earth's gravitational field. The classic balance has a beam and knife-edge
arrangement to compare the gravitational force on the body with the gravitational force on a weight of known mass.
A modern balance (strictly speaking a scale) incorporates a strain gauge or comparable device to directly measure
the gravitational force on the unknown mass; this type must be calibrated with known masses. The most accurate
measurements take into account the effect of the buoyancy of the body and the calibration masses in air.

The accuracy of the calibration masses should be traceable to a national standard kilogram (which in the United
States is maintained at NIST, the National Institute of Standards and Technology, in Gaithersburg, Maryland) and
ultimately to the international prototype (page 16).
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The 2019 revision of the SI replaces the international prototype with a new definition of the kilogram
(Appendix A). The present method of choice for applying this definition to the precise measurement of
a mass, with an uncertainty of several parts in 10 8 , uses an elaborate apparatus called a watt balance
or Kibble balance.>*! By this method, the mass of the international prototype is found to be 1kg to
within 1 x 10-8kg.2-32

The NIST-4 Kibble balance?3- at NIST has a balance wheel, from one side of which is suspended a coil
of wire placed in a magnetic field, and from the other side a tare weight. In use, the balance position
of the wheel is established. The test weight of unknown mass m is added to the coil side and a current
passed through the coil, generating an upward force on this side due to the magnetic field. The current /
is adjusted to reestablish the balance position. The balance condition is that the downward gravitational
force on the test weight be equal in magnitude to the upward electromagnetic force: m-g=B-1-1, where
g is the acceleration of free fall, B is the magnetic flux density, [ is the wire length of the coil, and 7 is
the current carried by the wire.

B and I can't be measured precisely, so in a second calibration step the test weight is removed, the
current is turned off, and the coil is moved vertically through the magnetic field at a constant precisely-
measured speed v. This motion induces an electric potential difference between the two ends of the coil
wire given by A¢p=B-1[-v.

By eliminating the product B[ from between the two preceding equations, the mass of the test weight
can be calculated from m = # For this calculation, / and A ¢ are measured to a very high degree of
precision during the balance operations by instrumental methods (Josephson and quantum Hall effects)
requiring the defined value of the Planck constant /; the value of g at the location of the apparatus is

measured with a gravimeter.

2.3.2 Amount of substance

The SI unit of amount of substance (called simply the amount in this book) is the mole (Sec. 1.1.2). Chemists are
familiar with the fact that, although the mole is a counting unit, an amount in moles is measured not by counting but
by weighing. The SI revision of 2019 makes a negligible change to calculations involving the mole (page 16), so the
previous definition of the mole remains valid for most purposes: twelve grams of carbon-12, the most abundant isotope
of carbon, contains one mole of atoms.

The relative atomic mass or atomic weight A, of an atom is a dimensionless quantity equal to the atomic mass
relative to A, = 12 for carbon-12. The relative molecular mass or molecular weight M, of a molecular substance,
also dimensionless, is the molecular mass relative to carbon-12. Thus the amount n of a substance of mass m can be

calculated from

P
" A,g-mol-! M, g-mol-! 23.D)

A related quantity is the molar mass M of a substance, defined as the mass divided by the amount:

defm
mM== (2.3.2)

n
(The symbol M for molar mass is an exception to the rule given on page 23 that a subscript m is used to indicate a
molar quantity.) The numerical value of the molar mass expressed in units of g-mol~! is equal to the relative atomic

or molecular mass:
M M

W= r W=Mr (2.3.3)

2.3.1. Ref [27].
2.3.2. Ref [166], Appendix 2
2.3.3. Ref [78].
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Physical quantity Method Typical value Approximate uncertainty
Mass analytical balance 100g 0.1mg
microbalance 20mg 0.1pg
Volume pipet, Class A 10mL 0.02mL
volumetric flask, Class A 1L 0.3mL
Density pycnometer, 25-mL capacity 1% %
magnetic float densimeter 1 % 0.1 %
vibrating-tube densimeter 1= 0.01=%
Pressure mercury manometer or barometer 760 Torr 0.001 Torr
diaphragm gauge 100 Torr 1 Torr
Temperature constant-volume gas thermometer 10K 0.001K
mercury-in-glass thermometer 300K 0.01K
platinum resistance thermometer 300K 0.0001 K
monochromatic optical pyrometer 1300K 0.03K

Table 2.3.1. Representative measurement methods

2.3.3 Volume

Liquid volumes are commonly measured with precision volumetric glassware such as burets, pipets, and volumetric
flasks. The National Institute of Standards and Technology in the United States has established specifications for
“Class A” glassware; two examples are listed in Table 2.3.1. The volume of a vessel at one temperature may be accu-
rately determined from the mass of a liquid of known density, such as water, that fills the vessel at this temperature.

The SI unit of volume is the cubic meter, but chemists commonly express volumes in units of liters and milliliters.
The liter is defined as one cubic decimeter (Table 1.1.3). One cubic meter is the same as 107 liters and 10° milliliters.
The milliliter is identical to the cubic centimeter.

Before 1964, the liter had a different definition: it was the volume of 1 kilogram of water at 3.98 °C,
the temperature of maximum density. This definition made one liter equal to 1.000028 dm>. Thus, a
numerical value of volume (or density) reported before 1964 and based on the liter as then defined may
need a small correction in order to be consistent with the present definition of the liter.

2.3.4 Density

Density, an intensive property, is defined as the ratio of the two extensive properties mass and volume:

pdif% (2.3.4)
The molar volume V;,, of a homogeneous pure substance is inversely proportional to its density. From Egs. 2.1.2,2.3.2,
and 2.3.4, we obtain the relation

V=

M
> (2.3.5)
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Figure 2.3.1. Three methods for measuring liquid density by comparison with samples of known density. The liquid is indicated by gray
shading.

a) Glass pycnometer vessel with capillary stopper. The filled pycnometer is brought to the desired temperature in a thermostat bath,
dried, and weighed.

b) Magnetic float densimeter.>-34 Buoy B, containing a magnet, is pulled down and kept in position with solenoid S by means of
position detector D and servo control system C. The solenoid current required depends on the liquid density.

c) Vibrating-tube densimeter. The ends of a liquid-filled metal U-tube are clamped to a stationary block. An oscillating magnetic
field at the tip of the tube is used to make it vibrate in the direction perpendicular to the page. The measured resonance frequency
is a function of the mass of the liquid in the tube.

2.3.4. Ref. [74]

Various methods are available for determining the density of a phase, many of them based on the measurement of
the mass of a fixed volume or on a buoyancy technique. Three examples are shown in Fig. 2.3.1. Similar apparatus
may be used for gases. The density of a solid may be determined from the volume of a nonreacting liquid (e.g.,
mercury) displaced by a known mass of the solid, or from the loss of weight due to buoyancy when the solid is
suspended by a thread in a liquid of known density.

2.3.5 Pressure

Pressure is a force per unit area. Specifically, it is the normal component of stress exerted by an isotropic fluid on
a surface element.?3- The surface can be an interface surface between the fluid and another phase, or an imaginary
dividing plane within the fluid.

Pressure is usually a positive quantity. Because cohesive forces exist in a liquid, it may be possible to place the
liquid under tension and create a negative pressure. For instance, the pressure is negative at the top of a column of
liquid mercury suspended below the closed end of a capillary tube that has no vapor bubble. Negative pressure in a
liquid is an unstable condition that can result in spontaneous vaporization.

The ST unit of pressure is the pascal. Its symbol is Pa. One pascal is a force of one newton per square meter (Table
1.1.2).

Chemists are accustomed to using the non-SI units of millimeters of mercury, torr, and atmosphere. One mil-
limeter of mercury (symbol mmHg) is the pressure exerted by a column exactly 1 mm high of a fluid of density equal to
exactly 13.5951 g-cm™3 (the density of mercury at 0 °C) in a place where the acceleration of free fall, g, has its standard
value g, (see Appendix B). One atmosphere is defined as exactly 1.01325 x 105 Pa (Table 1.1.3). The torr is defined
by letting one atmosphere equal exactly 760 Torr. One atmosphere is approximately 760 mmHg. In other words, the
millimeter of mercury and the torr are practically identical; they differ from one another by less than 2 x 10~ Torr.

2.3.5. Aliquid crystal and a polar liquid in a electric field are examples of fluids that are not isotropic, because they have different macroscopic
properties in different directions.
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Another non-SI pressure unit is the bar, equal to exactly 10°Pa. A pressure of one bar is approximately one
percent smaller than one atmosphere. This book often refers to a standard pressure, p°. In the past, the value of p°
was usually taken to be 1atm, but since 1982 the IUPAC has recommended the value p° =1bar.

A variety of manometers and other devices is available to measure the pressure of a fluid, each type useful in a
particular pressure range. Some devices measure the pressure of the fluid directly. Others measure the differential
pressure between the fluid and the atmosphere; the fluid pressure is obtained by combining this measurement with the
atmospheric pressure measured with a barometer.

Within a solid, pressure cannot be defined simply as a force per unit area. Macroscopic forces at a point within a
solid are described by the nine components of a stress tensor. The statement that a solid has or is at a certain pressure
means that this is the hydrostatic pressure exerted on the solid's exterior surface. Thus, a solid immersed in a uniform
isotropic fluid of pressure p is at pressure p; if the fluid pressure is constant over time, the solid is at constant pressure.

2.3.6 Temperature

Temperature and thermometry are of fundamental importance in thermodynamics. Unlike the other physical quanti-
ties discussed in this chapter, temperature does not have a single unique definition. The chosen definition, whatever
it may be, requires a temperature scale described by an operational method of measuring temperature values. For the
scale to be useful, the values should increase monotonically with the increase of what we experience physiologically as
the degree of “hotness.” We can define a satisfactory scale with any measuring method that satisfies this requirement.
The values on a particular temperature scale correspond to a particular physical quantity and a particular temperature
unit.

For example, suppose you construct a simple liquid-in-glass thermometer with equally spaced marks along the
stem and number the marks consecutively. To define a temperature scale and a temperature unit, you could place
the thermometer in thermal contact with a body whose temperature is to be measured, wait until the indicating liquid
reaches a stable position, and read the meniscus position by linear interpolation between two marks. Of course, placing
the thermometer and body in thermal contact may affect the body's temperature. The measured temperature is that of
the body after thermal equilibrium is achieved.

Thermometry is based on the principle that the temperatures of different bodies may be compared with a ther-
mometer. For example, if you find by separate measurements with your thermometer that two bodies give the same
reading, you know that within experimental error both have the same temperature. The significance of two bodies
having the same temperature (on any scale) is that if they are placed in thermal contact with one another, they will
prove to be in thermal equilibrium with one another as evidenced by the absence of any changes in their properties.
This principle is sometimes called the zeroth law of thermodynamics, and was first stated as follows by J. C. Maxwell
(1872): “Bodies whose temperatures are equal to that of the same body have themselves equal temperatures.”

2.3.6.1 Equilibrium systems for fixed temperatures

The ice point is the temperature at which ice and air-saturated water coexist in equilibrium at a pressure of one atmos-
phere. The steam point is the temperature at which liquid and gaseous H,O coexist in equilibrium at one atmosphere.
Neither of these temperatures has sufficient reproducibility for high-precision work. The temperature of the ice-water-
air system used to define the ice point is affected by air bubbles in the ice and by varying concentrations of air in the
water around each piece of ice. The steam point is uncertain because the temperature of coexisting liquid and gas is a
sensitive function of the experimental pressure.

The melting point of the solid phase of a pure substance is a more reproducible temperature. When the solid and
liquid phases of a pure substance coexist at a controlled, constant pressure, the temperature has a definite fixed value.

Triple points of pure substances provide the most reproducible temperatures. Both temperature and pressure have
definite fixed values in a system containing coexisting solid, liquid, and gas phases of a pure substance.

Figure 2.3.2 illustrates a triple-point cell for water whose temperature is capable of a reproducibility within 10™*K.
When ice, liquid water, and water vapor are in equilibrium in this cell, the cell is at the triple point of water.
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Figure 2.3.2. Cross-section of a water triple-point cell. The cell has cylindrical symmetry about a vertical axis. Pure water of the same
isotopic composition as H,O in ocean water is distilled into the cell. The air is pumped out and the cell is sealed. A freezing mixture is
placed in the inner well to cause a thin layer of ice to form next to the inner wall. The freezing mixture is removed, and some of the ice is
allowed to melt to a film of very pure water between the ice and inner wall. The thermometer bulb is placed in the inner well as shown,

together with ice water (not shown) for good thermal contact.

2.3.6.2 Temperature scales

Six different temperature scales are described below: the ideal-gas temperature scale, the thermodynamic temperature
scale, the obsolete centigrade scale, the Celsius scale, the International Temperature Scale of 1990, and the Provisional
Low Temperature Scale of 2000.

The ideal-gas temperature scale is defined by gas thermometry measurements, as described on page 35. The
thermodynamic temperature scale is defined by the behavior of a theoretical Carnot engine, as explained in Sec.
4.3.4. These temperature scales correspond to the physical quantities called ideal-gas temperature and thermodynamic
temperature, respectively. Although the two scales have different definitions, the two temperatures turn out (Sec.
4.3.4) to be proportional to one another. Their values become identical when the same unit of temperature is used for
both.

Prior to the 2019 SI revision, the kelvin was defined by specifying that a system containing the solid, liquid, and
gaseous phases of H,O coexisting at equilibrium with one another (the triple point of water) has a thermodynamic
temperature of exactly 273.16 kelvins. (This value was chosen to make the steam point approximately one hundred
kelvins greater than the ice point.) The ideal-gas temperature of this system was set equal to the same value, 273.16
kelvins, making temperatures measured on the two scales identical.

The 2019 SI revision treats the triple point temperature of water as a value to be determined experimentally by
primary thermometry (page 34). The result is 273.16 kelvins to within 1 x 1077 K.236 Thus there is no practical
difference between the old and new definitions of the kelvin.

Formally, the symbol T refers to thermodynamic temperature. Strictly speaking, a different symbol should be used
for ideal-gas temperature. Since the two kinds of temperatures have identical values, this book will use the symbol T
for both and refer to both physical quantities simply as “temperature” except when it is necessary to make a distinction.

The obsolete centigrade scale was defined to give a value of exactly 0 degrees centigrade at the ice point and a
value of exactly 100 degrees centigrade at the steam point, and to be a linear function of an ideal-gas temperature scale.

The centigrade scale has been replaced by the Celsius scale, the thermodynamic (or ideal-gas) temperature scale
shifted by exactly 273.15 kelvins. The temperature unit is the degree Celsius (°C), identical in size to the kelvin. Thus,
Celsius temperature ¢ is related to thermodynamic temperature T by

t T
== 27315 (2.3.6)

o

2.3.6. Ref. [166], Appendix 2.
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Too/ K Equilibrium system
13.8033 H, triple point
24.5561 Ne triple point
54.3584 O, triple point
83.8058 Ar triple point
234.3156 Hg triple point
273.16 H,O triple point
302.9146 Ga melting point at 1 atm
429.7485 In melting point at 1 atm
505.078  Sn melting point at 1 atm
692.677  Zn melting point at 1 atm
933.473 Al melting point at 1 atm
1234.93 Ag melting point at 1 atm
1337.33 Au melting point at 1 atm
1357.77 Cu melting point at 1 atm

Table 2.3.2. Fixed temperatures of the International Temperature Scale of 1990

On the Celsius scale, the triple point of water is exactly 0.01 °C. The ice point is 0 °C to within 0.0001 °C, and the
steam point is 99.97 °C.

The International Temperature Scale of 1990 (abbreviated ITS-90) defines the physical quantity called international
temperature, with symbol Toy.237 Each value of Ty is intended to be very close to the corresponding thermody-
namic temperature 7.

The ITS-90 scale is defined over a very wide temperature range, from 0.65 K up to at least 1358 K. There is a
specified procedure for each measurement of Ty, depending on the range in which T falls: vapor-pressure thermom-
etry (0.65 — 5.0K), gas thermometry (3.0 — 24.5561 K), platinum-resistance thermometry (13.8033 — 1234.93K), or
optical pyrometry (above 1234.93 K). For vapor-pressure thermometry, the ITS-90 scale provides formulas for Ty in
terms of the vapor pressure of the helium isotopes *He and “He. For the other methods, it assigns values of fourteen
fixed calibration temperatures achieved with the reproducible equilibrium systems listed in Table 2.3.2, and provides
interpolating functions for intermediate temperatures.

The Provisional Low Temperature Scale of 2000 (PLST-2000) is for temperatures between 0.0009K and 1 K. This
scale is based on the melting temperature of solid *He as a function of pressure. For *He at these temperatures, the
required pressures are in the range 30 — 40 bar.?3-8

The temperatures defined by the ITS-90 and PLST-2000 temperature scales are exact with respect to the respective
scale—their values remain unchanged during the life of the scale.?39

2.3.6.3 Primary thermometry

Primary thermometry is the measurement of temperature based on fundamental physical principles. Until about 1960,
primary measurements of 7" involved gas thermometry. Other more accurate methods are now being used; they require
elaborate equipment and are not convenient for routine measurements of 7.

The methods of primary thermometry require the value of the Boltzmann constant k or the gas constant R =Nj -k,
where N, is the Avogadro constant. k and N, are defining constants of the 2019 revision of the SI. Using these fixed
values (Appendix B) in the calculations results in values of T consistent with the definition of the kelvin according to
the 2019 revision.

2.3.7. Refs. [122] and [147].
2.3.8. Ref. [158].
2.3.9. Ref. [56].
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4

] leveling bulb
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level indicator | L L

gas bulb
«— flexible tube

Figure 2.3.3. Simple version of a constant-volume gas thermometer. The leveling bulb is raised or lowered to place the left-hand meniscus
at the level indicator. The gas pressure is then determined from A & and the density of the mercury: p = paym+p-g-Ah.

Gas thermometry is based on the ideal gas equation T = %. It is most commonly carried out with a constant-

volume gas thermometer. This device consists of a bulb or vessel containing a thermometric gas and a means of
measuring the pressure of this gas. The thermometric gas is usually helium, because it has minimal deviations from
ideal-gas behavior.

The simple constant-volume gas thermometer depicted in Fig. 2.3.3 uses a mercury manometer to measure the
pressure. More sophisticated versions have a diaphragm pressure transducer between the gas bulb and the pressure
measurement system.

One procedure for determining the value of an unknown temperature involves a pair of pressure measurements.
The gas is brought successively into thermal equilibrium with two different systems: a reference system of known tem-
perature T (such as one of the systems listed in Table 2.3.2), and the system whose temperature 75 is to be measured.
The pressures p; and p, are measured at these temperatures. In the two equilibrations the amount of gas is the same

and the gas volume is the same except for a small change due to effects of T and p on the gas bulb dimensions.
pi-Vi _ p2-Va

If the gas exactly obeyed the ideal gas equation in both measurements, we would have n-R = =g or
=T (1'; ? “2 ) Since, however, the gas approaches ideal behavior only in the limit of low pressure, it is necessary to

make a series of the paired measurements, changing the amount of gas in the bulb before each new pair so as to change
the measured pressures in discrete steps. Thus, the operational equation for evaluating the unknown temperature is

. p2Va (2.3.7)
=T, lim ———
2 lp]lgl()pl : Vl (gas)

(The ratio % differs from unity only because of any change in the gas bulb volume when 7 and p change.) The limiting

5 ? “2 can be obtained by plotting this quantity against pj, VL, or another appropriate extrapolating function.

Note that values of n and R are not needed.
Another method is possible if the value of the second virial coefficient at the reference temperature 7; is known.
This value can be used in the virial equation (Eq. 2.2.2) together with the values of T} and p; to evaluate the molar

value of

volume Vy,. Then, assuming Vi, is the same in both equilibrations of a measurement pair, it is possible to evaluate %
at temperature 75, and 7, can be found from
. -V 238
T, = lim P2 Ym ( )
Nim =R (gas)

Constant-volume gas thermometry can be used to evaluate the second virial coefficient of the gas at temperature 75 if
the value at T; is known (Prob. 2.7.3).

The principles of measurements with a gas thermometer are simple, but in practice great care is needed to obtain
adequate precision and accuracy. Corrections or precautions are required for such sources of error as thermal expansion
of the gas bulb, “dead volume” between the bulb and pressure measurement system, adsorption of the thermometric
gas on interior surfaces, and desorption of surface contaminants.
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Since 1960 primary methods with lower uncertainty than gas thermometry have been developed and improved.
Acoustic gas thermometry is based on the speed of sound in an ideal monatomic gas (helium or argon).23-!0 The gas
is confined in a metal cavity resonator of known internal dimensions. The thermodynamic temperature of the gas is
calculated from T = (%) ~MTVZ, where M is the average molar mass of the gas and v is the measured speed of sound
in the limit of zero frequency. To evaluate T in a phase of interest, small thermometers such as platinum resistor
thermometers (page 34) are moved from thermal contact with the phase to the outside of the metal resonator shell, and
the readings compared.

Values of thermodynamic temperatures 7 in the range 118K to 323 K obtained by acoustic gas thermometry agree
with Tyo on the ITS-90 scale to within 0.006 K.23-!! The agreement becomes better the closer T is to the water triple
point 273.16 K. T and Ty, are equal at 273.16 K.

Other kinds of primary thermometry capable of low uncertainty include>3-1?

e Dielectric constant gas thermometry, based on the variation of the dielectric constant of an ideal gas with
temperature;

e Johnson noise thermometry, based on measurements of the mean-square noise voltage developed in a resistor;

o Doppler broadening thermometry, based on measurements of the Doppler width of the absorption line when
a laser beam passes through a gas.

2.3.6.4 Practical thermometers

Liquid-in-glass thermometers use indicating liquids whose volume change with temperature is much greater than that
of the glass. A mercury-in-glass thermometer can be used in the range 234 K (the freezing point of mercury) to 600K,
and typically can be read to 0.01 K. A Beckmann thermometer covers a range of only a few kelvins but can be read
to 0.001 K.

A resistance thermometer is included in a circuit that measures the thermometer's electric resistance. Platinum
resistance thermometers are widely used because of their stability and high sensitivity (0.0001 K). Thermistors use
metal oxides and can be made very small; they have greater sensitivity than platinum resistance thermometers but are
not as stable over time.

A thermocouple consists of wires of two dissimilar metals (e.g., constantan alloy and copper) connected in series
at soldered or welded junctions. A many-junction thermocouple is called a thermopile. When adjacent junctions are
placed in thermal contact with bodies of different temperatures, an electric potential develops that is a function of the
two temperatures.

Finally, two other temperature-measuring devices are the quartz crystal thermometer, incorporating a quartz crystal
whose resonance frequency is temperature dependent, and optical pyrometers, which are useful above about 1300K
to measure the radiant intensity of a black body emitter.

The national laboratories of several countries, including the National Institute of Standards and Technology in the
United States, maintain stable secondary thermometers (e.g., platinum resistance thermometers and thermocouples)
that have been calibrated according to the ITS-90 scale. These secondary thermometers are used as working standards
to calibrate other laboratory and commercial temperature-measuring devices.

The PLTS-2000 scale from 0.9mK to 1K and the ITS-90 scale from 0.65 K upwards are expected to continue to
be used for precise, reproducible and practical approximations to thermodynamic temperature. In the temperature
range 23 K — 1233 K, the most precise measurements will be traceable to platinum resistance thermometers calibrated
according to the ITS-90 scale.?313

2.3.10. Ref. [129].
2.3.11. Ref. [172].
2.3.12. Ref. [60].
2.3.13. Ref. [56].
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2.4 The State of the System

The thermodynamic state of the system is an important and subtle concept.

Do not confuse the state of the system with the kind of physical state or state of aggregation of a phase
discussed in Sec. 2.2.1. A change of state refers to a change in the state of the system, not necessarily
to a phase transition.

At each instant of time, the system is in some definite state that we may describe with values of the macroscopic
properties we consider to be relevant for our purposes. The values of these properties at any given instant define the
state at that instant. Whenever the value of any of these properties changes, the state has changed. If we subsequently
find that each of the relevant properties has the value it had at a certain previous instant, then the system has returned
to its previous state.

2.4.1 State functions and independent variables

The properties whose values at each instant depend only on the state of the system at that instant, and not on the past
or future history of the system, are called state functions (or state variables, or state parameters). There may be other
system properties that we consider to be irrelevant to the state, such as the shape of the system, and these are not state
functions.

Various conditions determine what states of a system are physically possible. If a uniform phase has an equation
of state, property values must be consistent with this equation. The system may have certain built-in or externally-
imposed conditions or constraints that keep some properties from changing with time. For instance, a closed system
has constant mass; a system with a rigid boundary has constant volume. We may know about other conditions that
affect the properties during the time the system is under observation.

We can define the state of the system with the values of a certain minimum number of state functions which we
treat as the independent variables. Once we have selected a set of independent variables, consistent with the physical
nature of the system and any conditions or constraints, we can treat all other state functions as dependent variables
whose values depend on the independent variables.

Whenever we adjust the independent variables to particular values, every other state function is a dependent vari-
able that can have only one definite, reproducible value. For example, in a single-phase system of a pure substance
with 7', p, and n as the independent variables, the volume is determined by an equation of state in te;[ms of T, p, and

-

n; the mass is equal to n- M; the molar volume is given by V;, = %; and the density is given by p =—.

2.4.2 An example: state functions of a mixture

Table 2.4.1 lists the values of ten state functions of an aqueous sucrose solution in a particular state. The first four
properties (T, p, na, np) are ones that we can vary independently, and their values suffice to define the state for most
purposes. Experimental measurements will convince us that, whenever these four properties have these particular
values, each of the other properties has the one definite value listed—we cannot alter any of the other properties
without changing one or more of the first four variables. Thus we can take T, p, ns, and np as the independent
variables, and the six other properties as dependent variables. The other properties include one (V) that is determined
by an equation of state; three (m, p, and xp) that can be calculated from the independent variables and the equation of
state; a solution property (II) treated by thermodynamics (Sec. 12.4.4); and an optical property (np). In addition to
these six dependent variables, this system has innumerable others: energy, isothermal compressibility, heat capacity
at constant pressure, and so on.
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temperature T=293.15K
pressure p=1.01bar
amount of water na=239.18 mol
amount of sucrose ng=1.375mol
volume V =1000cm?
mass m=1176.5¢g
density p=1.1765L5
mole fraction of sucrose xg=0.03390
osmotic pressure IT=58.2bar

refractive index, sodium D line np=1.400

Table 2.4.1. Values of state functions of an aqueous sucrose solution (A = water, B = sucrose)

We could make other choices of the independent variables for the aqueous sucrose system. For instance, we could
choose the set T, p, V, and xp, or the set p, V, p, and xp. If there are no imposed conditions, the number of independent
variables of this system is always four. (Note that we could not arbitrarily choose just any four variables. For instance,
there are only three independent variables in the set p, V, m, and p because of the relation p = %.)

If the system has imposed conditions, there will be fewer independent variables. Suppose the sucrose solution is
in a closed system with fixed, known values of na and np; then there are only two independent variables and we could
describe the state by the values of just 7" and p.

2.4.3 More about independent variables

A closed system containing a single substance in a single phase has two independent variables, as we can see by the
fact that the state is completely defined by values of T and p or of T and V.

A closed single-phase system containing a mixture of several nonreacting substances, or a mixture of reactants and
products in reaction equilibrium, also has two independent variables. Examples are

e air, a mixture of gases in fixed proportions;

e an aqueous ammonia solution containing H,O, NH,*, H*, OH", and probably other species, all in rapid con-
tinuous equilibrium.

The systems in these two examples contain more than one substance, but only one component. The number of com-
ponents of a system is the minimum number of substances or mixtures of fixed composition needed to form each
phase.2*! A system of a single pure substance is a special case of a system of one component. In an open system, the
amount of each component can be used as an independent variable.

Consider a system with more than one uniform phase. In principle, for each phase we could independently vary the
temperature, the pressure, and the amount of each substance or component. There would then be 2 + C independent
variables for each phase, where C is the number of components in the phase.

There usually are, however, various equilibria and other conditions that reduce the number of independent vari-
ables. For instance, each phase may have the same temperature and the same pressure; equilibrium may exist with
respect to chemical reaction and transfer between phases (Sec. 2.4.4); and the system may be closed. (While these
various conditions do not have to be present, the relations among 7', p, V, and amounts described by an equation of
state of a phase are always present.) On the other hand, additional independent variables are required if we consider
properties such as the surface area of a liquid to be relevant.>#2

2.4.1. The concept of the number of components is discussed in more detail in Chap. 13.
2.4.2. The important topic of the number of independent intensive variables is treated by the Gibbs phase rule, which will be discussed in Sec.
8.1.7 for systems of a single substance and in Sec. 13.1 for systems of more than one substance.
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We must be careful to choose a set of independent variables that defines the state without ambiguity.
For a closed system of liquid water, the set p and V might be a poor choice because the molar volume
of water passes through a minimum as 7 is varied at constant p. Thus, the values p = 1.000 bar and
V =18.016 cm? would describe one mole of water at both 2 °C and 6 °C, so these values would not
uniquely define the state. Better choices of independent variables in this case would be either T and p,
orelse T and V.

How may we describe the state of a system that has nonuniform regions? In this case we may imagine the regions
to be divided into many small volume elements or parcels, each small enough to be essentially uniform but large
enough to contain many molecules. We then describe the state by specifying values of independent variables for
each volume element. If there is internal macroscopic motion (e.g., flow), then velocity components can be included
among the independent variables. Obviously, the quantity of information needed to describe a complicated state may
be enormous.

We can imagine situations in which classical thermodynamics would be completely incapable of describing the
state. For instance, turbulent flow in a fluid or a shock wave in a gas may involve inhomogeneities all the way down
to the molecular scale. Macroscopic variables would not suffice to define the states in these cases.

Whatever our choice of independent variables, all we need to know to be sure a system is in the same state at two
different times is that the value of each independent variable is the same at both times.

2.4.4 Equilibrium states

An equilibrium state is a state that, when present in an isolated system, remains unchanged indefinitely as long
as the system remains isolated. (Recall that an isolated system is one that exchanges no matter or energy with the
surroundings.) An equilibrium state of an isolated system has no natural tendency to change over time. If changes do
occur in an isolated system, they continue until an equilibrium state is reached.

A system in an equilibrium state may have some or all of the following kinds of internal equilibria:
Thermal equilibrium: the temperature is uniform throughout.
Mechanical equilibrium: the temperature is uniform throughout
Transfer equilibrium: there is equilibrium with respect to the transfer of each species from one phase to another.
Reaction equilibrium: every possible chemical reaction is at equilibrium

A homogeneous system has a single phase of uniform temperature and pressure, and so has thermal and mechanical
equilibrium. It is in an equilibrium state if it also has reaction equilibrium.

A heterogeneous system is in an equilibrium state if each of the four kinds of internal equilibrium is present.

The meaning of internal equilibrium in the context of an equilibrium state is that no perceptible change of state
occurs during the period we keep the isolated system under observation. For instance, a system containing a homo-
geneous mixture of gaseous H, and O, at 25 °C and 1 bar is in a state of reaction equilibrium on a time scale of hours
or days; but if a measurable amount of H,O forms over a longer period, the state is not an equilibrium state on this
longer time scale. This consideration of time scale is similar to the one we apply to the persistence of deformation in
distinguishing a solid from a fluid (Sec. 2.2.1).

Even if a system is not in internal equilibrium, it can be in an equilibrium state if a change of state is prevented by
an imposed internal constraint or the influence of an external field. Here are five examples of such states:

* A system with an internal adiabatic partition separating two phases can be in an equilibrium state that is not in
thermal equilibrium. The adiabatic partition allows the two phases to remain indefinitely at different tempera-
tures. If the partition is rigid, it can also allow the two phases to have different pressures, so that the equilibrium
state lacks mechanical equilibrium.
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e An experimental system used to measure osmotic pressure (Fig. 12.2.2 on page 305) has a semipermeable
membrane separating a liquid solution phase and a pure solvent phase. The membrane prevents the transfer of
solute from the solution to the pure solvent. In the equilibrium state of this system, the solution has a higher
pressure than the pure solvent; the system is then in neither transfer equilibrium nor mechanical equilibrium.

o Inthe equilibrium state of a galvanic cell that is not part of a closed electrical circuit (Sec. 3.8.3), the separation
of the reactants and products and the open circuit are constraints that prevent the cell reaction from coming to
reaction equilibrium.

e A system containing mixed reactants of a reaction can be in an equilibrium state without reaction equilibrium
if we withhold a catalyst or initiator or introduce an inhibitor that prevents reaction. In the example above of a
mixture of H, and O, gases, we could consider the high activation energy barrier for the formation of H,O to be
an internal constraint. If we remove the constraint by adding a catalyst, the reaction will proceed explosively.

¢ An example of a system influenced by an external field is a tall column of gas in a gravitational field (Sec.
8.1.4). In order for an equilibrium state to be established in this field, the pressure must decrease continuously
with increasing elevation.

Keep in mind that regardless of the presence or absence of internal constraints and external fields, the essential feature
of an equilibrium state is this: if we isolate the system while it is in this state, the state functions do not change over
time.

Three additional comments can be made regarding the properties of equilibrium states.

1. It should be apparent that a system with thermal equilibrium has a single value of T, and one with mechanical
equilibrium has a single value of p, and this allows the state to be described by a minimal number of indepen-
dent variables. In contrast, the definition of a nonequilibrium state with nonuniform intensive properties may
require a very large number of independent variables.

2. Strictly speaking, during a time period in which the system exchanges energy with the surroundings its state
cannot be an equilibrium state. Energy transfer at a finite rate causes nonuniform temperature and pressure
within the system and prevents internal thermal and mechanical equilibrium. If, however, the rate of energy
transfer is small, then at each instant the state can closely approximate an equilibrium state. This topic will be
discussed in detail in the next chapter.

3. The concept of an equilibrium state assumes that when the system is in this state and isolated, no observable
change occurs during the period of experimental observation.

If the state does, in fact, undergo a slow change that is too small to be detected during the experi-
mental observation period A 7y, the state is metastable—the relaxation time of the slow change is
much greater than A #.,. There is actually no such thing as a true equilibrium state, because very
slow changes inevitably take place that we have no way of controlling. One example was mentioned
above: the slow formation of water from its elements in the absence of a catalyst. Atoms of radioactive
elements with long half-lives slowly change to other elements. More generally, all elements are pre-
sumably subject to eventual transmutation to iron-58 or nickel-62, the nuclei with the greatest binding
energy per nucleon. When we use the concept of an equilibrium state, we are in effect assuming that
rapid changes that have come to equilibrium have relaxation times much shorter than A f, and that the
relaxation times of all other changes are infinite.

2.4.5 Steady states

It is important not to confuse an equilibrium state with a steady state, a state that is constant during a time period
during which the system exchanges matter or energy with the surroundings.
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T = 400K \ T =300K
1
T =350K

Figure 2.4.1. Steady state in a metal rod (shaded) with heat conduction. The boxes at the ends represent heat reservoirs of constant
temperature.

The heat-conducting metal rod shown in Fig. 2.4.1 is a system in such a steady state. Each end of the rod is in
thermal contact with a heat reservoir (or thermal reservoir), which is a body or external system whose temperature
remains constant and uniform when there is heat transfer to or from it.2*3 The two heat reservoirs in the figure have
different temperatures, causing a temperature gradient to form along the length of the rod and energy to be transferred
by heat from the warmer reservoir to the rod and from the rod to the cooler reservoir. Although the properties of the
steady state of the rod remain constant, the rod is clearly not in an equilibrium state because the temperature gradient
will quickly disappear when we isolate the rod by removing it from contact with the heat reservoirs.

2.5 Processes and Paths

A process is a change in the state of the system over time, starting with a definite initial state and ending with a definite
final state. The process is defined by a path, which is the continuous sequence of consecutive states through which the
system passes, including the initial state, the intermediate states, and the final state. The process has a direction along
the path. The path could be described by a curve in an N-dimensional space in which each coordinate axis represents
one of the N independent variables.

This book takes the view that a thermodynamic process is defined by what happens within the system, in the three-
dimensional region up to and including the boundary, and by the forces exerted on the system by the surroundings
and any external field. Conditions and changes in the surroundings are not part of the process except insofar as they
affect these forces. For example, consider a process in which the system temperature decreases from 300K to 273 K.
We could accomplish this temperature change by placing the system in thermal contact with either a refrigerated
thermostat bath or a mixture of ice and water. The process is the same in both cases, but the surroundings are different.

Expansion is a process in which the system volume increases; in compression, the volume decreases.

An isothermal process is one in which the temperature of the system remains uniform and constant. An isobaric
or isopiestic process refers to uniform constant pressure, and an isochoric process refers to constant volume. Paths
for these processes of an ideal gas are shown in Fig. 2.5.1.

An adiabatic process is one in which there is no heat transfer across any portion of the boundary. We may ensure
that a process is adiabatic either by using an adiabatic boundary or, if the boundary is diathermal, by continuously
adjusting the external temperature to eliminate a temperature gradient at the boundary.

14 |4 |4
(a) (b) ©

Figure 2.5.1. Paths of three processes of a closed ideal-gas system with p and V as the independent variables. (a) Isothermal expansion.

(b) Isobaric expansion. (c) Isochoric pressure reduction.

2.4.3. A heat reservoir can be a body that is so large that its temperature changes only imperceptibly during heat transfer, or an external system
of coexisting phases of a pure substance (e.g., ice and water) at constant pressure.
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Recall that a state function is a property whose value at each instant depends only on the state of the system at that
instant. The finite change of a state function X in a process is written A X. The notation A X always has the meaning
X,—X1, where X| is the value in the initial state and X; is the value in the final state. Therefore, the value of A X depends
only on the values of X| and X,. The change of a state function during a process depends only on the initial and final
states of the system, not on the path of the process.

An infinitesimal change of the state function X is written dX. The mathematical operation of summing an infinite
number of infinitesimal changes is integration, and the sum is an integral (see the brief calculus review in Appendix
E). The sum of the infinitesimal changes of X along a path is a definite integral equal to A X:

X
IXZdX:Xz—XI:AX 2.5.1)
1

If dX obeys this relation—that is, if its integral for given limits has the same value regardless of the path—it is called
an exact differential. The differential of a state function is always an exact differential.

A cyclic process is a process in which the state of the system changes and then returns to the initial state. In this
case the integral of dX is written with a cyclic integral sign: $dX. Since a state function X has the same initial and
final values in a cyclic process, X; is equal to X; and the cyclic integral of dX is zero:

9€ dx=0 (2.5.2)

Heat (¢) and work (w) are examples of quantities that are not state functions. They are not even properties of the
system; instead they are quantities of energy transferred across the boundary over a period of time. It would therefore
be incorrect to write “A ¢ or “Aw.” Instead, the values of g and w depend in general on the path and are called path
functions.

This book uses the symbol d (lowercase letter “d” with a bar through the stem?-'1) for an infinitesimal quantity of a
path function. Thus, dg and dw are infinitesimal quantities of heat and work. The sum of many infinitesimal quantities
of a path function is the net quantity:

qu=q Idw:w (2.5.3)

The infinitesimal quantities dg and dw, because the values of their integrals depend on the path, are inexact differen-
tials.>>2

There is a fundamental difference between a state function (such as temperature or volume) and a path function
(such as heat or work): The value of a state function refers to one instant of time; the value of a path function refers to
an interval of time.

State function and path function in thermodynamics are analogous to elevation and distance in climbing
a mountain. Suppose there are several trails of different lengths from the trailhead to the summit. The
climber at each instant is at a definite elevation, and the elevation change during the climb depends only
on the trailhead and summit elevations and not on the trail used. Thus elevation is like a state function.
The distance traveled by the climber depends on the trail, and is like a path function.

2.6 The Energy of the System

A large part of classical thermodynamics is concerned with the energy of the system. The total energy of a system is
an extensive property whose value at any one instant cannot be measured in any practical way, but whose change is
the focus of the first law of thermodynamics (Chapter 3).

2.5.1. The Unicode number for the glyph d is U+0111 and its name is “LATIN SMALL LETTER D WITH STROKE”.

2.5.2. Chemical thermodynamicists often write these quantities as dg and dw. Mathematicians, however, frown on using the same notation
for inexact and exact differentials. Other notations sometimes used to indicate that heat and work are path functions are Dg and Dw, and also § g
and Sw.
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2.6.1 Energy and reference frames

Classical thermodynamics ignores microscopic properties such as the behavior of individual atoms and molecules.
Nevertheless, a consideration of the classical mechanics of particles will help us to understand the sources of the
potential and kinetic energy of a thermodynamic system.

In classical mechanics, the energy of a collection of interacting point particles is the sum of the kinetic energy
%mv2 of each particle (where m is the particle's mass and v is its velocity), and of various kinds of potential energies.
The potential energies are defined in such a way that if the particles are isolated from the rest of the universe, as
the particles move and interact with one another the total energy (kinetic plus potential) is constant over time. This
principle of the conservation of energy also holds for real atoms and molecules whose electronic, vibrational, and
rotational energies, absent in point particles, are additional contributions to the total energy.

The positions and velocities of particles must be measured in a specified system of coordinates called a reference
frame. This book will use reference frames with Cartesian axes. Since the kinetic energy of a particle is a function of
velocity, the kinetic energy depends on the choice of the reference frame. A particularly important kind is an inertial
frame, one in which Newton's laws of motion are obeyed (see Sec. G.1 in Appendix G).

A reference frame whose axes are fixed relative to the earth's surface is what this book will call a lab frame. A lab
frame for all practical purposes is inertial (Sec. G.10 on page 416). It is in this kind of stationary frame that the laws
of thermodynamics have been found by experiment to be valid.

The energy E of a thermodynamic system is the sum of the energies of the particles contained in it and the potential
energies of interaction between these particles. Just as for an individual particle, the energy of the system depends on
the reference frame in which it is measured. The energy of the system may change during a process, but the principle
of the conservation of energy ensures that the sum of the energy of the system, the energy of the surroundings, and
any energy shared by both, all measured in the same reference frame, remains constant over time.

This book uses the symbol Ejy for the energy of the system measured in a specified inertial frame. The system
could be located in a weightless environment in outer space, and the inertial frame could be one that is either fixed or
moving at constant velocity relative to local stars. Usually, however, the system is located in the earth's gravitational
field, and the appropriate inertial frame is then an earth-fixed lab frame.

If during a process the system as a whole undergoes motion or rotation relative to the inertial frame, then Ey
depends in part on coordinates that are not properties of the system. In such situations Ey; is not a state function, and
we need the concept of internal energy.

2.6.2 Internal energy

The internal energy, U, is the energy of the system measured in a reference frame that allows U to be a state func-
tion—that is, at each instant the value of U depends only on the state of the system. This book will call a reference
frame with this property a local frame. A local frame may also be, but is not necessarily, an earth-fixed lab frame.

Here is a simple illustration of the distinction between the energy Egys of a system measured in a lab frame and the
internal energy U measured in a local frame. Let the system be a fixed amount of water of uniform temperature 7" and
pressure p contained in a glass beaker. (The glass material of the beaker is part of the surroundings.) The state of this
system is defined by the independent variables 7 and p. The most convenient local frame in which to measure U in
this case is a frame fixed with respect to the beaker.

* When the beaker is at rest on the lab bench, the local frame is a lab frame; then the energies Egy, and U are
equal and depend only on T and p.

o If we place the beaker on a laboratory hot plate and use the hot plate to raise the temperature of the water, the
values of Egy and U increase equally.

o Suppose we slide the beaker horizontally along the lab bench while T and p stay constant. While the system is
in motion, its kinetic energy is greater in the lab frame than in the local frame. Now Ey; is greater than when
the beaker was at rest, although the state of the system and the value of U are unchanged.
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o If we slowly lift the beaker above the bench, the potential energy of the water in the earth's gravitational field
increases, again with no change in 7" and p. The value of Eqy has increased, but there has been no change in
the state of the system or the value of U.

Section 3.1.1 will show that the relation between changes of the system energy and the internal energy in this example
is AEgs=AE+AE,+ AU, where Ey and E}, are the kinetic and potential energies of the system as a whole measured
in the lab frame.

Our choice of the local frame used to define the internal energy U of any particular system during a given process
is to some extent arbitrary. Three possible choices are as follows.

o If the system as a whole does not move or rotate in the laboratory, a lab frame is an appropriate local frame.
Then U is the same as the system energy Ey, measured in the lab frame.

o If the system's center of mass moves in the lab frame during the process, we can let the local frame be a center-
of-mass frame whose origin moves with the center of mass and whose Cartesian axes are parallel to the axes
of the lab frame.

o If the system consists of the contents of a rigid container that moves or rotates in the lab, as in the illustration
above, it may be convenient to choose a local frame that has its origin and axes fixed with respect to the
container.

Is it possible to determine a numerical value for the internal energy of a system? The total energy of a body of mass m
when it is at rest is given by the Einstein relation E =mc?, where c is the speed of light in vacuum. In principle, then,
we could calculate the internal energy U of a system at rest from its mass, and we could determine A U for a process
from the change in mass. In practice, however, an absolute value of U calculated from a measured mass has too much
uncertainty to be of any practical use. For example, the typical uncertainty of the mass of an object measured with a
microbalance, about 0.1 pg (Table 2.3.1), would introduce the enormous uncertainty in energy of about 10'? joules.
Only values of the change A U are useful, and these values cannot be calculated from A m because the change in mass
during an ordinary chemical process is much too small to be detected.
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2.7 Problems

Problem 2.7.1. Let X represent the quantity V2 with dimensions (length)®. Give a reason that X is or is not an extensive property. Give a
reason that X is or is not an intensive property.

Problem 2.7.2. Calculate the relative uncertainty (the uncertainty divided by the value) for each of the measurement methods listed in Table
2.3.1 on page 30, using the typical values shown. For each of the five physical quantities listed, which measurement method has the smallest

relative uncertainty?

Problem 2.7.3. Table 2.7.1 lists data obtained from a constant-volume gas thermometer containing samples of varying amounts of helium
maintained at a certain fixed temperature 75 in the gas bulb.2”-! The molar volume Vi, of each sample was evaluated from its pressure in the
bulb at a reference temperature of 77 =7.1992 K, corrected for gas nonideality with the known value of the second virial coefficient at that
temperature.

Use these data and Eq. 2.2.2 on page 26 to evaluate 7> and the second virial coefficient of helium at temperature 75. (You can assume the

third and higher virial coefficients are negligible.)

() (10255) (5¢)/(K)

1.0225 2.7106
1.3202 2.6994
1.5829 2.6898
1.9042 2.6781
2.4572 2.6580
2.8180 2.6447
3.4160 2.6228
3.6016 2.6162
4.1375 2.5965
4.6115 2.5790
5.1717 2.5586

Table 2.7.1. Helium at a fixed temperature

Problem 2.7.4. Discuss the proposition that, to a certain degree of approximation, a living organism is a steady-state system.

Problem 2.7.5. The value of A U for the formation of one mole of crystalline potassium iodide from its elements at 25 °C and 1 bar is —327.9kJ.
Calculate A m for this process. Comment on the feasibility of measuring this mass change.

2.7.1. Ref. [13].
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Chapter 3
The First Law

In science, a law is a statement or mathematical relation that concisely describes reproducible experimental observa-
tions. Classical thermodynamics is built on a foundation of three laws, none of which can be derived from principles
that are any more fundamental. This chapter discusses theoretical aspects of the first law; gives examples of reversible
and irreversible processes and the heat and work that occur in them; and introduces the extensive state function heat
capacity.

3.1 Heat, Work, and the First Law

The box below gives two forms of the first law of thermodynamics.

In a closed system:
dU=dqg+dw AU=gq+w
where

a) U is the internal energy of the system, a state function;

b) ¢ is heat; and

¢) wis thermodynamic work.

The equation d U =dq + dw is a differential form of the first law, and A U = g+ w is the integrated form.

The heat and work appearing in the first law are two different modes of energy transfer. They can be defined in a
general way as follows:

Heat refers to the transfer of energy across the boundary caused by a temperature gradient at the boundary.

Work refers to the transfer of energy across the boundary caused by the displacement of a macroscopic portion of the
system on which the surroundings exert a force, or because of other kinds of concerted, directed movement of entities
(e.g., electrons) on which an external force is exerted.

An infinitesimal quantity of energy transferred as heat at a surface element of the boundary is written dg, and a finite
quantity is written ¢ (Sec. 2.5). To obtain the total finite heat for a process from ¢ = [ dg (Eq. 2.5.3), we must integrate
over the total boundary surface and the entire path of the process.

An infinitesimal quantity of work is dw, and a finite quantity is w= [ dw. To obtain w for a process, we integrate
all kinds of work over the entire path of the process.

Any of these quantities for heat and work is positive if the effect is to increase the internal energy, and negative if
the effect is to decrease it. Thus, positive heat is energy entering the system, and negative heat is energy leaving the
system. Positive work is work done by the surroundings on the system, and negative work is work done by the system
on the surroundings.
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48 THE FIRST LAW

The first-law equation A U =g+ w sets up a balance sheet for the energy of the system, measured in the local frame,
by equating its change during a process to the net quantity of energy transferred by means of heat and work. Note that
the equation applies only to a closed system. If the system is open, energy can also be brought across the boundary
by the transport of matter.

An important part of the first law is the idea that heat and work are quantitative energy transfers. That is, when
a certain quantity of energy enters the system in the form of heat, the same quantity leaves the surroundings. When
the surroundings perform work on the system, the increase in the energy of the system is equal in magnitude to the
decrease in the energy of the surroundings. The principle of conservation of energy is obeyed: the total energy (the
sum of the energies of the system and surroundings) remains constant over time.3-!!

Heat transfer may occur by conduction, convection, or radiation.?!2 We can reduce conduction with good thermal
insulation at the boundary, we can eliminate conduction and convection with a vacuum gap, and we can minimize
radiation with highly reflective surfaces at both sides of the vacuum gap. The only way to completely prevent heat
during a process is to arrange conditions in the surroundings so there is no temperature gradient at any part of the
boundary. Under these conditions the process is adiabatic, and any energy transfer in a closed system is then solely
by means of work.

3.1.1 The concept of thermodynamic work

Appendix G gives a detailed analysis of energy and work based on the behavior of a collection of interacting particles
moving according to the principles of classical mechanics. The analysis shows how we should evaluate mechanical
thermodynamic work. Suppose the displacement responsible for the work comes from linear motion of a portion of
the boundary in the +x or —x direction of the local frame. The differential and integrated forms of the work are then
given by3AlA3

dw=Fdy  w= [ Fdx (3.1.1)

X1

Here F;"" is the component in the +x direction of the force exerted by the surroundings on the system at the moving
portion of the boundary, and dx is the infinitesimal displacement of the boundary in the local frame. If the displace-
ment is in the same direction as the force, dw is positive; if the displacement is in the opposite direction, dw is negative.

The kind of force represented by F;"" is a short-range contact force. Appendix G shows that the force exerted by
a conservative time-independent external field, such as a gravitational force, should not be included as part of F;"'.
This is because the work done by this kind of force causes changes of potential and kinetic energies that are equal and
opposite in sign, with no net effect on the internal energy (see Sec. 3.6).

Newton's third law of action and reaction says that a force exerted by the surroundings on the system is opposed by
a force of equal magnitude exerted in the opposite direction by the system on the surroundings. Thus the expressions
in Eq. 3.1.1 can be replaced by

dw=-F¥dx w= —I“ FYdx (3.12)
X1

where F;”* is the component in the +x direction of the contact force exerted by the system on the surroundings at the
moving portion of the boundary.

3.1.1. Strictly speaking, it is the sum of the energies of the system, the surroundings, and any potential energy shared by both that is constant.
The shared potential energy is usually negligible or essentially constant (Sec. G.5).

3.1.2. Some thermodynamicists treat radiation as a separate contribution to A U, in addition to g and w.

3.1.3. These equations are Eq. G.6.11 with a change of notation.
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3.1 HEAT, WORK, AND THE FIRST LAW 49

An alternative to using the expressions in Eqgs. 3.1.1 or 3.1.2 for evaluating w is to imagine that the
only effect of the work on the system's surroundings is a change in the elevation of a weight in the
surroundings. The weight must be one that is linked mechanically to the source of the force F;*". Then,
provided the local frame is a stationary lab frame, the work is equal in magnitude and opposite in
sign to the change in the weight's potential energy: w=-mg A h where m is the weight's mass, g is the
acceleration of free fall, and 4 is the weight's elevation in the lab frame. This interpretation of work can
be helpful for seeing whether work occurs and for deciding on its sign, but of course cannot be used to
determine its value if the actual surroundings include no such weight.

The procedure of evaluating w from the change of an external weight's potential energy requires that
this change be the only mechanical effect of the process on the surroundings, a condition that in practice
is met only approximately. For example, Joule's paddle-wheel experiment using two weights linked to
the system by strings and pulleys, described latter in Sec. 3.7.2, required corrections for (1) the kinetic
energy gained by the weights as they sank, (2) friction in the pulley bearings, and (3) elasticity of the
strings (see Prob. 3.11.10 on page 85).

In the first-law relation A U = g +w, the quantities A U, g, and w are all measured in an arbitrary local frame. We
can write an analogous relation for measurements in a stationary /ab frame:

AE‘sys:qlab"'Wlab (3.1.3)

Suppose the chosen local frame is not a lab frame, and we find it more convenient to measure the heat g, and the work

Wiab in @ lab frame than to measure g and w in the local frame. What corrections are needed to find ¢ and w in this case?
If the Cartesian axes of the local frame do not rotate relative to the lab frame, then the heat is the same in both
frames: g = qiqp.> 1
The expressions for dw),, and wy,p are the same as those for dw and w in Egs. 3.1.1 and 3.1.2, with dx interpreted
as the displacement in the /ab frame. There is an especially simple relation between w and wy,, when the local frame
is a center-of-mass frame—one whose origin moves with the system's center of mass and whose axes do not rotate

relative to the lab frame:3!
szlab_%'m'A'(chm)—m'g'AZcm (3.1.4)

In this equation m is the mass of the system, v, is the velocity of its center of mass in the lab frame, g is the acceler-
ation of free fall, and z.p, is the height of the center of mass above an arbitrary zero of elevation in the lab frame. In
typical thermodynamic processes the quantities vey, and z.y, change to only a negligible extent, if at all, so that usually
to a good approximation w is equal to wiyp.

When the local frame is a center-of-mass frame, we can combine the relations A U =g +w and g = qj,p With Eqgs.
3.1.3 and 3.1.4 to obtain

AEy=AE+AE,+AU (3.1.5)

where Ex = % -m-vZy, and Ey,=m- g-z.m are the kinetic and potential energies of the system as a whole in the lab frame.

A more general relation for w can be written for any local frame that has no rotational motion and whose origin
has negligible acceleration in the lab frame:3-1-¢

W=Wiab—=mg A Zoc 3.1.6)

Here zj, is the elevation in the lab frame of the origin of the local frame. A zjo is usually small or zero, so again w is
approximately equal to wy,,. The only kinds of processes for which we may need to use Eq. 3.1.4 or 3.1.6 to calculate
a non-negligible difference between w and wy,, are those in which massive parts of the system undergo substantial
changes in elevation in the lab frame.

3.1.4. Sec. G.7.
3.1.5. Eq. G.8.12 on page 415.
3.1.6. Eq. G.7.3 on page 413.
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~{ stop

Figure 3.1.1. System containing an electrical resistor and a paddle wheel immersed in water. Cross-hatched area: removable thermal
insulation.

Simple relations such as these between g and ¢y,,, and between w and wyy,, do not exist if the local frame has
rotational motion relative to a lab frame.

Hereafter in this book, thermodynamic work w will be called simply work. For all practical purposes you can
assume the local frames for most of the processes to be described are stationary lab frames. The discussion above
shows that the values of heat and work measured in these frames are usually the same, or practically the same, as if
they were measured in a local frame moving with the system's center of mass. A notable exception is the local frame
needed to treat the thermodynamic properties of a liquid solution in a centrifuge cell. In this case the local frame is
fixed in the spinning rotor of the centrifuge and has rotational motion. This special case will be discussed in Sec. 9.8.2.

3.1.2 Work coefficients and work coordinates

If a process has only one kind of work, it can be expressed in the form
X2
dw=YdX or w= X Ydx (3.1.7)
1

where Y is a generalized force called a work coefficient and X is a generalized displacement called a work coordi-
nate. The work coefficient and work coordinate are conjugate variables. They are not necessarily actual forces and
displacements. For example, we shall see in Sec. 3.4.2 that reversible expansion work is given by dw =—-pdV; in this
case, the work coefficient is —p and the work coordinate is V.

A process may have more than one kind of work, each with its own work coefficient and conjugate work coordi-
nate. In this case the work can be expressed as a sum over the different kinds labeled by the index i:

dw=) Y%dX, or w=) f;‘zyidx,» (3.1.8)
- - i1

3.1.3 Heat and work as path functions

Consider the apparatus shown in Fig. 3.1.1 on page 50.

The system consists of the water together with the immersed parts: stirring paddles attached to a shaft (a paddle
wheel) and an electrical resistor attached to wires. In equilibrium states of this system, the paddle wheel is stationary
and the temperature and pressure are uniform. The system is open to the atmosphere, so the pressure is constrained to
be constant. We may describe the equilibrium states of this system by a single independent variable, the temperature
T. (The angular position of the shaft is irrelevant to the state and is not a state function for equilibrium states of this
system.)
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3.1 HEAT, WORK, AND THE FIRST LAW 51

Here are three experiments with different processes. Each process has the same initial state defined by 77 =300.0K,
and each has the same final state.

Experiment 1. We surround the system with thermal insulation as shown in the figure and release the external
weight, which is linked mechanically to the paddle wheel. The resulting paddle-wheel rotation causes turbu-
lent churning of the water and an increase in its temperature. Assume that after the weight hits the stop and
the paddle wheel comes to rest, the final angular position of the paddle wheel is the same as at the beginning
of the experiment. We can calculate the work done on the system from the difference between the potential
energy lost by the weight and the kinetic energy gained before it reaches the stop.>!” We wait until the water
comes to rest and the system comes to thermal equilibrium, then measure the final temperature. Assume the
final temperature is 7, =300.10K, an increase of 0.10 kelvins.

Experiment 2. We start with the system in the same initial state as in experiment 1, and again surround it with
thermal insulation. This time, instead of releasing the weight we close the switch to complete an electrical cir-
cuit with the resistor and allow the same quantity of electrical work to be done on the system as the mechanical
work done in experiment 1. We discover the final temperature (300.10K) is exactly the same as at the end of
experiment 1. The process and path are different from those in experiment 1, but the work and the initial and
final states are the same.

Experiment 3. We return the system to its initial state, remove the thermal insulation, and place the system in
thermal contact with a heat reservoir of temperature 300.10K. Energy can now enter the system in the form of
heat, and does so because of the temperature gradient at the boundary. By a substitution of heat for mechanical
or electrical work, the system changes to the same final state as in experiments 1 and 2.

Although the paths in the three experiments are entirely different, the overall change of state is the same. In fact, a
person who observes only the initial and final states and has no knowledge of the intermediate states or the changes
in the surroundings will be ignorant of the path. Did the paddle wheel turn? Did an electric current pass through the
resistor? How much energy was transferred by work and how much by heat? The observer cannot tell from the change
of state, because heat and work are not state functions. The change of state depends on the sum of heat and work. This
sum is the change in the state function U, as expressed by the integrated form of the first law, AU =g +w.

It follows from this discussion that neither heat nor work are quantities possessed by the system. A system at a
given instant does not have or contain a particular quantity of heat or a particular quantity of work. Instead, heat and
work depend on the path of a process occurring over a period of time. They are path functions.

3.1.4 Heat and heating

In thermodynamics, the technical meaning of the word “heat” when used as a noun is energy transferred across the
boundary because of a temperature gradient at the boundary.

In everyday speech the noun heat is often used somewhat differently. Here are three statements with similar
meanings that could be misleading:

“Heat is transferred from a laboratory hot plate to a beaker of water.”

“Heat flows from a warmer body to a cooler body.”

“To remove heat from a hot body, place it in cold water.”

Statements such as these may give the false impression that heat is like a substance that retains its identity as it
moves from one body to another. Actually heat, like work, does not exist as an entity once a process is completed.
Nevertheless, the wording of statements such as these is embedded in our everyday language, and no harm is done
if we interpret them correctly. This book, for conciseness, often refers to “heat transfer” and “heat flow,” instead of
using the technically more correct phrase “energy transfer by means of heat.”

3.1.7. This calculation is an example of the procedure mentioned on page 49 in which the change in elevation of an external weight is used to
evaluate work.
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Another common problem is failure to distinguish between thermodynamic “heat” and the process of “heating.”
To heat a system is to cause its temperature to increase. A heated system is one that has become warmer. This process
of heating does not necessarily involve thermodynamic heat; it can also be carried out with work as illustrated by
experiments 1 and 2 of the preceding section.

The notion of heat as an indestructible substance was the essence of the caloric theory. This theory
was finally disproved by the cannon-boring experiments of Benjamin Thompson (Count Rumford)
in the late eighteenth century, and in a more quantitative way by the measurement of the mechanical
equivalent of heat by James Joule in the 1840s (see Sec. 3.7.2).

3.1.5 Heat capacity

The heat capacity of a closed system is defined as the ratio of an infinitesimal quantity of heat transferred across the
boundary under specified conditions and the resulting infinitesimal temperature change:

wrdg (3.1.9)
(heat capacity) = a7 (closed system)

Since g is a path function, the value of the heat capacity depends on the specified conditions, usually either constant
volume or constant pressure. Cy is the heat capacity at constant volume and C, is the heat capacity at constant
pressure. These are extensive state functions that will be discussed more fully in Sec. 5.6.

3.1.6 Thermal energy

It is sometimes useful to use the concept of thermal energy. It can be defined as the kinetic energy of random
translational motions of atoms and molecules relative to the local frame, plus the vibrational and rotational energies
of molecules. The thermal energy of a body or phase depends on its temperature, and increases when the temperature
increases. The thermal energy of a system is a contribution to the internal energy.

It is important to understand that a change of the system's thermal energy during a process is not necessarily
the same as energy transferred across the system boundary as heat. The two quantities are equal only if the system
is closed and there is no work, volume change, phase change, or chemical reaction. This is illustrated by the three
experiments described in Sec. 3.1.3: the thermal energy change is the same in each experiment, but only in experiment
3 is the work negligible and the thermal energy change equal to the heat.
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BIOGRAPHICAL SKETCH

BENJAMIN THOMPSON, COUNT OF RUMFORD (1753-1814)

Benjamin Thompson, whose career was remarkably varied and
colorful, collected experimental evidence of the falseness of the
caloric theory—the concept that heat is a material substance.
He was a complex man: energetic, egotistical, domineering, and
misanthropic.

Thompson was born into a farming family in Woburn, Mass-
achusetts. He married a wealthy widow and was admitted into
fashionable society. At the time of the American Revolution
he was accused of being a loyalist, and at the age of 23 fled to
England, abandoning his wife and daughter. He was an Under
Secretary of State in London, returned briefly to America as a
British cavalry commander, and then spent 11 years as a colonel
in the Bavarian army. In Bavaria, to reward his success in reor-
ganizing the army and reforming the social welfare system, he
was made a Count of the Holy Roman Empire. He chose the
name Rumford after the original name of Concord, New Hamp-
shire, his wife's home town.

While in Bavaria, Count Rumford carried out the cannon-
boring experiments for which he is best known. The caloric
theory held that heat is a kind of indestructible fluid (“caloric™)
that is held in the spaces between the atoms of a body. Fric-
tional forces were supposed to cause a rise in temperature by
squeezing caloric fluid out of a body. Rumford's experiments
involved boring into a horizontally-fixed cannon barrel with a
blunt steel bit turned by horse power. He reported the results
in 1798:318

3.1.8. Ref. [157].

Being engaged, lately in superintending the
boring of cannon, in the workshops of the mili-
tary arsenal at Munich, I was struck with the very
considerable degree of heat which a brass gun
acquires, in a short time, in being bored; and with
the still more intense heat (much greater than that
of boiling water, as I found by experiment,) of
the metallic chips separated from it by the borer...

By meditating on the results of all these exper-
iments, we are naturally brought to that great
question which has so often been the subject of
speculation among philosophers; namely,

What is Heat?—Is there any such thing as an
igneous fluid?—Is there any thing that can with
propriety be called caloric?...

And, in reasoning on this subject, we must
not forget to consider that most remarkable cir-
cumstance, that the source of the heat generated
by friction, in these experiments, appeared evi-
dently to be inexhaustible.

It is hardly necessary to add, that any thing
which any insulated body, or system of bodies,
can continue to furnish without limitation, cannot
possibly be a material substance: and it appears
to me to be extremely difficult, if not quite impos-
sible, to form any distinct idea of any thing,
capable of being excited and communicated, in
the manner the heat was excited and communi-
cated in these experiments, except it be MOTION.

Rumford thought of heat in a solid as harmonic vibrations
similar to acoustic waves, not as random motion or as a form of
energy as later developed by James Joule.

Rumford also made investigations into ballistics, nutrition,
thermometry, light, and fabric properties. He invented the Rum-
ford fireplace and the drip coffee percolator. After living in
London for fourteen years, he settled in Paris in 1804. The fol-
lowing year, his first wife having died in America, he married
the widow of the famous French chemist Antoine Lavoisier. The
marriage was stormy and they soon separated.

3.2 Spontaneous, Reversible, and Irreversible Processes

A spontaneous process is a process that can actually occur in a finite time period under the existing conditions. Any
change over time in the state of a system that we observe experimentally is a spontaneous process.

A spontaneous process is sometimes called a natural process, feasible process, possible process, allowed process,

or real process.
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3.2.1 Reversible processes

A reversible process is an important concept in thermodynamics. This concept is needed for the chain of reasoning
in the next chapter by which the existence of entropy as a state function is derived and its changes defined. The
existence of entropy then leads on to the establishment of criteria for spontaneity and for various kinds of equilibria.
Innumerable useful relations (equalities) among heat, work, and state functions such as Gibbs energy can be obtained
for processes that are carried out reversibly.

Before reversible processes can be discussed, it is necessary to explain the meaning of the reverse of a process. If
a particular process takes the system from an initial state A through a continuous sequence of intermediate states to a
final state B, then the reverse of this process is a change over time from state B to state A with the same intermediate
states occurring in the reverse time sequence. To visualize the reverse of any process, imagine making a movie film
of the events of the process. Each frame of the film is a “snapshot” picture of the state at one instant. If you run the
film backward through a movie projector, you see the reverse process: the values of system properties such as p and
V appear to change in reverse chronological order, and each velocity changes sign.

If a process is spontaneous, which implies its reverse cannot be observed experimentally, the process is irre-
versible.

The concept of a reversible process is not easy to describe or to grasp. Perhaps the most confusing aspect is that a
reversible process is not a process that ever actually occurs, but is only approached as a hypothetical limit.

During a reversible process the system passes through a continuous sequence of equilibrium states. These states
are ones that can be approached, as closely as desired, by the states of a spontaneous process carried out sufficiently
slowly. The slower the process is, the more time there is between two successive intermediate states for equilibrium
to be approached. As the spontaneous process is carried out more and more slowly, it approaches the reversible limit.
Thus, a reversible process is an idealized process with a sequence of equilibrium states that are those of a spontaneous
process in the limit of infinite slowness.

Fermi3-2-! describes a reversible process as follows: “A transformation is said to be reversible when the
successive states of the transformation differ by infinitesimals from equilibrium states. A reversible
transformation can therefore connect only those initial and final states which are states of equilibrium.
A reversible transformation can be realized in practice by changing the external conditions so slowly
that the system has time to adjust itself gradually to the altered conditions.”

This book has many equations expressing relations among heat, work, and state functions during various kinds of
reversible processes. What is the use of an equation for a process that can never actually occur? The point is that the
equation can describe a spontaneous process to a high degree of accuracy, if the process is carried out slowly enough
for the intermediate states to depart only slightly from exact equilibrium states. For example, for many important
spontaneous processes we can assume the temperature and pressure are uniform throughout the system, although this
is only an approximation.

A reversible process of a closed system, as used in this book, has all of the following characteristics:

o [Itis an imaginary, idealized process in which the system passes through a continuous sequence of equilibrium
states. That is, the state at each instant is one that in an isolated system would persist with no tendency to
change over time. (This kind of process is sometimes called a quasistatic process.)

o The sequence of equilibrium states can be approximated, as closely as desired, by the intermediate states of
a real spontaneous process carried out sufficiently slowly. The reverse sequence of equilibrium states can
also be approximated, as closely as desired, by the intermediate states of another spontaneous process carried
out sufficiently slowly. (This requirement prevents any spontaneous process with hysteresis, such as plastic
deformation or the stretching of a metal wire beyond its elastic limit, from having a reversible limit.) During
the approach to infinite slowness, very slow changes of the type described in item 3 on page 40 must be
eliminated, i.e., prevented with hypothetical constraints.

3.2.1. Ref. [58], page 4.
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3.2 SPONTANEOUS, REVERSIBLE, AND IRREVERSIBLE PROCESSES 55

e The spontaneous process of a closed system that has a reversible limit must be a process with heat, or work,
or both—the system cannot be an isolated one. It must be possible for an experimenter to use conditions in the
surroundings to control the rate at which energy is transferred across the boundary by means of heat and work,
and thus to make the process go as slowly as desired.

o Ifenergy is transferred by work during a reversible process, the work coefficient Y in the expression dw =Y dX
must be finite (nonzero) in equilibrium states of the system. For example, if the work is given by dw=-F;"*dx
(Eq. 3.1.2), the force F,”® exerted by the system on the surroundings must be present when the system is in an
equilibrium state.

e In the reversible limit, any energy dissipation within the system, such as that due to internal friction, vanishes.
Internal energy dissipation is the situation in which energy transferred to the system by positive work is not
fully recovered in the surroundings when the sign of the work coordinate change dX is reversed.

 When any infinitesimal step of a reversible process takes place in reverse, the magnitudes of the heat dg and
work dw are unchanged and their signs are reversed. Thus, energy transferred as heat in one direction across
the boundary during a reversible process is transferred as heat in the opposite direction during the reverse
process. The same is true for the energy transferred as work.

We must imagine the reversible process to proceed at a finite rate, otherwise there would be no change of state over
time. The precise rate of the change is not important. Imagine a gas whose volume, temperature, and pressure are
changing at some finite rate while the temperature and pressure magically stay perfectly uniform throughout the
system. This is an entirely imaginary process, because there is no temperature or pressure gradient—no physical
“driving force”—that would make the change tend to occur in a particular direction. This imaginary process is a
reversible process—one whose states of uniform temperature and pressure are approached by the states of a real
process as the real process takes place more and more slowly.

It is a good idea, whenever you see the word “reversible,” to think “in the reversible limit.” Thus a reversible
process is a process in the reversible limit, reversible work is work in the reversible limit, and so on.

3.2.2 Reversibility and the surroundings

The reverse of a reversible process is itself a reversible process. As explained on page 55, the quantities of energy
transferred across the boundary as heat and work during a reversible process are returned across the boundary when
the reversible process is followed by the reverse process.

Some authors describe a reversible process as one that allows both the system and the surroundings to be restored
to their initial states.>>2 The problem with this description is that during the time period in which the process and its
reverse take place, spontaneous irreversible changes inevitably occur in the surroundings.

The textbook Heat and Thermodynamics by Zemansky and Dittman®23 states that “a reversible process is one
that is performed in such a way that, at the conclusion of the process, both the system and the local surroundings may
be restored to their initial states without producing any changes in the rest of the universe.” The authors explain that
by “local surroundings” they mean parts of the surroundings that interact directly with the system to transfer energy
across the boundary, and that “the rest of the universe” consists of what they call “auxiliary surroundings” that might
interact with the system.

They give as an example of local surroundings a weight whose lowering or raising causes work to be done on or
by the system, and a series of heat reservoirs placed in thermal contact with the system to cause heat transfer. The
auxiliary surroundings presumably include a way to lower or raise the weight and to move the heat reservoirs to
and away from the system. The control of these external operations would require a human operator or some sort
of automated mechanism whose actions would be spontaneous and irreversible. If these are considered to be part
of the auxiliary surroundings, as it seems they should be, then it would in fact not be possible for all the auxiliary
surroundings to return to their initial states as claimed.

3.2.2. For example, Ref. [115], page 73: “A process in which a system goes from state A to state B is defined to be (thermodynamically)
reversible, if it is possible to restore the system to the state A without producing permanent changes of any kind anywhere else.”
3.2.3. Ref. [186], page 158.
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Figure 3.2.1. Gas confined by a lubricated piston in a cylinder in contact with a heat reservoir (res).

The cylinder-and-piston device shown in Fig. 3.2.1 on page 56 can be used to illustrate a reversible process whose
reverse process does not restore the local surroundings.

The system in this example is the confined gas. The local surroundings are the piston (a weight), and the heat
reservoir of temperature T in thermal contact with the system. Initially, the gas pressure pushes the piston against
the catches, which hold it in place at elevation i,. The gas is in an equilibrium state at temperature 7.5, volume V|,
and pressure p;. To begin the process, the catches are removed. The piston moves upwards and comes to rest at an
elevation greater than /;. The gas has now changed to a new equilibrium state with temperature 7T;s, a volume greater
than Vi, and a pressure less than p;.

The rate of this expansion process is influenced by sliding friction in the surroundings at the lubricated seal between
the edge of the piston and the inner surface of the cylinder. Although the frictional drag force for a given lubricant
viscosity approaches zero as the piston velocity decreases, model calculations’2# show that the greater is the vis-
cosity, the slower is the expansion. Assume the lubricant has a high viscosity that slows the expansion enough to make
the intermediate states differ only slightly from equilibrium states. In the limit of infinite slowness, the process would
be a reversible isothermal expansion of the gas. The friction at the piston, needed for the approach to a reversible
expansion, produces thermal energy that is transferred as heat to the heat reservoir.

To reverse the expansion process, a weight is placed on the piston, causing the piston to sink and eventually return
to rest. Again friction at the piston causes heat transfer to the heat reservoir. The weight's mass is such that, after
the gas has become equilibrated with the heat reservoir, the piston has returned to its initial elevation /;. The system
has now returned to its initial state with 7 =T, V = V], and p = p;. In the limit of infinite slowness, this process is a
reversible isothermal compression that is the reverse of the reversible expansion.

Note that the local surroundings have not returned to their initial conditions: a weight has been added to the
piston, and the heat reservoir's internal energy has increased due to the friction at the piston. It would be possible to
restore these initial conditions, but the necessary operations would involve further irreversible changes in the auxiliary
surroundings.

Based on the above, it is apparent that it is neither useful nor valid to describe a reversible process as one for which
the surroundings can be restored. Instead, this book defines a reversible process by the characteristics listed on pages
54 and 55, involving only changes in the system itself, regardless of what happens in the surroundings. Such a process
can be described as having internal reversibility and as being internally reversible.’%

3.2.3 Irreversible processes

An irreversible process is a spontaneous process whose reverse is neither spontaneous nor reversible. That is, the
reverse of an irreversible process can never actually occur and is impossible. If a movie is made of a spontaneous
process, and the time sequence of the events depicted by the film when it is run backward could not occur in reality,
the spontaneous process is irreversible.

3.2.4. Ref. [46], Example 2.
3.2.5. Ref. [81], Section 14.7; Ref. [165], page 182; Ref. [42], Section 5.4.
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(a) (b)

Figure 3.2.2. Two purely mechanical processes that are the reverse of one another: a thrown ball moving through a vacuum (a) to the
right; (b) to the left.

A good example of a spontaneous, irreversible process is experiment 1 on page 51, in which the sinking of an
external weight causes a paddle wheel immersed in water to rotate and the temperature of the water to increase. During
this experiment mechanical energy is dissipated into thermal energy. Suppose you insert a thermometer in the water
and make a movie film of the experiment. Then when you run the film backward in a projector, you will see the paddle
wheel rotating in the direction that raises the weight, and the water becoming cooler according to the thermometer.
Clearly, this reverse processis impossible in the real physical world, and the process occurring during the experiment is
irreversible. It is not difficult to understand why it is irreversible when we consider events on the microscopic level: it
is extremely unlikely that the H,O molecules next to the paddles would happen to move simultaneously over a period
of time in the concerted motion needed to raise the weight.

3.2.4 Purely mechanical processes

There is a class of spontaneous processes that are also spontaneous in reverse; that is, spontaneous but not irreversible.
These are purely mechanical processes involving the motion of perfectly-elastic macroscopic bodies without friction,
temperature gradients, viscous flow, or other irreversible changes.

A simple example of a purely mechanical process and its reverse is shown in Fig. 3.2.2.

The ball can move spontaneously in either direction. Another example is a flywheel with frictionless bearings
rotating in a vacuum.

A purely mechanical process proceeding at a finite rate is not reversible, for its states are not equilibrium states.
Such a process is an idealization, of a different kind than a reversible process, and is of little interest in chemistry. Later
chapters of this book will ignore such processes and will treat the terms spontaneous and irreversible as synonyms.

3.3 Heat Transfer

This section describes irreversible and reversible heat transfer. Keep in mind that when this book refers to heat transfer
or heat flow, energy is being transferred across the boundary on account of a temperature gradient at the boundary.
The transfer is always in the direction of decreasing temperature.

We may sometimes wish to treat the temperature as if it is discontinuous at the boundary, with different values
on either side. The transfer of energy is then from the warmer side to the cooler side. The temperature is not actually
discontinuous; instead there is a thin zone with a temperature gradient.

3.3.1 Heating and cooling

As an illustration of irreversible heat transfer, consider a system that is a solid metal sphere. This spherical body is
immersed in a well-stirred water bath whose temperature we can control. The bath and the metal sphere are initially
equilibrated at temperature 77 = 300.0 K, and we wish to raise the temperature of the sphere by one kelvin to a final
uniform temperature 7, =301.0K.

One way to do this is to rapidly increase the external bath temperature to 301.0K and keep it at that temperature.
The temperature difference across the surface of the immersed sphere then causes a spontaneous flow of heat through
the system boundary into the sphere. It takes time for all parts of the sphere to reach the higher temperature, so a tem-
porary internal temperature gradient is established. Thermal energy flows spontaneously from the higher temperature
at the boundary to the lower temperature in the interior. Eventually the temperature in the sphere becomes uniform
and equal to the bath temperature of 301.0K.
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Figure 3.3.1. Temperature profiles in a copper sphere of radius 5cm immersed in a water bath. The temperature at each of the times
indicated is plotted as a function of r, the distance from the center of the sphere. The temperature at distances greater than 5 cm, to the
right of the vertical dashed line in each graph, is that of the external water bath.

(a) Bath temperature raised at the rate of 0.10K-s~!.

(b) Bath temperature raised infinitely slowly.

(c) Bath temperature lowered at the rate of 0.10K-s~!.

Figure 3.3.1(a)3.3.1 on page 58 raphically depicts temperatures within the sphere at different times during the
heating process. Note the temperature gradient in the intermediate states. Because of the gradient, these states cannot
be characterized by a single value of the temperature. If we were to suddenly isolate the system (the sphere) with a
thermally-insulated jacket while it is in one of these states, the state would change as the temperature gradient rapidly
disappears. Thus, the intermediate states of the spontaneous heating process are not equilibrium states, and the rapid
heating process is not reversible.

To make the intermediate states more nearly uniform in temperature, with smaller temperature gradients, we can
raise the temperature of the bath at a slower rate. The sequence of states approached in the limit of infinite slowness
is indicated in Fig. 3.3.1(b). In each intermediate state of this limiting sequence, the temperature is perfectly uniform
throughout the sphere and is equal to the external bath temperature. That is, each state has thermal equilibrium both
internally and with respect to the surroundings. A single temperature now suffices to define the state at each instant.
Each state is an equilibrium state because it would have no tendency to change if we isolated the system with thermal
insulation. This limiting sequence of states is a reversible heating process.

The reverse of the reversible heating process is a reversible cooling process in which the temperature is again
uniform in each state. The sequence of states of this reverse process is the limit of the spontaneous cooling process
depicted in Fig. 3.3.1(c) as we decrease the bath temperature more and more slowly.

In any real heating process occurring at a finite rate, the sphere's temperature could not be perfectly uniform in
intermediate states. If we raise the bath temperature very slowly, however, the temperature in all parts of the sphere
will be very close to that of the bath. At any point in this very slow heating process, it would then take only a small
decrease in the bath temperature to start a cooling process; that is, the practically-reversible heating process would be
reversed.

The important thing to note about the temperature gradients shown in Fig. 3.3.1(c) for the spontaneous cooling
process is that none resemble the gradients in Fig. 3.3.1(a) for the spontaneous heating process—the gradients are
in opposite directions. It is physically impossible for the sequence of states of either process to occur in the reverse
chronological order, for that would have thermal energy flowing in the wrong direction along the temperature gradient.
These considerations show that a spontaneous heat transfer is irreversible. Only in the reversible limits do the heating
and cooling processes have the same intermediate states; these states have no temperature gradients.

Although the spontaneous heating and cooling processes are irreversible, the energy transferred into the system
during heating can be fully recovered as energy transferred back to the surroundings during cooling, provided there is
no irreversible work. This recoverability of irreversible heat is in distinct contrast to the behavior of irreversible work.
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Figure 3.4.1. Forces acting on the piston (cross hatched) in a cylinder-and-piston device containing a gas (shaded). The direction of Fiyic
shown here is for expansion.

3.3.2 Spontaneous phase transitions

Consider a different kind of system, one consisting of the liquid and solid phases of a pure substance. At a given
pressure, this kind of system can be in transfer equilibrium at only one temperature: for example, water and ice at
1.01 bar and 273.15 K. Suppose the system is initially at this pressure and temperature. Heat transfer into the system
will then cause a phase transition from solid to liquid (Sec. 2.2.2). We can carry out the heat transfer by placing the
system in thermal contact with an external water bath at a higher temperature than the equilibrium temperature, which
will cause a temperature gradient in the system and the melting of an amount of solid proportional to the quantity of
energy transferred.

The closer the external temperature is to the equilibrium temperature, the smaller are the temperature gradients and
the closer are the states of the system to equilibrium states. In the limit as the temperature difference approaches zero,
the system passes through a sequence of equilibrium states in which the temperature is uniform and constant, energy
is transferred into the system by heat, and the substance is transformed from solid to liquid. This idealized process is
an equilibrium phase transition, and it is a reversible process.

3.4 Deformation Work

This and the four following sections (Secs. 3.5-3.8) describe some spontaneous, irreversible processes with various
kinds of work and illustrate the concept of a reversible limit for the processes that have such a limit.

The deformation of a system involves changes in the position, relative to the local frame, of portions of the system
boundary. At a small surface element T of the boundary, the work of deformation is given in general by the expres-
sion34-1

dw,=F"cosa,ds. 34.1)

where F3" is the magnitude of the contact force exerted by the surroundings on the surface element, ds is the infini-
tesimal displacement of the surface element in the local frame, and « is the angle between the directions of the force
and the displacement. If the displacement is entirely parallel to the x axis, the expression becomes equivalent to that
already given by Eq. 3.1.1 on page 48: dw = F;"" dx.

3.4.1 Gas in a cylinder-and-piston device

A useful kind of deformation for the development of thermodynamic theory is a change in the volume of a gas or
liquid.

As a model for the work involved in changing the volume of a gas, consider the arrangement shown in Fig. 3.4.1
on page 59.

A sample of gas is confined in a horizontal cylinder by a piston. The system is the gas. The piston is not part of
the system, but its position given by the variable x,;; determines the system's volume. Movement of the piston to the
right, in the +x direction, expands the gas; movement to the left, in the —x direction, compresses it.

3.4.1. From Eq. G.6.10 on page 412.
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We will find it instructive to look in detail at the forces acting on the piston. There are three kinds: the force
Fy, exerted in the +x direction by the gas; an external force Fey, in the —x direction, which we can control in the
surroundings; and a frictional force Fy;. in the direction opposite to the piston's velocity when the piston moves.

The friction occurs at the seal between the edge of the piston and the cylinder wall. We will assume this seal is
lubricated, and that Fy;. approaches zero as the piston velocity approaches zero.

Let py be the average pressure of the gas at the piston—that is, at the moving portion of the system boundary (the
subscript “b” stands for boundary). Then the force exerted by the gas on the piston is given by

Foas=pp Ag 3.4.2)

where A is the cross-section area of the cylinder.

The component in the +x direction of the net force Fy acting on the piston is given by
Fnel:Fgas_Fexl+Ffﬁc (343)

Here, Fy,, and F¢ are taken as positive. Fyjc is negative when the piston moves to the right, positive when the piston
moves to the left, and zero when the piston is stationary.

Suppose the system (the gas) initially is in an equilibrium state of uniform temperature 7 and uniform pressure pj,
and the piston is stationary, so that F;. is zero. According to Newton's second law of motion, the net force F. is also
zero, because otherwise the piston would be accelerating. Then, from Eqs. 3.4.2 and 3.4.3, the external force needed
to keep the piston from moving is Fey = Fgas = p1 As.

To avoid complications of heat transfer, we confine our attention to a system with an adiabatic boundary. By
reducing Fex from its initial value of p; A, we cause spontaneous expansion to begin. As the piston moves to the
right, the pressure py, exerted on the left face of the piston becomes slightly less than the pressure on the stationary
cylinder wall. The molecular explanation of this pressure gradient is that gas molecules moving to the right approach
the moving piston at lower velocities relative to the piston than if the piston were stationary, so that they collide with
the piston less frequently and with a smaller loss of momentum in each collision. The temperature and pressure within
the gas become nonuniform, and we cannot describe intermediate states of this spontaneous process with single values
of T and p. These intermediate states are not equilibrium states.

The more slowly we allow the adiabatic expansion to take place, the more nearly uniform are the temperature
and pressure. In the limit of infinite slowness, the gas passes through a continuous sequence of equilibrium states of
uniform temperature and pressure.

Let p, be the pressure in the final state of the infinitely-slow expansion. In this state, F is equal to p, A;. By
increasing Fex from this value, we cause spontaneous compression to begin. The gas pressure py, at the piston now
becomes slightly greater than at the stationary cylinder wall, because the piston is moving to the left toward the
molecules that are moving to the right. A different pressure gradient develops than during expansion. The states
approached in the limit as we carry out the compression more and more slowly are equilibrium states, occurring in the
reverse sequence of the states for expansion at infinite slowness. The sequence of equilibrium states, taken in either
direction, is a reversible process.

The magnitude of the effect of piston velocity on py, can be estimated with the help of the kinetic-
molecular theory of gases. This theory, of course, is not part of classical macroscopic thermodynamics.

Consider the collision of a gas molecule of mass m with the left face of the piston shown in Fig. 3.4.1.
Assume the piston moves at a constant velocity u = -dxp;s/d¢, positive for expansion of the gas and
negative for compression.

Let x be the horizontal distance of the molecule from the left end of the cylinder, and v, be the compo-

nent of its velocity in the +x direction measured in the cylinder-fixed lab frame: v, =dx/dz. Let vy be

the component of its velocity in the +x direction measured in a reference frame moving with the piston:
’

Vy=Vy—U.
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In one cycle of the molecule's motion, the molecule starts at the left end of the cylinder at time #;, moves
to the right with velocity v, ; >0, collides with and is reflected from the piston face, moves to the left
with velocity v, » <0, and finally collides with the left end at time #,. In the piston-fixed frame, the
collision with the piston changes the sign but not the magnitude of v;: v;,=-v; . Consequently, the
relation between the velocity components in the lab frame after and before the collision with the piston
is
Via—u = —(vy1—u)
Vi2 = —Vy1+2u (3.4.4)

At each instant during the collision itself, the interaction of the piston face with the gas molecule
changes v,. From Newton's second law, the force exerted on the molecule equals its mass times its
acceleration. From Newton's third law, the force F, exerted by the molecule on the piston has the
same magnitude and opposite sign of the force exerted on the molecule: F, =-mdv, /dt. F; is zero
at times before and after the collision. Rearrangement to F, df=-mdv, and integration over the time
interval of the cycle yields

15} 5]
F.dr= —mf dvy=-m(vx2—vy1) (34.5)
n 1

Then from the relation of Eq. 3.4.4, f;zFx dr equals 2m (v, 1 —u).
The time average (F,) of F, over the interval of the cycle is
1 2 2m(vy1—u)
Fy=—| F,di=—"-——- 3.4.6
(F) (r—11) f’l (t2=11) ( )

An expression for #, -, as a function of v, | and u can be derived using A= Ax/v,:

l -l l -1l 21 (vx,1—u)
h—t = + =—+ 3 ==
Vel Vx2 Vx1 TVxatZiU yi-2uve

(3.4.7)

Here [ is the interior length of the cylinder at the time the molecule collides with the piston.
From Eqgs. 3.4.6 and 3.4.7, the time average during the cycle of the force exerted by the gas molecule
on the piston is

2m (v —u) (Vi =2uve1) _m

— _ 2
(Fx)= e —10) =7 (e1=2uvyey) (3.4.8)

The gas consists of nM /m molecules, where n is the amount and M is the molar mass. There is a range
of values of v, ;. The total pressure py, exerted by the gas on the piston is found by summing (F) over
all molecules and dividing by the piston area Aj:

=) (50) () (@ -2utmn (3.49)

m

The pressure p at the stationary cylinder wall is found by setting u equal to zero in the expression for
Po. Thus py is related to p by34+2

pb=p(1—2u<v’;—'l)) (3.4.10)
i)

From kinetic-molecular theory, the averages are given by (v, 1)=(2RT /7 M) 12 and (v)%,l) =RT /M.
Suppose the piston moves at the considerable speed of 10% and the gas in the cylinder is nitrogen
(N») at 300K; then Eq. 3.4.10 predicts the pressure py, exerted on the piston by the gas during expan-
sion is only about 5% lower than the pressure p at the stationary wall, and during compression about
5% higher. At low piston speeds the percentage difference is proportional to the piston speed, so this
example shows that for reasonably slow speeds the difference is quite small and for practical calcula-
tions can usually be ignored.

3.4.2. A formula similar to this to the first order in u is given in Ref. [14]. A formula that yields similar values of py, appears in Ref. [9], Eq. 7.
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3.4.2 Expansion work of a gas

We now consider the work involved in expansion and compression of the gas in the cylinder-and-piston device of Fig.
3.4.1. This kind of deformation work, for both expansion and compression, is called expansion work or pressure-
volume work.

Keep in mind that the system is just the gas. The only moving portion of the boundary of this system is at the
inner surface of the piston, and this motion is in the +x or —x direction. The x component of the force exerted by the
system on the surroundings at this portion of the boundary, F,”*, is equal to Fy,. (The other forces shown in Fig. 3.4.1
are within the surroundings.) Applying the differential form of Eq. 3.1.2, we have dw = —Fg,, dxpis which, with the
substitution Fg,s = pp A (from Eq. 3.4.2), becomes

dw =—pp Agdxpis 34.11

It will be convenient to change the work coordinate from x,;s to V. The gas volume is given by V = A xp;s so that an
infinitesimal change dx changes the volume by dV = A dxpis. The infinitesimal quantity of work for an infinitesimal

volume change is then given by
(3.4.12)

dw=-ppdV (expansion work, closed system)

and the finite work for a finite volume change, found by integrating from the initial to the final volume, is

(3.4.13)

V2
W Vi podV (expansion work, closed system)

During expansion (positive dV), dw is negative and the system does work on the surroundings. During compression
(negative dV), dw is positive and the surroundings do work on the system.

When carrying out dimensional analysis, you will find it helpful to remember that the product of two
quantities with dimensions of pressure and volume (such as py,dV) has dimensions of energy, and that
1Pa-m3 is equal to 1J.

The integral on the right side of Eq. 3.4.13 is a line integral (Sec. E.4 on page 398). In order to evaluate the
integral, one must be able to express the integrand py, as a function of the integration variable V along the path of the
expansion or compression process.

If the piston motion during expansion or compression is sufficiently slow, we can with little error assume that the
gas has a uniform pressure p throughout, and that the work can be calculated as if the process has reached its reversible
limit. Under these conditions, Eq. 3.4.12 becomes

(3.4.14)
dw=-pdV (reversible expansion

work, closed system)

and Eq. 3.4.13 becomes
" (3.4.15)
w= —f pdV (reversible expansion
Vi

work, closed system)

The appearance of the symbol p in these equations, instead of py,, implies that the equations apply only to a process in
which the system has at each instant a single uniform pressure. As a general rule,an equation containing the symbol of
an intensive property not assigned to a specific phase is valid only if that property is uniform throughout the system,
and this will not be explicitly indicated as a condition of validity.

Some texts state that expansion work in a horizontal cylinder-and-piston device like that shown in Fig.
3.4.1 should be calculated from w = —f PextdV, where pey is a pressure in the surroundings that exerts
the external force F.x on the piston. However, if the system is the gas the correct general expression is
the one given by Eq. 3.4.13: w= —fpde. This is because it is the force Fys = pp A, that is exerted by
the system on the surroundings, whereas the force Fiy = pexi As is exerted by one part of the surround-
ings on another part of the surroundings.
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Figure 3.4.2. Deformation of an isotropic phase (shaded) confined by a wall.
(a) Equal and opposite forces exerted by the surroundings and system at surface element t (thick curve) of the system boundary.
(b) Change from initial volume (dotted curve) to a smaller volume.

In other words, if the integrals ngaS dxpis and [ Fext dxpis have different values, it is the first of these
two integrals that should be used to evaluate the work: w = — [Fy, dxpis. Both integrals are equal if
the expansion or compression process is carried out reversibly. This is because in the limit of infinite
slowness the piston has neither friction (Fyic =0) nor acceleration (Fpet=0), and therefore according to
Eq. 3.4.3, Fy, and Fy are equal throughout the process. Another situation in which the two integrals
are equal is when the piston is frictionless and is stationary in the initial and final states, because then
both Fgic and f Fretdxpis are zero. (The integral f Fretdxpis can be shown to be equal to the change in
the kinetic energy of the piston, by a derivation similar to that leading to Eq. G.1.5 on page 404.) In
the general irreversible case, however, the integrals [ Fy,sdxpis and [ Fex dxpis are not equal.>+3

3.4.3 Expansion work of an isotropic phase

Expansion work does not require a cylinder-and-piston device. Suppose the system is an isotropic fluid or solid phase,
and various portions of its boundary undergo displacements in different directions. Figure 3.4.2 on page 63 shows
an example of compression in a system of arbitrary shape. The deformation is considered to be carried out slowly,
so that the pressure p of the phase remains uniform. Consider the surface element © of the boundary, with area A,
7, indicated in the figure by a short thick curve. Because the phase is isotropic, the force F”° = p A . exerted by the
system pressure on the surroundings is perpendicular to this surface element; that is, there is no shearing force. The
force F§* exerted by the surroundings on the system is equal in magnitude to F.’* and is directed in the opposite
direction. The volume change for an infinitesimal displacement ds, that reduces the volume is dV; =—-A; ; ds-, so that
the work at this surface element (from Eq. 3.4.1 with ¢, =0) is dw,=-pdV,.

By summing the work over the entire boundary, we find the total reversible expansion work is given by the same
expression as for a gas in a piston-and-cylinder device: dw =—-pdV. This expression can be used for deformation
caused by reversible displacements of a confining wall, or for a volume change caused by slow temperature changes
at constant pressure. It is valid if the system is an isotropic fluid phase in which other phases are immersed, provided
the fluid phase contacts all parts of the system boundary. The expression is not necessarily valid for an anisotropic
fluid or solid, because the angle a, appearing in Eq. 3.4.1 might not be zero.

3.4.4 Generalities

The expression dw=—-pdV for reversible expansion work of an isotropic phase is the product of a work coefficient,
—p, and the infinitesimal change of a work coordinate, V. In the reversible limit, in which all states along the path of
the process are equilibrium states, the system has two independent variables, e.g., p and V or T and V. The number
of independent variables is one greater than the number of work coordinates. This will turn out to be a general rule:
The number of independent variables needed to describe equilibrium states of a closed system is one greater than the
number of independent work coordinates for reversible work.

3.4.3. For an informative discussion of this topic see Ref. [8]; also comments in Refs. [29], [7], [103], [6], and [130]; also Ref. [100].
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Another way to state the rule is as follows: The number of independent variables is one greater than the number
of different kinds of reversible work, where each kind i is given by an expression of the form dw;=Y;dX,.

3.5 Applications of Expansion Work

This book uses expansion work as a general term that includes the work of both expansion and compression of an
isotropic phase.

3.5.1 The internal energy of an ideal gas

The model of an ideal gas is used in many places in the development of thermodynamics. For examples to follow, the
following definition is needed: An ideal gas is a gas

1. whose equation of state is the ideal gas equation, pV =nRT; and
2. whose internal energy in a closed system is a function only of temperature.3--!

On the molecular level, a gas with negligible intermolecular interactions?--2 fulfills both of these requirements. Kinetic-
molecular theory predicts that a gas containing noninteracting molecules obeys the ideal gas equation. If intermol-
ecular forces (the only forces that depend on intermolecular distance) are negligible, the internal energy is simply the
sum of the energies of the individual molecules. These energies are independent of volume but depend on temperature.

The behavior of any real gas approaches ideal-gas behavior when the gas is expanded isothermally. As the molar
volume V;, becomes large and p becomes small, the average distance between molecules becomes large, and intermol-
ecular forces become negligible.

3.5.2 Reversible isothermal expansion of an ideal gas

During reversible expansion or compression, the temperature and pressure remain uniform. If we substitute p=nRT /
V from the ideal gas equation into Eq. (uninit) and treat n and T as constants, we obtain
(3.5.1)
1%
w=-nRT f : ﬂ =-nRT ln& (reversible isothermal
Vi |4 Vl . .
expansion work, ideal gas)

In these expressions for w the amount n appears as a constant for the process, so it is not necessary to state as a
condition of validity that the system is closed.

3.5.3 Reversible adiabatic expansion of an ideal gas

This section derives temperature-volume and pressure-volume relations when a fixed amount of an ideal gas is
expanded or compressed without heat.

First we need a relation between internal energy and temperature. Since the value of the internal energy of a fixed
amount of an ideal gas depends only on its temperature (Sec. 3.5.1), an infinitesimal change dT will cause a change
dU that depends only on 7 and dT:

dU=f(T)dT (3.5.2)

where f(T)=dU/dT is a function of T. For a constant-volume process of a closed system without work, we know
from the first law that dU is equal to dg and that dg/dT is equal to Cy, the heat capacity at constant volume (Sec.
3.1.5). Thus we can identify the function f(7T) as the heat capacity at constant volume:

(3.5.3)

dU=Cvdr (ideal gas, closed system)

3.5.1. A gas with this second property is sometimes called a “perfect gas”. In Sec. 7.2 it will be shown that if a gas has the first property, it
must also have the second.

3.5.2. This book uses the terms “intermolecular interactions” and “intermolecular forces” for interactions or forces between either multi-atom
molecules or unbonded atoms.
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The relation given by Eq. 3.5.3 is valid for any process of a closed system of an ideal gas of uniform temperature,
even if the volume is not constant or if the process is adiabatic, because it is a general relation between state functions.
In a reversible adiabatic expansion with expansion work only, the heat is zero and the first law becomes

dU=dw=-pdV (3.54)
We equate these two expressions for dU to obtain
CydT =-pdV (3.5.5)
and substitute p=nRT /V from the ideal gas equation:
chT=-”’éTdv (3.5.6)

It is convenient to make the approximation that over a small temperature range, Cy is constant. When we divide both
sides of the preceding equation by T in order to separate the variables 7 and V, and then integrate between the initial
and final states, we obtain

% dT v dv
C [, =R, 5 (3.5.7)
cvln%z—an% (35.8)

1 1

We can rearrange this result into the form

Th, nR, Vo V1 \R/Cv
I =~ In g2 =1 (72) (3.5.9)
and take the exponential of both sides:
T2 Vl nR/Cy
- (Vz) (3.5.10)
The final temperature is then given as a function of the initial and final volumes by
. (3.5.11)
=T (%) riev (reversible adiabatic
2

expansion, ideal gas)

This relation shows that the temperature decreases during an adiabatic expansion and increases during an adiabatic
compression, as expected from expansion work on the internal energy.
To find the work during the adiabatic volume change, we can use the relation

AU:de:CVf:dT

w

(3.5.12)
Cy(T,-T)) (reversible adiabatic

expansion, ideal gas)

To express the final pressure as a function of the initial and final volumes, we make the substitutions 71 =p, V,/nR
and T,=p, Vo/nR in Eq. 3.5.11 and obtain

nR/C
p’sz - pnl}‘;l (%) ) (3.5.13)
Solving this equation for p,, we obtain finally
Vi) 1+ (3.5.14)
P2=p1 (7;) v (reversible adiabatic

expansion, ideal gas)

The solid curve in Fig. 3.5.1 on page 66 shows how the pressure of an ideal gas varies with volume during a reversible
adiabatic expansion or compression. This curve is an adiabat. The dashed curves in the figure are isotherms showing
how pressure changes with volume at constant temperature according to the equation of state p=nRT/V. In the
direction of increasing V (expansion), the adiabat crosses isotherms of progressively lower temperatures. This cooling
effect, of course, is due to the loss of energy by the gas as it does work on the surroundings without a compensating
flow of heat into the system.
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Figure 3.5.1. An adiabat (solid curve) and four isotherms (dashed curves) for an ideal gas (n =0.0120mol, Cy ,=1.5R).

Figure 3.5.2. Indicator with paper-covered roll at left and pressure gauge at right. 354

3.5.4 Indicator diagrams

An indicator diagram (or pressure—volume diagram) is usually a plot of p as a function of V. The curve describes
the path of an expansion or compression process of a fluid that is essentially uniform. The area under the curve has the
same value as the integral [ pdV, which is the negative of the reversible expansion work given by w=-[ pdV. For
example, the area under the solid curve of Fig. 3.5.1 between any two points on the curve is equal to —w for reversible
adiabatic expansion or compression. If the direction of the process is to the right along the path (expansion), the area
is positive and the work is negative; but if the direction is to the left (compression), the area is taken as negative and

the work is positive.

More generally, an indicator diagram can be a plot of a work coefficient or its negative as a function of the work
coordinate. For example, it could be a plot of the pressure py at a moving boundary as a function of V. The area under
this curve is equal to [ p,dV, the negative of expansion work in general (Eq. 3.4.13).
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3.6 WORK IN A GRAVITATIONAL FIELD 67

Figure 3.5.3. Free expansion into a vacuum.

Historically, an indicator diagram was a diagram drawn by an ““indicator," an instrument invented by
James Watt in the late 1700s to monitor the performance of steam engines. The steam engine indicator
was a simple pressure gauge: a piston moving in a small secondary cylinder, with the steam pressure of
the main cylinder on one side of the piston and a compressed spring opposing this pressure on the other
side. A pointer attached to the small piston indicated the steam pressure. In later versions, the pointer
was replaced with a pencil moving along a paper-covered roll, which in turn was mechanically linked to
the piston of the main cylinder (see Fig. 3.5.2 on page 66). During each cycle of the engine, the pencil
moved back and forth along the length of the roll and the roll rotated in a reciprocating motion, causing
the pencil to trace a closed curve whose area was proportional to the net work performed by one cycle
of the engine.

3.5.5 Spontaneous adiabatic expansion or compression

Section 3.4.1 explained that during a rapid spontaneous expansion of the gas in the cylinder shown in Fig. 3.4.1,
the pressure py, exerted by the gas at the moving piston is less than the pressure at the stationary wall. Consequently
the work given by w=— [ p,dV is less negative for a spontaneous adiabatic expansion than for a reversible adiabatic
expansion with the same initial state and the same volume change.

During a rapid spontaneous compression, py, is greater than the pressure at the stationary wall. The work is positive
and greater for a spontaneous adiabatic compression than for a reversible adiabatic compression with the same initial
state and the same volume change.

These observations are summarized by the statement that, for an adiabatic expansion or compression with a given
change of the work coordinate, starting at a given initial equilibrium state, the work is algebraically smallest (least
positive or most negative) in the reversible limit. That is, in the reversible limit the surroundings do the least possible
work on the system and the system does the maximum possible work on the surroundings. This behavior will turn out
to be true of any adiabatic process of a closed system.

3.5.6 Free expansion of a gas into a vacuum

When we open the stopcock of the apparatus shown in Fig. 3.5.3 on page 67, the gas expands from the vessel at the left
into the evacuated vessel at the right. This process is called free expansion. The system is the gas. The surroundings
exert a contact force on the system only at the vessel walls, where there is no displacement. Thus, there is no work in
free expansion: dw =0.

If the free expansion is carried out adiabatically in a thermally-insulated apparatus, there is neither heat nor work
and therefore no change in the internal energy: A U =0. If the gas is ideal, its internal energy depends only on tem-
perature; thus the adiabatic free expansion of an ideal gas causes no temperature change.

3.6 Work in a Gravitational Field

Figure 3.6.1 on page 68 depicts a spherical body, such as a glass marble, immersed in a liquid or gas in the presence
of an external gravitational field. The vessel containing the fluid is stationary on a lab bench, and the local reference
frame for work is a stationary lab frame. The variable z is the body's elevation above the bottom of the vessel. All
displacements are parallel to the vertical z axis. From Eq. 3.1.1, the work is given by dw = F;" dz where F" is the
upward component of the net contact force exerted by the surroundings on the system at the moving portion of the
boundary. There is also a downward gravitational force on the body, but as explained in Sec. (uninit), this force does
not contribute to F;'.
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Figure 3.6.1. Spherical body (dark gray) in a gravitational field. The arrows indicate the directions and magnitudes of contact and
gravitational forces exerted on the body.

(a) The body falls freely through a fluid.

(b) The body is lowered on a string through the fluid.

Consider first the simple process in Fig. 3.6.1(a) in which the body falls freely through the fluid. This process is
clearly spontaneous. Here are two choices for the definition of the system:

e The system is the combination of the spherical body and the fluid. The system boundary is where the fluid
contacts the atmosphere and the vessel walls. Because there is no displacement of this boundary, no work is
being done on or by the system: dw=0. (We ignore expansion work caused by the small temperature increase.)
If the process is adiabatic, the first law tells us the system's internal energy remains constant: as the body loses
gravitational potential energy, the system gains an equal quantity of kinetic and thermal energy.

o The system is the body; the fluid is in the surroundings. The upward components of the forces exerted on the
body are (1) a gravitational force —m g, where m is the body's mass and g is the acceleration of free fall; (2)
a buoyant force>®! Fyo, = p V' g, where p is the fluid density and V” is the volume of the body; and (3) a
frictional drag force Fyic of opposite sign from the velocity v=dz/d¢. As mentioned above, the gravitational
force is not included in F;*". Therefore the gravitational work is given by

dw=F"dz= (Fouoy + Friic) dz 3.6.1)

and is negative because dz is negative: the body as it falls does work on the fluid.The positive quantity |Fpyoy dz|
is the work of moving displaced fluid upward, and |Fj;. dz| is the energy dissipated by friction to thermal
energy in the surroundings. This process has no reversible limit, because the rate of energy transfer cannot be
controlled from the surroundings and cannot be made to approach zero.

Next, consider the arrangement in Fig. 3.6.1(b) in which the body is suspended by a thin string. The string is in the
surroundings and provides a means for the surroundings to exert an upward contact force on the body. As before, there
are two appropriate choices for the system:

e The system includes both the body and the fluid, but not the string. The moving part of the boundary is at the
point where the string is attached to the body. The force exerted here by the string is an upward force , and
the gravitational work is given by dw = F"" dz = Fy,dz. According to Newton's second law, the net force on
the body equals the product of its mass and acceleration: (=m g + Fyuoy + Firic + Fgir) =mdv/dz. Solving this
equation for Fg,, we obtain

Fye= (mg_Fbuoy_Ffric+ mdv/dt) 3.6.2)

We can therefore express the work in the form

dw = Fydz = (m g — Foyoy — Fric + mdv /dt) dz (3.6.3)

3.6.1. The buoyant force is a consequence of the pressure gradient that exists in the fluid in a gravitational field (see Sec. 8.1.4). We ignore
this gradient when we treat the fluid as a uniform phase.
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System A System B

Figure 3.7.1. Two systems with shaft work. The dashed rectangles indicate the system boundaries. System A has an internal weight,
cord, and pulley wheel in air; system B has a stirrer immersed in water.

This work can be positive or negative, depending on whether the body is being pulled up or lowered by the
string. The quantity (mdv/d¢) dz is an infinitesimal change of the body's kinetic energy Ey,>% so that the inte-
gral [ (mdv/dt)dzis equal to A Ey. The finite quantity of work in a process that starts and ends in equilibrium
states, so that A Ey is zero, is therefore

w:fdw: (Mg~ Fouoy) Az-mecdz (3.6.4)

The work has a reversible limit, because the string allows the velocity v to be controlled from the surroundings.
As v approaches zero from either direction, Fy;c approaches zero and the work approaches the reversible limit
w = (mg—Fyuoy) Az. (If the fluid is a gas whose density is much smaller than the density of the body, Fiuoy
can be neglected in comparison with m g, and the reversible work can be written w=m g A z.) Ffic and dz
have opposite signs, so w for a given change of the work coordinate z is least positive or most negative in the
reversible limit.

o The system is the body only. In this case, F;"" is equal to (Fyuoy + Ftric + Fsr) Which by substitution from Eq.
3.6.2is (mg+mdv/dt). The work is then given by
dw=F"dz=(mg+mdv/dt)dz (3.6.5)

For a process that begins and ends in equilibrium states, A Ex is zero and the finite work is w =m g A z,unaf-
fected by the velocity v during the process. The expressions for infinitesimal and finite work in the reversible

limit are
(3.6.6)
dw=mgdz and w=mgAz (reversible gravitational
work of a body)

When we compare Eqs. 3.6.3 and 3.6.5, we see that the work when the system is the body is greater by the quantity
(Fouoy + Fiic) dz than the work when the system is the combination of body and fluid, just as in the case of the freely-
falling body. The difference in the quantity of work is due to the different choices of the system boundary where
contact forces are exerted by the surroundings.

3.7 Shaft Work

Shaft work refers to energy transferred across the boundary by a rotating shaft.

The two systems shown in Fig. 3.7.1 on page 69 will be used to illustrate two different kinds of shaft work. Both
systems have a straight cylindrical shaft passing through the system boundary. Let ¢#37! be the angle of rotation of
the shaft in radians, and w be the angular velocity d¢ /dz.

3.6.2. To prove this, we write m (dv/dt)dz=m (dz/dt) dv=mvdv= d(%mvz) =dEk.
3.7.1. The symbol ¥ is GREEK THETA SYMBOL at Unicode point U+03D1.
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w w
w w
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Figure 3.7.2. Shaft work w for a fixed magnitude of shaft rotation A ¢ as a function of the angular velocity w =d /dt. The open circles
indicate work in the limit of infinite slowness. (a) System A of Fig. 3.7.1. (b) System B of Fig. 3.7.1.

Tangential forces imposed on one of these shafts can create a torque gy, at the lower end within the system,
and a torque T, at the upper end in the surroundings.’-2 The sign convention for a torque is that a positive value
corresponds to tangential forces in the rotational direction in which the shaft turns as ¢ increases.

The condition for w to be zero, or finite and constant (i.e., no angular acceleration), is that the algebraic sum of the
imposed torques be zero: Ty =—Ts,,. Under these conditions of constant w, the torque couple creates rotational shear
forces in the circular cross section of the shaft where it passes through the boundary. These shear forces are described
by an internal torque with the same magnitude as 7y and Ty, Applying the condition for zero angular acceleration
to just the part of the shaft within the system, we find that 7y is balanced by the internal torque 7y, exerted on this part
of the shaft by the part of the shaft in the surroundings: Ty, = —Tsys. The shaft work is then given by the formula

3.7.1)
(shaft work, constant w)

2 2

w= Im TdV = —Ll Ty 0}
In system A of Fig. 3.7.1, when w is zero the torque Ty is due to the tension in the cord from the weight of mass m,
and is finite: 74y, =-mgr where r is the radius of the shaft at the point where the cord is attached. When w is finite
and constant, frictional forces at the shaft and pulley bearings make 7y, more negative than —mgr if w is positive, and
less negative than —m g r if w is negative. Figure 3.7.2(a) on page 70 shows how the shaft work given by Eq. (uninit)
depends on the angular velocity for a fixed value of |}, — 1}{|. The variation of w with w is due to the frictional forces.
System A has finite, reversible shaft work in the limit of infinite slowness (w — 0) given by w=mgr A ¢¥. The shaft
work is least positive or most negative in the reversible limit.

In contrast to system A, the shaft work in system B has no reversible limit, as discussed in the next section.

3.7.1 Stirring work

The shaft work done when a shaft turns a stirrer or paddle to agitate a liquid, as in system B of Fig. 3.7.1 on page 69,
is called stirring work.

In system B, when the angular velocity w is zero and the water in which the stirrer is immersed is at rest, the
torques Ty and Ty, are both zero. When o is finite and constant, the water is stirred in a turbulent manner and there
is a frictional drag force at the stirrer blades, as well as frictional forces at the shaft bearings. These forces make the
value of T4y have the opposite sign from w, increasing in magnitude the greater is the magnitude of w. As a result,
the stirring work for a fixed value of |, — 1| depends on w in the way shown in Fig. 3.7.2(b). The work is positive
for finite values of w of either sign, and approaches zero in the limit of infinite slowness.

3.7.2. A torque is a moment of tangential force with dimensions of force times distance.

70



3.7 SHAFT WORK 71

opening for
thermometer

Photo by Mirko Junge / CC BY-SA / cropped from original
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Figure 3.7.3. Joule paddle wheel.
(a) Joule's original paddle wheel on exhibit at the Science Museum, London.
(b) Cross-section elevation of paddle wheel and water in copper vessel. Dark shading: rotating shaft and paddle arms; light shading:

stationary vanes.

Stirring work is an example of dissipative work. Dissipative work is work that is positive for both positive and
negative changes of the work coordinate, and therefore cannot be carried out reversibly. Energy transferred into the
system by dissipative work is not recovered as work done on the surroundings when the work coordinate is reversed.
In the case of stirring work, if the shaft rotates in one direction work is done on the system; if the rotation direction is
reversed, still more work is done on the system. The energy transferred to the system by stirring work is converted by
friction within the system into the random motion of thermal energy: the energy is completely dissipated.

Because energy transferred to the system by dissipative work is converted to thermal energy, we could replace this
work with an equal quantity of positive heat and produce the same overall change. The replacement of stirring work
with heat was illustrated by experiment 3 on page 51.

The shaft rotation angle ¢, which is the work coordinate for stirring work, is a property of the system but is not
a state function, as we can see by the fact that the state of the system can be exactly the same for + =0 and ¢ =2 .
The work coordinate and work coefficient of work with a reversible limit are always state functions,whereas the work
coordinate of any kind of dissipative work is not a state function.

In system B of Fig. 3.7.1, there is in addition to the stirring work the possibility of expansion work given by
dw=-pdV. When we take both kinds of work into account, we must treat this system as having two work coordinates:
¢ for stirring work and V for expansion work. Only the expansion work can be carried out reversibly. The number of
independent variables in equilibrium states of this system is two, which we could choose as 7" and V. Thus, the number
of independent variables of the equilibrium states is one greater than the number of work coordinates for reversible
work, in agreement with the general rule given on page 63.

3.7.2 The Joule paddle wheel

A good example of the quantitative measurement of stirring work is the set of experiments conducted by James Joule
in the 1840s to determine the “mechanical equivalent of heat.” In effect, he determined the quantity of dissipative
stirring work that could replace the heat needed for the same temperature increase.

Joule's apparatus contained the paddle wheel shown in Fig. 3.7.3 on page 71. It consisted of eight sets of metal
paddle arms attached to a shaft in a water-filled copper vessel. When the shaft rotated, the arms moved through
openings in four sets of stationary metal vanes fixed inside the vessel, and churned the water. The vanes prevented the
water from simply moving around in a circle. The result was turbulent motion (shearing or viscous flow) in the water
and an increase in the temperature of the entire assembly.
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Figure 3.7.4. Joule's apparatus for measuring the mechanical equivalent of heat (redrawn from a figure in Ref. [92]).

Key: A—paddle wheel and vessel (see Fig. 3.7.3); B—wood thermal insulator; C—pin used to engage paddle wheel shaft to roller;
D—roller; E—crank used to wind up the weights; F, G—strings; H, I—pulley wheels; J, K—weights (round lead disks, viewed here
edge-on).

The complete apparatus is depicted in Fig. 3.7.4 on page 72. In use, two lead weights sank and caused the paddle
wheel to rotate. Joule evaluated the stirring work done on the system (the vessel, its contents, and the lid) from the
change of the vertical position /4 of the weights. To a first approximation, this work is the negative of the change of
the weights' potential energy: w =—-mg A h where m is the combined mass of the two weights. Joule made corrections
for the kinetic energy gained by the weights, the friction in the connecting strings and pulley bearings, the elasticity
of the strings, and the heat gain from the air surrounding the system.

A typical experiment performed by Joule is described in Prob. 3.3.11.10 on page (uninit). His results for the
mechanical equivalent of heat, based on 40 such experiments at average temperatures in the range 13 °C-16 °C and
expressed as the work needed to increase the temperature of one gram of water by one kelvin, was 4.165]. This value
is close to the modern value of 4.185517 for the “15 °C calorie,” the energy needed to raise the temperature of one gram
of water from 14.5°C to 15.5°C.373

3.7.3. The thermochemical calorie (cal), often used as an energy unit in the older literature, is defined as 4.184J. Thus 1kcal=4.184kJ.
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BIOGRAPHICAL SKETCH

JAMES PRESCOTT JOULE (1818-1889)

James Joule drove the final nails into the coffin of the caloric
theory by his experimental demonstrations of the mechanical
equivalent of heat.

Joule (pronounced like “jewel””) was born in Salford, near
Manchester, England. His father was a prosperous brewery
owner; after his death, James and one of his brothers carried on
the business until it was sold in 1854.

Joule was a sickly child with a minor spinal weakness. He
was tutored at home, and at the age of 16 was a pupil of the
atomic theory advocate John Dalton.

As an adult, Joule was a political conservative and a member
of the Church of England. He dressed plainly, was of a some-
what nervous disposition, and was a poor speaker. He was shy
and reserved unless with friends, had a strong sense of humor,
and loved nature.

Joule never attended a university or had a university appoint-
ment, but as an “amateur” scientist and inventor he published
over 100 papers (some of them jointly with collaborators) and
received many honors. He invented arc welding and a mercury
displacement pump. He carried out investigations on electrical
heating and, in collaboration with William Thomson, on the
cooling accompanying the expansion of a gas through a porous
plug (the Joule-Thomson experiment). The joule, of course, is
now the SI derived unit of energy.

Joule's best-known experiment was the determination of the
mechanical equivalent of heat using a paddle wheel to agitate
water (Sec. 3.7.2 and Prob. 3.3.11.10). He reported his results
in 1845, and published a more refined measurement in 1850.374

3.7.4. Ref. [92].

In a note dated 1885 in his Collected Papers, Joule wrote:

It was in the year 1843 that I read a paper
“On the Calorific Effects of Magneto-Electricity
and the Mechanical Value of Heat” to the Chem-
ical Section of the British Association assembled
at Cork. With the exception of some eminent
men ...the subject did not excite much general
attention; so that when I brought it forward again
at the meeting in 1847, the chairman suggested
that, as the business of the section pressed, |
should not read my paper, but confine myself to a
short verbal description of my experiments. This
I endeavoured to do, and discussion not being
invited, the communication would have passed
without comment if a young man had not risen
in the section, and by his intelligent observations
created a lively interest in the new theory. The
young man was William Thomson, who had two
years previously passed the University of Cam-
bridge with the highest honour, and is now prob-
ably the foremost scientific authority of the age.

The William Thomson mentioned in Joule's note later became
Lord Kelvin. Thomson described introducing himself to Joule
after the 1847 meeting, which was in Oxford, as a result of which
the two became collaborators and life-long friends. Thomson

wrote:37-

Joule's paper at the Oxford meeting made a
great sensation. Faraday was there and was much
struck with it, but did not enter fully into the new
views. It was many years after that before any of
the scientific chiefs began to give their adhesion.

According to a biographer:37¢

His modesty was always notable. 'I believe,'
he told his brother on 14 Sept. 1887, 'Thave done
two or three little things, but nothing to make a
fuss about.' During the later years of his life he
received many distinctions both English and for-
eign.

3.7.5. Ref. [17].
3.7.6. Ref. [71].

3.8 Electrical Work

The electric potential ¢ at a point in space is defined as the work needed to reversibly move an infinitesimal test charge
from a position infinitely far from other charges to the point of interest, divided by the value of the test charge.The
electrical potential energy of a charge at this point is the product of ¢ and the charge.
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3.8.1 Electrical work in a circuit

Electric current is usually conducted in an electrical circuit. Consider a thermodynamic system that is part of a circuit:
in a given time period electrons enter the system through one wire, and an equal number of electrons leave through a
second wire. To simplify the description, the wires are called the right conductor and the /eft conductor.

The electric potentials experienced by a electron in the right and left conductors are ¢g and ¢y, respectively. The
electron charge is —e, where e is the elementary charge (the charge of a proton). Thus the electrical potential energy of
an electron is —¢r e in the right conductor and —¢; e in the left conductor. The difference in the energies of an electron
in the two conductors is the difference in the electrical potential energies.

The sum of charges of a small number of electrons can be treated as an infinitesimal negative charge. During a
period of time in which an infinitesimal charge dQys enters the system at the right conductor and an equal charge
leaves at the left conductor, the contribution of the electric current to the internal energy change is the energy differ-
ence (¢prdQsys— P dOsys) = (Pr— P1)dQsys. (The notation is dQsys instead of dQgys, because Qyys is a path function.)
This internal energy change is called electrical work. Thus the general formula for an infinitesimal quantity of elec-
trical work when the system is part of an electrical circuit is

(3.8.1)

dwer=A ¢ dQuys (electrical work in a circuit)

where A ¢ is the electric potential difference defined by

def
Ap = ¢r—¢L (3.8.2)

Note that in the expression (¢ RdQys— 1. dQsys) for the energy difference, the term ¢r dQsys does
not represent the energy transferred across the boundary at the right conductor, and —¢r dQsys is not
the energy transferred at the left conductor. These energies cannot be measured individually, because
they include not just the electrical potential energy but also the energy of the rest mass of the electrons.
The reason we can write Eq. 3.8.1 for the electrical work in a circuit is that equal numbers of electrons
enter and leave the system, so that the net energy transferred across the boundary depends only on the
difference of the electric potential energies. Because the number of electrons in the system remains
constant, we can treat the system as if it were closed.

Why should we regard the transfer of energy across the boundary by an electric current as a kind of
work? One justification for doing so is that the energy transfer is consistent with the interpretation of
work discussed on page 49: the only effect on the surroundings could be a change in the elevation of
an external weight. For example, the weight when it sinks could drive a generator in the surroundings
that does electrical work on the system, and electrical work done by the system could run an external
motor that raises the weight.

What is the meaning of Qsy in the differential dQyy? We define Qyys as the total cumulative charge, positive or
def
negative, that has entered the system at the right conductor since the beginning of the process: Qsys = [ dQgys. Qsysisa

path function for charge, and dQyy; is its inexact differential, analogous to g and dq for heat. Because the charge of an
electron is negative, dQsy is negative when electrons enter at the right conductor and positive when they leave there.

The electric current / is the rate at which charges pass a point in the circuit: / = dQyys/ dt, where ¢ is time. We take
I as negative if electrons enter at the right conductor and positive if electrons leave there. This relation provides an
alternative form of Eq. 3.8.1:

(3.8.3)

dwer=1A ¢ dt (electrical work in a circuit)

Equations 3.8.1 and 3.8.3 are general equations for electrical work in a system that is part of a circuit. The electric
potential difference A ¢ which appears in these equations may have its source in the surroundings, as for electrical
heating with a resistor discussed in the next section, or in the system, as in the case of a galvanic cell (Sec. 3.8.3).
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Figure 3.8.1. System containing an electrical resistor immersed in a liquid. The dashed rectangle indicates the system boundary.

3.8.2 Electrical heating

Figure 3.8.1 on page 75 shows an electrical resistor immersed in a liquid. We will begin by defining the system to
include both the resistor and the liquid. An external voltage source provides an electric potential difference A ¢ across
the wires. When electrons flow in the circuit, the resistor becomes warmer due to the ohmic resistance of the resistor.
This phenomenon is variously called electrical heating, Joule heating, ohmic heating, or resistive heating. The heating
is caused by inelastic collisions of the moving electrons with the stationary atoms of the resistor, a type of friction. If
the resistor becomes warmer than the surrounding liquid, there will be a transfer of thermal energy from the resistor
to the liquid.

The electrical work performed on this system is given by the expressions dwe; = A ¢ dQgys and dwe =1 A ¢ dt (Egs.
3.8.1 and 3.8.3). The portion of the electrical circuit inside the system has an electric resistance given by Rej=A ¢ /1
(Ohm's law). Making the substitution A ¢ =1R,) in the work expressions gives two new expressions for electrical work
in this system:

dwel =R dsts (3.8.4)
dwe =1% R dt (3.8.3)

The integrated form of Eq. 3.8.4 when I and R, are constant is we; =1 R Qsys. When the source of the electric potential
difference is in the surroundings, as it is here, I and Qg have the same sign, so wy is positive for finite current and
zero when there is no current. Figure 3.8.2 on page 75 shows graphically how the work of electrical heating is positive
for both positive and negative changes of the work coordinate Qsys and vanishes as /, the rate of change of the work
coordinate, approaches zero. These are characteristic of irreversible dissipative work (page 71). Note the resemblance
of Fig. 3.8.2 to Fig. 3.7.2(b) on page 70 for dissipative stirring work—they are the same graphs with different labels.

Suppose we redefine the system to be only the liquid. In this case, electric current passes through the resistor
but not through the system boundary. There is no electrical work, and we must classify energy transfer between the
resistor and the liquid as heat.

Figure 3.8.2. Work of electrical heating with a fixed magnitude of Qyys as a function of the electric current I = dQsys/dz. The open circle
indicates the limit of infinite slowness.
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Figure 3.8.3. Galvanic cell and external electrical resistor.
(a) Open circuit with isolated cell in an equilibrium state.
(b) Closed circuit.

3.8.3 Electrical work with a galvanic cell

A galvanic cell is an electrochemical system that, when isolated, exhibits an electric potential difference between the
two terminals at the system boundary. The potential difference has its source at the interfaces between phases within
the cell.

Consider the combination of galvanic cell and electrical resistor in Fig. 3.8.3 on page 76, and let the system be the
cell. When an electric current passes through the cell in either direction, a cell reaction takes place in one direction or
the other.

In a manner similar to the labeling of the conductors of a circuit, the cell terminals are called the right terminal and
the left terminal. The cell potential E.. is the electric potential difference between the terminals, and is defined by

def
Ecal = ¢r—L (3.8.6)

When the cell is in an isolated zero-current equilibrium state, as in Fig. 3.8.3(a), the cell potential is the equilibrium
cell potential Eceyj eq. When the cell is part of an electrical circuit with an electric current passing through the cell, as
in Fig. 3.8.3(b), Ece is different from Eej¢q On account of the internal resistance R of the cell:

E= Ecell,eq +1Rcent (3.8.7)

The sign of the current / is negative when electrons enter the cell at the right terminal, and positive when electrons
leave there.

In the circuit shown in Fig. 3.8.3(b), the cell does electrical work on the resistor in the surroundings. The energy
for this work comes from the cell reaction. The formula for the electrical work is given by Eq. 3.8.1 with A ¢ replaced
by Ecell:

dwer = Ecen dsts (3.8.8)

The figure shows E as positive and dQ,y as negative, so for this arrangement dwy is negative.

When current passes through the cell, the work done is irreversible because the internal resistance causes energy
dissipation. We can make this work approach a finite reversible limit by replacing the external resistor shown in Fig.
3.8.3(b) with an adjustable voltage source that we can use to control the cell potential E.; and the current /. According
to Eq. 3.8.7, Eqy is greater than Ecej .q when [ is positive, and is less than Ecej .q when [ is negative. This behavior is
shown graphically in Fig. 3.8.4 on page 77.
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3.9 IRREVERSIBLE WORK AND INTERNAL FRICTION 77

Figure 3.8.4. Electrical work of a galvanic cell for a fixed magnitude of Qsys as a function of the electric current / = dQsys/dt. Open
circles: reversible limits.

In the limit as the electric current approaches zero from either direction and the external adjustable voltage
approaches Ec g, the electrical work approaches a reversible limit given by

dWel,rev = Lecell,eq dsts (3.8.9)

Note that the electrical work is the least positive or most negative in the reversible limit.

Thus, unlike the dissipative work of stirring and electrical heating, electrical work with a galvanic cell has a
nonzero reversible limit, as reflected by the difference in the appearance of Fig. 3.8.4 compared to Figs. 3.7.2 and
3.8.2. During irreversible electrical work of a galvanic cell, there is only partial dissipation of energy within the cell:
the energy transferred across the boundary by the work can be partially recovered by returning the work coordinate
Qyys to its initial value.

On page (uninit) the observation was made that the work coordinate of work with a reversible limit is
always a state function. Electrical work with a galvanic cell does not contradict this statement, because
the work coordinate Qyys is proportional to the extent of the cell reaction, a state function.

The thermodynamics of galvanic cells will be treated in detail in Chap. 14.

3.9 Irreversible Work and Internal Friction

Consider an irreversible adiabatic process of a closed system in which a work coordinate X changes at a finite rate
along the path, starting and ending with equilibrium states. For a given initial state and a given change A X, the work
is found to be less positive or more negative the more slowly is the rate of change of X. The work is least positive or
most negative in the limit of infinite slowness—that is, the least work needs to be done on the system, or the most work
can be done by the system on the surroundings. This minimal work principle is illustrated in Sec. 3.5.5 for expansion
work, Sec. 3.6 for work in a gravitational field, and Sec. 3.8.3 for electrical work with a galvanic cell.

Let wj, be the work during an irreversible adiabatic process occurring at a finite rate, and wg be the adiabatic work
for the same initial state and the same value of A X in the limit of infinite slowness. According to the minimal work
principle, the difference wi.—wy is positive. wy is the reversible work if the work has a reversible limit: compare Figs.
3.7.2(a) and 3.7.2(b) for shaft work with and without a reversible limit, respectively; also Figs. 3.8.2 and 3.8.4 for
electrical work without and with a reversible limit.

Conceptually, we can attribute the positive value of wj, —wy to internal friction that dissipates other forms of
energy into thermal energy within the system. Internal friction is not involved when, for example, a temperature
gradient causes heat to flow spontaneously across the system boundary, or an irreversible chemical reaction takes place
spontaneously in a homogeneous phase. Nor is internal friction necessarily involved when positive work increases the
thermal energy: during an infinitely slow adiabatic compression of a gas, the temperature and thermal energy increase
but internal friction is absent—the process is reversible.

During a process with internal friction, energy dissipation can be either partial or complete. Dissipative work, such
as the stirring work and electrical heating described in Sec. 3.7.1 and Sec. 3.8.2, is irreversible work with complete
energy dissipation and no reversible limit. The final equilibrium state of an adiabatic process with dissipative work can
also be reached by a path in which positive heat replaces the dissipative work. This is a special case of the minimal
work principle.
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Figure 3.9.1. Cylinder and piston with internal sliding friction. The dashed rectangle indicates the system boundary. P—piston;
R—internal rod attached to the piston; B—bushing fixed inside the cylinder. A fixed amount of gas fills the remaining space inside
the cylinder.

As a model for work with partial energy dissipation, consider the gas-filled cylinder-and-piston device depicted
in Fig. 3.9.1 on page 78. This device has an obvious source of internal friction in the form of a rod sliding through a
bushing. The system consists of the contents of the cylinder to the left of the piston, including the gas, the rod, and the
bushing; the piston and cylinder wall are in the surroundings.
From Eq. 3.1.2, the energy transferred as work across the boundary of this system is
w=—f“FSYde (3.9.1)
X
where x is the piston position and F** is the component in the direction of increasing x of the force exerted by the
system on the surroundings at the moving boundary.
For convenience, we let V be the volume of the gas rather than that of the entire system. The relation between
changes of V and x is dV = A dx where Aj is the cross-section area of the cylinder. We also define p**® to be the total
force per unit area exerted by the system: p®*=F**/ A;. With V replacing x as the work coordinate, Eq. 3.9.1 becomes

1% V2
—_ sys —_ sys
w fv, (F¥S/ Ay dV f A (3.9.2)
Equation 3.9.2 shows that a plot of p**® as a function of V is an indicator diagram (Sec. 3.5.4), and that the work is
equal to the negative of the area under the curve of this plot.

We can write the force F*® as the sum of two contributions:3-!
F=pAg+ Fic (3.9.3)

Here p is the gas pressure, and Fy;;. is the force exerted on the rod due to internal friction with sign opposite to that of
the piston velocity dx/dz. Substitution of this expression for F** in Eq. 3.9.2 gives

1% Va
w= -fvl pdv - IVI (Fine/Ay)dV (3.9.4)

The first term on the right is the work of expanding or compressing the gas. The second term is the frictional work:
Wiric = —f (Ffic/ As) dV. The frictional work is positive or zero, and represents the energy dissipated within the system
by internal sliding friction.

The motion of the piston is controlled by an external force applied to the right face of the piston. The internal
friction at the bushing can be either lubricated friction or dry friction.

If the contact between the rod and bushing is lubricated, a film of fluid lubricant separates the two solid surfaces
and prevents them from being in direct contact. When the rod is in motion, the adjacent fluid layer moves with it, and
the layer next to the bushing is stationary. Adjacent layers within the film move relative to one another. The result
is shear stress (page (uninit)) and a frictional force exerted on the moving rod. The frictional force depends on the
lubricant viscosity, the area of the film, and the velocity of the rod. As the rod velocity approaches zero, the frictional
force also approaches zero.

3.9.1. This equation assumes the gas pressure is uniform and a term for the acceleration of the rod is negligible.
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Figure 3.9.2. Indicator diagrams for the system of Fig. 3.9.1 with internal lubricated friction.
Solid curves: p** for irreversible adiabatic volume changes at finite rates in the directions indicated by the arrows.
Dashed curves: p™* = p along a reversible adiabat.
Open circles: initial and final equilibrium states.
(a) Adiabatic expansion.
(b) Adiabatic compression.

In the limit of infinite slowness Fyic and wyic vanish, and the process is reversible with expansion work given by
w=—[pdV.

The situation is different when the piston moves at an appreciable finite rate. The frictional work wy;. is then
positive. As a result, the irreversible work of expansion is less negative than the reversible work for the same volume
increase, and the irreversible work of compression is more positive than the reversible work for the same volume
decrease. These effects of piston velocity on the work are consistent with the minimal work principle.

The piston velocity, besides affecting the frictional force on the rod, has an effect on the force exerted
by the gas on the piston as described in Sec. 3.4.1. At large finite velocities, this latter effect tends to
further decrease F*¥* during expansion and increase it during compression, and so is an additional con-
tribution to internal friction. If turbulent flow is present within the system, that is also a contribution.

Figure 3.9.2 on page 79 shows indicator diagrams for adiabatic expansion and compression with internal lubri-
cated friction. The solid curves are for irreversible processes at a constant piston velocity, and the dashed curves are
for reversible processes with the same initial states as the irreversible processes. The areas under the curves confirm
that the work for expansion is less negative along the irreversible path than along the reversible path, and that for
compression the work is more positive along the irreversible path than along the reversible path.

Because of these differences in work, the final states of the irreversible processes have greater internal energies and
higher temperatures and pressures than the final states of the reversible processes with the same volume change, as can
be seen from the positions on the indicator diagrams of the points for the final equilibrium states. The overall change of
state during the irreversible expansion or compression is the same for a path in which the reversible adiabatic volume
change is followed by positive heat at constant volume. Since A U must be the same for both paths, the required heat
equals wi; —wey. This is not the value of the frictional work, because the thermal energy released by frictional work
increases the gas pressure, making wi — ey less than wg;. for expansion and greater than wg;. for compression. There
seems to be no general method by which the energy dissipated by internal friction can be evaluated, and it would be
even more difficult for an irreversible process with both work and heat.
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Figure 3.9.3. Adiabatic expansion work with internal lubricated friction for a fixed magnitude of A V, as a function of the average rate
of volume change. The open circles indicate the reversible limits.

Figure 3.9.3 on page 80 shows the effect of the rate of change of the volume on the adiabatic work for a fixed
magnitude of the volume change. Note that the work of expansion and the work of compression have opposite signs,
and that it is only in the reversible limit that they have the same magnitude. The figure resembles Fig. 3.8.4 for
electrical work of a galvanic cell with the horizontal axis reversed, and is typical of irreversible work with partial
energy dissipation.

If the rod and bushing shown in Fig. 3.9.1 are not lubricated, so that their surfaces are in direct contact, the
frictional force does not approach zero in the limit of zero piston velocity, unlike the behavior of lubricated friction.
This dry friction is due to the roughness, on a microscopic scale, of the contacting surfaces. The frictional force of
dry friction is typically independent of the area of contact and the rate at which the solid surfaces slide past one another.

The curves on indicator diagrams for adiabatic expansion and compression with internal dry friction are similar to
the solid curves in Figs. 3.9.2(a) and 3.9.2(b), but their positions, unlike the curves for lubricated friction, change little
as the average rate of volume change approaches zero. In the limit of infinite slowness, the work for a fixed magnitude
of AV is negative for expansion and positive for compression, but the expansion work is smaller in magnitude than
the compression work. The internal dry friction prevents the expansion process from being reversed as a compression
process, regardless of piston velocity, and these processes are therefore irreversible.

3.10 Reversible and Irreversible Processes: Generalities

This section summarizes some general characteristics of processes in closed systems. Some of these statements
will be needed to develop aspects of the second law in Chap. 4.

« Infinitesimal quantities of work during a process are calculated from an expression of the form dw =) . ¥;dX;
where X; is the work coordinate of kind of work i and ¥; is the conjugate work coefficient.

o The work coeflicients and work coordinates of reversible work are state functions.

e Energy transferred across the boundary by work in a reversible process is fully recovered as work of the
opposite sign in the reverse reversible process. It follows from the first law that heat is also fully recovered in
the reverse process.

e When work occurs irreversibly at a finite rate, there is partial or complete dissipation of energy. The dissipation
results in a change that could also be accomplished with positive heat, such as an increase of thermal energy
within the system.

« Dissipative work is positive irreversible work with complete energy dissipation. The work coordinate for this
type of work is not a state function. Examples are stirring work (Sec. 3.7.1) and the work of electrical heating
(Sec. 3.8.2).

o [If aprocess is carried out adiabatically and has a reversible limit, the work for a given initial equilibrium state
and a given change in the work coordinate is least positive or most negative in the reversible limit.The depen-
dence of work on the rate of change of the work coordinate is shown graphically for examples of dissipative
work in Figs. 3.7.2(b) and 3.8.2, and for examples of work with partial energy dissipation in Figs. 3.7.2(a),
3.8.4,and 3.9.3.
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81

Kind Formula Definitions

F3'" = x-component of force exerted
Linear mechanical work dw=F""dx by surroundings

dx = displacement in x direction
Shaft work dw = 7y do T, = internal torqu§ at boundary

¥ = angle of rotation
Expansion work dw=—pydV Pb = average pressure at moving

boundary
Surface work of a flat surface dw =y dA; y = surface tension, A;= surface area
Stretching or compression F = stress (po.smve for tensmn',
of 2 rod or Sprin dw=Fdl negative for compression)
pring I = length
- _ m = mass, h= height
Gravitational work dw=mgdh g = acceleration of free fall
Electrical work in a circuit dw=A ¢ dQyys A¢ = electric potential difference
= ¢r—¢L
. o _ E = electric field strength

Electric polarization dw=Eedp p = electric dipole moment of system
Magnetization dw=Bedm B = magneqo ﬂ'ux density

m = magnetic dipole moment of system

Table 3.10.1. Some kinds of work

e The number of independent variables needed to describe equilibrium states of a closed system is one greater
than the number of independent work coordinates for reversible work.?!0-! Thus, we could choose the inde-
pendent variables to be each of the work coordinates and in addition either the temperature or the internal
energy.>-!02 The number of independent variables needed to describe a nonequilibrium state is greater (often

much greater) than this.

Table 3.10.1 on page 81 lists general formulas for various kinds of work, including those that were described in detail

in Secs. 3.4-3.8.

3.10.1. If the system has internal adiabatic partitions that allow different phases to have different temperatures in equilibrium states, then the
number of independent variables is equal to the number of work coordinates plus the number of independent temperatures.

3.10.2. There may be exceptions to this statement in special cases. For example, along the triple line of a pure substance the values of V and

T, or of V and U, are not sufficient to determine the amounts in each of the three possible phases.
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3.11 PROBLEMS 83

3.11 Problems

Problem 3.11.1. Assume you have a metal spring that obeys Hooke's law: F'=c¢ (I-1¢), where F is the force exerted on the spring of length /,
1o is the length of the unstressed spring, and c is the spring constant. Find an expression for the work done on the spring when you reversibly
compress it from length [y to a shorter length I”.

Problem 3.11.2. The apparatus shown in Fig. 3.11.1 on page 83 consists of fixed amounts of water and air and an incompressible solid glass
sphere (a marble), all enclosed in a rigid vessel resting on a lab bench. Assume the marble has an adiabatic outer layer so that its temperature
cannot change, and that the walls of the vessel are also adiabatic.

Initially the marble is suspended above the water. When released, it falls through the air into the water and comes to rest at the bottom of
the vessel, causing the water and air (but not the marble) to become slightly warmer. The process is complete when the system returns to an
equilibrium state. The system energy change during this process depends on the frame of reference and on how the system is defined. A Egys
is the energy change in a lab frame, and A U is the energy change in a specified local frame.

For each of the following definitions of the system, give the sign (positive, negative, or zero) of both A Esys and A U, and state your
reasoning. Take the local frame for each system to be a center-of-mass frame.

a) The system is the marble.
b) The system is the combination of water and air.

¢) The system is the combination of water, air, and marble.

Problem 3.11.3. Figure 3.11.2 on page 83 shows the initial state of an apparatus consisting of an ideal gas in a bulb, a stopcock, a porous plug,
and a cylinder containing a frictionless piston. The walls are diathermal, and the surroundings are at a constant temperature of 300.0K and a
constant pressure of 1.00bar.

When the stopcock is opened, the gas diffuses slowly through the porous plug, and the piston moves slowly to the right. The process
ends when the pressures are equalized and the piston stops moving. The system is the gas. Assume that during the process the temperature
throughout the system differs only infinitesimally from 300.0 K and the pressure on both sides of the piston differs only infinitesimally from
1.00bar.

a) Which of these terms correctly describes the process: isothermal, isobaric, isochoric, reversible, irreversible?

b) Calculate g and w.

air

water

Figure 3.11.1.

p = 3.00 bar porous
V =0.500 m3 plug

ist
T = 300.0K piston

gaS O pazi

Toye = 300.0K
Dext = 1.00bar

Figure 3.11.2.
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Problem 3.11.4. Consider a horizontal cylinder-and-piston device similar to the one shown in Fig. 3.4.1 on page 59. The piston has mass
m. The cylinder wall is diathermal and is in thermal contact with a heat reservoir of temperature . The system is an amount n of an ideal gas
confined in the cylinder by the piston.

The initial state of the system is an equilibrium state described by p; and T = Tex:. There is a constant external pressure pex;, equal to twice
p1, that supplies a constant external force on the piston. When the piston is released, it begins to move to the left to compress the gas. Make
the idealized assumptions that (1) the piston moves with negligible friction; and (2) the gas remains practically uniform (because the piston is
massive and its motion is slow) and has a practically constant temperature 7' = Tex (because temperature equilibration is rapid).

a) Describe the resulting process.
b) Describe how you could calculate w and g during the period needed for the piston velocity to become zero again.
c) Calculate w and ¢ during this period for 0.500mol gas at 300 K.

Problem 3.11.5. This problem is designed to test the assertion on page 49 that for typical thermodynamic processes in which the elevation
of the center of mass changes, it is usually a good approximation to set w equal to wiap. The cylinder shown in Fig. 3.11.3 on page 84 has a
vertical orientation, so the elevation of the center of mass of the gas confined by the piston changes as the piston slides up or down. The system
is the gas. Assume the gas is nitrogen (M = 28.0 gmol~!) at 300K, and initially the vertical length [ of the gas column is one meter. Treat
the nitrogen as an ideal gas, use a center-of-mass local frame, and take the center of mass to be at the midpoint of the gas column. Find the
difference between the values of w and wy,p, expressed as a percentage of w, when the gas is expanded reversibly and isothermally to twice
its initial volume.

Problem 3.11.6. Figure 3.11.4 on page 85 shows an ideal gas confined by a frictionless piston in a vertical cylinder. The system is the gas,
and the boundary is adiabatic. The downward force on the piston can be varied by changing the weight on top of it.

a) Show that when the system is in an equilibrium state, the gas pressure is given by p=mgh/V where m is the combined mass of the
piston and weight, g is the acceleration of free fall, and 4 is the elevation of the piston shown in the figure.

b

=

Initially the combined mass of the piston and weight is m, the piston is at height /1, and the system is in an equilibrium state with
conditions p; and V;. The initial temperature is 71 = p1 Vi /nR. Suppose that an additional weight is suddenly placed on the piston,
so that m increases from m to my, causing the piston to sink and the gas to be compressed adiabatically and spontaneously. Pressure
gradients in the gas, a form of friction, eventually cause the piston to come to rest at a final position ;. Find the final volume, V,, as
a function of py, pa, Vi, and Cy. (Assume that the heat capacity of the gas, Cy, is independent of temperature.) Hint: The potential
energy of the surroundings changes by m; g A h; since the kinetic energy of the piston and weights is zero at the beginning and end of
the process, and the boundary is adiabatic, the internal energy of the gas must change by -magAh=-myg AV /As=—p2AV.

C

~

It might seem that by making the weight placed on the piston sufficiently large, V» could be made as close to zero as desired. Actually,
however, this is not the case. Find expressions for V, and 75 in the limit as m, approaches infinity, and evaluate V,/Vj in this limit if
the heat capacity is Cy = (3/2) nR (the value for an ideal monatomic gas at room temperature).
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Figure 3.11.5.

Problem 3.11.7. The solid curve in Fig. 3.5.1 on page 66 shows the path of a reversible adiabatic expansion or compression of a fixed amount
of an ideal gas. Information about the gas is given in the figure caption. For compression along this path, starting at V =0.3000 dm?> and
T =300.0K and ending at V =0.1000dm?, find the final temperature to 0.1 K and the work.

Problem 3.11.8. Figure 3.11.5 on page 85 shows the initial state of an apparatus containing an ideal gas. When the stopcock is opened, gas
passes into the evacuated vessel. The system is the gas. Find ¢, w, and A U under the following conditions.

a) The vessels have adiabatic walls.

b) The vessels have diathermal walls in thermal contact with a water bath maintained at 300. K, and the final temperature in both vessels
is T =300.K.

Problem 3.11.9. Consider a reversible process in which the shaft of system A in Fig. 3.7.1 makes one revolution in the direction of increasing
©. Show that the gravitational work of the weight is the same as the shaft work given by w=mgr A ¢.

Problem 3.11.10. This problem guides you through a calculation of the mechanical equivalent of heat using data from one of James Joule's
experiments with a paddle wheel apparatus (see Sec. 3.7.2). The experimental data are collected in Table 3.11.1 on page 86.

In each of his experiments, Joule allowed the weights of the apparatus to sink to the floor twenty times from a height of about 1.6m, using a
crank to raise the weights before each descent (see Fig. 3.7.4 on page 72). The paddle wheel was engaged to the weights through the roller and
strings only while the weights descended. Each descent took about 26 seconds, and the entire experiment lasted 35 minutes. Joule measured
the water temperature with a sensitive mercury-in-glass thermometer at both the start and finish of the experiment.

For the purposes of the calculations, define the system to be the combination of the vessel, its contents (including the paddle wheel and
water), and its lid. All energies are measured in a lab frame. Ignore the small quantity of expansion work occurring in the experiment. It helps
conceptually to think of the cellar room in which Joule set up his apparatus as being effectively isolated from the rest of the universe; then the
only surroundings you need to consider for the calculations are the part of the room outside the system.

a) Calculate the change of the gravitational potential energy Ej, of the lead weights during each of the descents. For the acceleration of
free fall at Manchester, England (where Joule carried out the experiment) use the value g =9.813m-s~2. This energy change represents
a decrease in the energy of the surroundings, and would be equal in magnitude and opposite in sign to the stirring work done on the
system if there were no other changes in the surroundings.

b) Calculate the kinetic energy Ex of the descending weights just before they reached the floor. This represents an increase in the energy
of the surroundings. (This energy was dissipated into thermal energy in the surroundings when the weights came to rest on the floor.)
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Properties of the paddle wheel apparatus:
combined mass of the two lead weights ... 26.3182kg
mass of water in vessel 6.04118kg

mass of water with same heat capacity

as paddle wheel, vessel, and lid™'"- 0.27478kg

Measurements during the experiment:

number of times weights were wound up and released . 20

change of elevation of weights during each descent_ . . —1.5898 m

final downward velocity of weights during descent . . 0.0615m-s™!

initial temperature in vessel ... 288.829K

final temperature in vessel .. ... 289.148 K

mean air eMPErature ... ........coocoovieisiiiiiiiiiisiiisisiiceens 289.228K

Table 3.11.1. Data for Problem 3.11.10. The values are from Joule's 1850 paper®'> and have been converted to SI units.
3112 Ref. [92], p. 67, experiment 5
3-1L1 Calculated from the masses and specific heat capacities of the materials.

¢) Joule found that during each descent of the weights, friction in the strings and pulleys decreased the quantity of work performed on
the system by 2.87J. This quantity represents an increase in the thermal energy of the surroundings. Joule also considered the slight
stretching of the strings while the weights were suspended from them: when the weights came to rest on the floor, the tension was
relieved and the potential energy of the strings changed by —1.15]J. Find the total change in the energy of the surroundings during the
entire experiment from all the effects described to this point. Keep in mind that the weights descended 20 times during the experiment.

d

=

Data in Table 3.11.1 show that change of the temperature of the system during the experiment was
AT =(289.148-288.829) K=+0.319K

The paddle wheel vessel had no thermal insulation, and the air temperature was slighter warmer, so during the experiment there was
a transfer of some heat into the system. From a correction procedure described by Joule, the temperature change that would have
occurred if the vessel had been insulated is estimated to be +0.317K.

Use this information together with your results from part (c) to evaluate the work needed to increase the temperature of one gram
of water by one kelvin. This is the “mechanical equivalent of heat” at the average temperature of the system during the experiment.
(As mentioned on p. 72, Joule obtained the value 4.165J based on all 40 of his experiments.)

Problem 3.11.11. Refer to the apparatus depicted in Fig. 3.1.1 on page 50. Suppose the mass of the external weight is m = 1.50kg, the
resistance of the electrical resistor is Re = 5.50k€, and the acceleration of free fall is g =9.81 m-s2. For how long a period of time will the
external cell need to operate, providing an electric potential difference |A ¢|=1.30V, to cause the same change in the state of the system as
the change when the weight sinks 20.0cm without electrical work? Assume both processes occur adiabatically.
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Chapter 4
The Second Law

The second law of thermodynamics concerns entropy and the spontaneity of processes. This chapter discusses theo-
retical aspects and practical applications.

We have seen that the first law allows us to set up a balance sheet for energy changes during a process, but says
nothing about why some processes occur spontaneously and others are impossible. The laws of physics explain some
spontaneous changes. For instance, unbalanced forces on a body cause acceleration, and a temperature gradient at a
diathermal boundary causes heat transfer. But how can we predict whether a phase change, a transfer of solute from
one solution phase to another, or a chemical reaction will occur spontaneously under the existing conditions? The
second law provides the principle we need to answer these and other questions—a general criterion for spontaneity in
a closed system.

4.1 Types of Processes

Any conceivable process is either spontaneous, reversible, or impossible. These three possibilities were discussed in
Sec. 3.2 and are summarized below.

e A spontaneous process is a real process that can actually take place in a finite time period.

e A reversible process is an imaginary, idealized process in which the system passes through a continuous
sequence of equilibrium states. This sequence of states can be approached by a spontaneous process in the
limit of infinite slowness, and so also can the reverse sequence of states.

e An impossibleprocess is a change that cannot occur under the existing conditions, even in a limiting sense.
It is also known as an unnatural or disallowed process. Sometimes it is useful to describe a hypothetical
impossible process that we can imagine but that does not occur in reality. The second law of thermodynamics
will presently be introduced with two such impossible processes.

The spontaneous processes relevant to chemistry are irreversible. An irreversible process is a spontaneous process
whose reverse is an impossible process.

There is also the special category, of little interest to chemists, of purely mechanical processes. A purely mechan-
ical process is a spontaneous process whose reverse is also spontaneous.

It is true that reversible processes and purely mechanical processes are idealized processes that cannot occur in
practice, but a spontaneous process can be practically reversible if carried out sufficiently slowly, or practically purely
mechanical if friction and temperature gradients are negligible. In that sense, they are not impossible processes. This
book will reserve the term “impossible” for a process that cannot be approached by any spontaneous process, no matter
how slowly or how carefully it is carried out.

4.2 Statements of the Second Law

A description of the mathematical statement of the second law is given in the box below.
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Figure 4.2.1. Two impossible processes in isolated systems.
(a) Heat transfer from a cool to a warm body.
(b) The same, with a device that operates in a cycle.

dS= %’ for a reversible change of a closed system;

ds> dT? for an irreversible change of a closed system;
where S is an extensive state function, the entropy, and dq is an infinitesimal quantity of energy transferred by
heat at a portion of the boundary where the thermodynamic temperature is 7j.

The box includes three distinct parts. First, there is the assertion that a property called entropy, S, is an extensive
state function. Second, there is an equation for calculating the entropy change of a closed system during a reversible
change of state: dS is equal to dg/Ty,.*?! Third, there is a criterion for spontaneity: dS is greater than dg/ Ty, during an
irreversible change of state. The temperature Ty, is a thermodynamic temperature, which will be defined in Sec. 4.3.4.

Each of the three parts is an essential component of the second law, but is somewhat abstract. What funda-
mental principle, based on experimental observation, may we take as the starting point to obtain them? Two principles
are available, one associated with Clausius and the other with Kelvin and Planck. Both principles are equivalent
statements of the second law. Each asserts that a certain kind of process is impossible, in agreement with common
experience.

Consider the process depicted in Fig. 4.2.1(a) 4.2.1 on page 88.

The system is isolated, and consists of a cool body in thermal contact with a warm body. During the process,
energy is transferred by means of heat from the cool to the warm body, causing the temperature of the cool body to
decrease and that of the warm body to increase. Of course, this process is impossible; we never observe heat flow
from a cooler to a warmer body. (In contrast, the reverse process, heat transfer from the warmer to the cooler body,
is spontaneous and irreversible.) Note that this impossible process does not violate the first law, because energy is
conserved.

Suppose we attempt to bring about the same changes in the two bodies by interposing a device of some sort
between them, as depicted in Fig. 4.2.1(b). Here is how we would like the device to operate in the isolated system:
Heat should flow from the cool body to the device, an equal quantity of heat should flow from the device to the warm
body, and the final state of the device should be the same as its initial state. In other words, we want the device to
transfer energy quantitatively by means of heat from the cool body to the warm body while operating in a cycle. If the
device could do this, there would be no limit to the quantity of energy that could be transferred by heat, because after
each cycle the device would be ready to repeat the process. But experience shows that it is impossible to build such a
device! The proposed process of Fig. 4.2.1(b) is impossible even in the limit of infinite slowness.

4.2.1. During a reversible process, the temperature usually has the same value T throughout the system, in which case we can simply write
dS=dq/T. The equation dS =dq /T allows for the possibility that in an equilibrium state the system has phases of different temperatures separated
by internal adiabatic partitions.
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9
!

heat engine

() (b)

Figure 4.2.2. Two more impossible processes.
(a) A weight rises as a liquid becomes cooler.
(b) The same, with a heat engine.

The general principle was expressed by Rudolph Clausius*22 in the words: “Heat can never pass from a colder to
a warmer body without some other change, connected therewith, occurring at the same time.” For use in the derivation
to follow, the statement can be reworded as follows.

The Clausius statement of the second law: It is impossible to construct a device whose only effect, when it operates
in a cycle, is heat transfer from a body to the device and the transfer by heat of an equal quantity of energy from the
device to a warmer body.

Next consider the impossible process shown in Fig. 4.2.2(a) 4.2.2 on page 89.

A Joule paddle wheel rotates in a container of water as a weight rises. As the weight gains potential energy, the
water loses thermal energy and its temperature decreases. Energy is conserved, so there is no violation of the first law.
This process is just the reverse of the Joule paddle-wheel experiment (Sec. 3.7.2) and its impossibility was discussed
on page 57.

We might again attempt to use some sort of device operating in a cycle to accomplish the same overall process,
as in Fig. 4.2.2(b). A closed system that operates in a cycle and does net work on the surroundings is called a heat
engine. The heat engine shown in Fig. 4.2.2(b) is a special one. During one cycle, a quantity of energy is transferred
by heat from a heat reservoir to the engine, and the engine performs an equal quantity of work on a weight, causing
it to rise. At the end of the cycle, the engine has returned to its initial state. This would be a very desirable engine,
because it could convert thermal energy into an equal quantity of useful mechanical work with no other effect on
the surroundings.*23 The engine could power a ship; it would use the ocean as a heat reservoir and require no fuel.
Unfortunately, it is impossible to construct such a heat engine!

The principle was expressed by William Thomson (Lord Kelvin) in 1852 as follows: “It is impossible by means of
inanimate material agency to derive mechanical effect from any portion of matter by cooling it below the temperature
of the coldest of the surrounding objects.” Max Planck*2# gave this statement: “It is impossible to construct an engine
which will work in a complete cycle, and produce no effect except the raising of a weight and the cooling of a heat-
reservoir.” For the purposes of this chapter, the principle can be reworded as follows.

The Kelvin-Planck statement of the second law: It is impossible to construct a heat engine whose only effect, when
it operates in a cycle, is heat transfer from a heat reservoir to the engine and the performance of an equal quantity of
work on the surroundings.

Both the Clausius statement and the Kelvin—Planck statement assert that certain processes, although they do not violate
the first law, are nevertheless impossible.

4.2.2. Ref. [32], page 117.
4.2.3. This hypothetical process is called “perpetual motion of the second kind.”
4.2.4. Ref. [145], p. 89.
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These processes would not be impossible if we could control the trajectories of large numbers of indi-
vidual particles. Newton's laws of motion are invariant to time reversal. Suppose we could measure
the position and velocity of each molecule of a macroscopic system in the final state of an irreversible
process. Then, if we could somehow arrange at one instant to place each molecule in the same position
with its velocity reversed, and if the molecules behaved classically, they would retrace their trajectories
in reverse and we would observe the reverse ~“impossible" process.

The plan of the remaining sections of this chapter is as follows. In Sec. 4.3, a hypothetical device called a Carnot
engine is introduced and used to prove that the two physical statements of the second law (the Clausius statement
and the Kelvin—Planck statement) are equivalent, in the sense that if one is true, so is the other. An expression is also
derived for the efficiency of a Carnot engine for the purpose of defining thermodynamic temperature. Section 4.4
combines Carnot cycles and the Kelvin—Planck statement to derive the existence and properties of the state function
called entropy. Section 4.5 uses irreversible processes to complete the derivation of the mathematical statements given
in the box on page 87, Sec. 4.6 describes some applications, and Sec. 4.7 is a summary. Finally, Sec. 4.8 briefly
describes a microscopic, statistical interpretation of entropy.

Carnot engines and Carnot cycles are admittedly outside the normal experience of chemists, and using
them to derive the mathematical statement of the second law may seem arcane. G. N. Lewis and M.
Randall, in their classic 1923 book Thermodynamics and the Free Energy of Chemical Substances,*>>
complained of the presentation of * 'cyclical processes' limping about eccentric and not quite com-
pleted cycles.” There seems, however, to be no way to carry out a rigorous general derivation without
invoking thermodynamic cycles. You may avoid the details by skipping Secs. 4.3—4.5. (Incidently, the
cycles described in these sections are complete!)

4.2.5. Ref. [111], p. 2.
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BIOGRAPHICAL SKETCH
SADI CARNOT (1796-1832)

Sadi Carnot was the eldest son of Lazare Carnot, a famous French
anti-royalist politician, one of Napoleon's generals with a great
interest in mathematics. As a boy Sadi was shy and sensitive. He
studied at the Ecole Polytechnique, a training school for army
engineers, and became an army officer.

Carnot is renowned for the one book he wrote: a treatise of
118 pages entitled Reflections on the Motive Power of Fire and
on Machines Fitted to Develop that Power. This was published
in 1824, when he was 28 and had retired from the army on half
pay.

The book was written in a nontechnical style and went vir-
tually unnoticed. Its purpose was to show how the efficiency of
a steam engine could be improved, a very practical matter since
French power technology lagged behind that of Britain at the
time:42-6

Notwithstanding the work of all kinds done
by steam-engines, notwithstanding the satisfac-
tory condition to which they have been brought
today, their theory is very little understood, and
the attempts to improve them are still directed
almost by chance.

...We can easily conceive a multitude of
machines fitted to develop the motive power of
heat through the use of elastic fluids; but in what-
ever way we look at it, we should not lose sight
of the following principles:

(1) The temperature of the fluid should be
made as high as possible, in order to obtain a great
fall of caloric, and consequently a large produc-
tion of motive power.

4.2.6. Ref. [26].

(2) For the same reason the cooling should be
carried as far as possible.

(3) It should be so arranged that the passage
of the elastic fluid from the highest to the lowest
temperature should be due to increase of volume;
that is, it should be so arranged that the cooling of
the gas should occur spontaneously as the result
of rarefaction [i.e., adiabatic expansion].

Carnot derived these principles from the abstract reversible
cycle now called the Carnot cycle. He assumed the validity of
the caloric theory (heat as an indestructible substance), which
requires that the net heat in the cycle be zero, whereas today we
would say that it is the net entropy change that is zero.

Despite the flaw of assuming that heat is conserved, a view
which there is evidence he was beginning to doubt, his conclu-
sion was valid that the efficiency of a reversible cycle operating
between two fixed temperatures is independent of the working
substance. He based his reasoning on the impossibility of the
perpetual motion which would result by combining the cycle
with the reverse of a more efficient cycle. Regarding Carnot's
accomplishment, William Thomson (later Lord Kelvin) wrote:

Nothing in the whole range of Natural Philos-
ophy is more remarkable than the establishment
of general laws by such a process of reasoning.

A biographer described Carnot's personality as follows:*27

He was reserved, almost taciturn, with a
hatred of any form of publicity. ...his friends all
spoke of his underlying warmth and humanity.
Passionately fond of music, he was an excellent
violinist who preferred the classical Lully to the
“moderns” of the time; he was devoted to liter-
ature and all the arts.

Carnot came down with scarlet fever and, while convalescing,
died—probably of the cholera epidemic then raging. He was
only 36.

Two years later his work was brought to public attention in
a paper written by Emile Clapeyron (page 184), who used indi-
cator diagrams to explain Carnot's ideas.

4.2.7. Ref. [123], page x.

4.3 Concepts Developed with Carnot Engines

4.3.1 Carnot engines and Carnot cycles

A heat engine, as mentioned in Sec. 4.2, is a closed system that converts heat to work and operates in a cycle. A
Carnot engine is a particular kind of heat engine, one that performs Carnot cycles with a working substance. A
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Carnot cycle has four reversible steps, alternating isothermal and adiabatic; see the examples in Figs. 4.3.1 and 4.3.2
in which the working substances are an ideal gas and H,O, respectively.

The steps of a Carnot cycle are as follows. In this description, the system is the working substance.

e Path A—B: A quantity of heat gy, is transferred reversibly and isothermally from a heat reservoir (the ““hot"
reservoir) at temperature 7Tj, to the system, also at temperature 7;. gy is positive because energy is transferred
into the system.

o Path B—C: The system undergoes a reversible adiabatic change that does work on the surroundings and reduces
the system temperature to 7.

e Path C—D: A quantity of heat g, is transferred reversibly and isothermally from the system to a second heat
reservoir (the “cold” reservoir) at temperature T¢. g, is negative.

e Path D—A: The system undergoes a reversible adiabatic change in which work is done on the system, the
temperature returns to 7y, and the system returns to its initial state to complete the cycle.

p/Pa

2
0.5 1.0 1.5 2.0 2.5

Figure 4.3.1. Indicator diagram for a Carnot engine using an ideal gas as the working substance. In this example, 7, =400K, 7. =300 K,
e=1/4, Cym=(3/2)R, n=2.41 mmol. The processes of paths A~B and C—D are isothermal; those of paths B-»C, B’>C’, and D»A
are adiabatic. The cycle A»B—~C—D-A has net work w=—1.0J; the cycle A>B’—~C’->D-A has net work w=-0.5J.
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Figure 4.3.2. Indicator diagram for a Carnot engine using H>O as the working substance. In this example, T, =400 K, 7. =396 K,
e=1/100, w=-1.0J. In state A, the system consists of one mole of HyO(l). The processes (all carried out reversibly) are: A-B,
vaporization of 2.54 mmol H,O at 400K; B—C, adiabatic expansion, causing vaporization of an additional 7.68 mmol; C—D, condensation
of 2.50mmol at 396K; D—A, adiabatic compression returning the system to the initial state.
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Figure 4.3.3. (a) One cycle of a Carnot engine that does work on the surroundings.

(b) The same system run in reverse as a Carnot heat pump.

Figures 4.3.3--4.3.5 use the following symbols: A square box represents a system (a Carnot engine or Carnot heat pump). Vertical
arrows indicate heat and horizontal arrows indicate work; each arrow shows the direction of energy transfer into or out of the system.
The number next to each arrow is an absolute value of ¢/J or w/J in the cycle. For example, (a) shows 4 joules of heat transferred to the
system from the hot reservoir, 3 joules of heat transferred from the system to the cold reservoir, and 1 joule of work done by the system
on the surroundings.

In one cycle, a quantity of heat is transferred from the hot reservoir to the system, a portion of this energy is transferred
as heat to the cold reservoir, and the remainder of the energy is the negative net work w done on the surroundings. (It
is the heat transfer to the cold reservoir that keeps the Carnot engine from being an impossible Kelvin—Planck engine.)
Adjustment of the length of path A—B makes the magnitude of w as large or small as desired—note the two cycles
with different values of w described in the caption of Fig. 4.3.1.

The Carnot engine is an idealized heat engine because its paths are reversible processes. It does not
resemble the design of any practical steam engine. In a typical working steam engine, such as those
once used for motive power in train locomotives and steamships, the cylinder contains an open system
that undergoes the following irreversible steps in each cycle: (1) high-pressure steam enters the cylinder
from a boiler and pushes the piston from the closed end toward the open end of the cylinder; (2)
the supply valve closes and the steam expands in the cylinder until its pressure decreases to atmospheric
pressure; (3) an exhaust valve opens to release the steam either to the atmosphere or to a condenser;
(4) the piston returns to its initial position, driven either by an external force or by suction created
by steam condensation.

The energy transfers involved in one cycle of a Carnot engine are shown schematically in Fig. 4.3.3(a) on page 93.

When the cycle is reversed, as shown in Fig. 4.3.3(b), the device is called a Carnot heat pump. In each cycle
of a Carnot heat pump, g, is negative and ¢, is positive. Since each step of a Carnot engine or Carnot heat pump is a
reversible process, neither device is an impossible device.

4.3.2 The equivalence of the Clausius and Kelvin—-Planck statements

We can use the logical tool of reductio ad absurdum to prove the equivalence of the Clausius and Kelvin—Planck
statements of the second law.
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BIOGRAPHICAL SKETCH nected therewith, occurring at the same time.

Everything we know concerning the interchange
RUDOLF JULIUS EMMANUEL CLAUSIUS (1822-1888) of heat between two bodies of different tempera-
ture confirms this; for heat everywhere manifests
a tendency to equalize existing differences of
temperature, and therefore to pass in a contrary
direction, i. e. from warmer to colder bodies.
Without further explanation, therefore, the truth

of the principle will be granted.

In an 1865 paper, he introduced the symbol U for internal
energy, and also coined the word entropy with symbol §:43-3

We might call S the transformational content

. . . of the body, just as we termed the magnitude U

Rudolf Clausius was a German theoretical physicist who was the .
) i ’ its thermal and ergonal content. But as I hold

first to treat thermodynamics as a rigorous science, based on the

; o it better to borrow terms for important magni-
earlier writings of Carnot and Clapeyron.

tudes from the ancient languages, so that they may

He was born in Koslin, Prussia, into a large family. His father be adopted unchanged in all modern languages,
was an educator and church minister. I propose to call the magnitude S the entropy
Clausius was successively a professor at universities in of the body, from the Greek word 7 p o7,
Berlin, Zurich, Wiirzburg, and Bonn. In addition to thermody- transformation. 1 have intentionally formed the
namics, he did work on electrodynamic theory and the kinetic word entropy so as to be as similar as possible
theory of gases. to the word energy; for the two magnitudes to

be denoted by these words are so nearly allied in
their physical meanings, that a certain similarity
in designation appears to be desirable.

Max Planck, referring to a time early in his own career,
wrote:*3!

One day, I happened to come across the trea-

tises of Rudolf Clausius, whose lucid style and The 1865 paper concludes as follows, ending with Clausius's

enlightening clarity of reasoning made an enor- often-quoted summations of the first and second laws:*34

mous impression on me, and I became deepl . . .
P ) . . . p y If for the entire universe we conceive the
absorbed in his articles, with an ever increasing . . .
. ] I . same magnitude to be determined, consistently
enthusiasm. I appreciated especially his exact for- . . .
and with due regard to all circumstances, which

for a single body I have called entropy, and if
at the same time we introduce the other and sim-

mulation of the two Laws of Thermodynamics,
and the sharp distinction which he was the first

to establish between them. . .
pler conception of energy, we may express in

the following manner the fundamental laws of
the universe which correspond to the two fun-
damental theorems of the mechanical theory of

Clausius based his exposition of the second law on the fol-
lowing principle that he published in 1854:*32

...it appears to me preferable to deduce the heat.
general form of the theorem immediately from the 1. The energy of the universe is constant.
same principle which I have already employed in

o 2. The entropy of the universe tends to a max-
my former memoir, in order to demonstrate the

. imum.
modified theorem of Carnot.

This principle, upon which the whole Clausius was a patriotic German. During the Franco-Prussian
of the following development rests, is as fol- war of 1870-71, he undertook the leadership of an ambulance
lows:—Heat can never pass from a colder to a corps composed of Bonn students, was wounded in the leg during
warmer body without some other change, con- the battles, and suffered disability for the rest of his life.

4.3.1. Ref. [144], page 16. 4.3.3. Ref. [33], page 357.
4.3.2. Ref. [32], page 117. 4.3.4. Ref. [33], page 365.
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Figure 4.3.4. (a) A Clausius device combined with the Carnot engine of Fig. 4.3.3(a).
(b) The resulting impossible Kelvin--Planck engine.
(c) A Kelvin--Planck engine combined with the Carnot heat pump of Fig. 4.3.3(b).
(d) The resulting impossible Clausius device.

Let us assume for the moment that the Clausius statement is incorrect, and that the device the Clausius statement
claims is impossible (a “Clausius device”) is actually possible. If the Clausius device is possible, then we can combine
one of these devices with a Carnot engine as shown in Fig. 4.3.4(a) on page 95. We adjust the cycles of the Clausius
device and Carnot engine to transfer equal quantities of heat from and to the cold reservoir. The combination of the
Clausius device and Carnot engine is a system. When the Clausius device and Carnot engine each performs one cycle,
the system has performed one cycle as shown in Fig. 4.3.4(b). There has been a transfer of heat into the system and
the performance of an equal quantity of work on the surroundings, with no other net change. This system is a heat
engine that according to the Kelvin—Planck statement is impossible.

Thus, if the Kelvin—Planck statement is correct, it is impossible to operate the Clausius device as shown, and our
provisional assumption that the Clausius statement is incorrect must be wrong. In conclusion, if the Kelvin—Planck
statement is correct, then the Clausius statement must also be correct.

We can apply a similar line of reasoning to the heat engine that the Kelvin—Planck statement claims is impossible
(a “Kelvin—Planck engine”) by seeing what happens if we assume this engine is actually possible. We combine a
Kelvin—Planck engine with a Carnot heat pump, and make the work performed on the Carnot heat pump in one
cycle equal to the work performed by the Kelvin—Planck engine in one cycle, as shown in Fig. 4.3.4(c). One cycle
of the combined system, shown in Fig. 4.3.4(d), shows the system to be a device that the Clausius statement says
is impossible. We conclude that if the Clausius statement is correct, then the Kelvin—Planck statement must also be
correct.

These conclusions complete the proof that the Clausius and Kelvin—Planck statements are equivalent: the truth of
one implies the truth of the other. We may take either statement as the fundamental physical principle of the second
law, and use it as the starting point for deriving the mathematical statement of the second law. The derivation will be
taken up in Sec. 4.4.

4.3.3 The efficiency of a Carnot engine
Integrating the first-law equation dU = dq + dw over one cycle of a Carnot engine, we obtain

43.1)

0=n+getw (one cycle of a Carnot engine)

The efficiency € of a heat engine is defined as the fraction of the heat input gy, that is returned as net work done on the

surroundings:
def —y

€ = w (4.3.2)
h
By substituting for w from Eq. 4.3.1, we obtain
_ 149 (4.3.3)
e=1+ qn (Carnot engine)
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Figure 4.3.5. (a) A Carnot engine of efficiency € = 1/4 combined with a Carnot engine of efficiency ¢ =1/5 run in reverse.
(b) The resulting impossible Clausius device.
(c) A Carnot engine of efficiency € =1/3 combined with the Carnot engine of efficiency € = 1/4 run in reverse.
(d) The resulting impossible Clausius device.

Because ¢, is negative, gy, is positive, and ¢, is smaller in magnitude than gy, the efficiency is less than one.The example
shown in Fig. 4.3.3(a) is a Carnot engine with ¢ =1/4.

We will be able to reach an important conclusion regarding efficiency by considering a Carnot engine operating
between the temperatures 7;, and T;., combined with a Carnot heat pump operating between the same two temperatures.
The combination is a supersystem, and one cycle of the engine and heat pump is one cycle of the supersystem. We
adjust the cycles of the engine and heat pump to produce zero net work for one cycle of the supersystem.

Could the efficiency of the Carnot engine be different from the efficiency the heat pump would have when run in
reverse as a Carnot engine? If so, either the supersystem is an impossible Clausius device as shown in Fig. 4.3.5(b)
on page 96,

or the supersystem operated in reverse (with the engine and heat pump switching roles) is an impossible Clausius
device as shown in Fig. 4.3.5(d). We conclude that all Carnot engines operating between the same two temperatures
have the same efficiency.

This is a good place to pause and think about the meaning of this statement in light of the fact that the
steps of a Carnot engine, being reversible changes, cannot take place in a real system (Sec. 3.2). How
can an engine operate that is not real? The statement is an example of a common kind of thermody-
namic shorthand. To express the same idea more accurately, one could say that all heat engines (real
systems) operating between the same two temperatures have the same limiting efficiency, where the
limit is the reversible limit approached as the steps of the cycle are carried out more and more slowly.
You should interpret any statement involving a reversible process in a similar fashion: a reversible
process is an idealized limiting process that can be approached but never quite reached by a real system.

Thus, the efficiency of a Carnot engine must depend only on the values of 7; and 7} and not on the properties of
the working substance. Since the efficiency is given by € =1 + g/ gn, the ratio g. /g, must be a unique function of 7
and T; only. To find this function for temperatures on the ideal-gas temperature scale, it is simplest to choose as the
working substance an ideal gas.

An ideal gas has the equation of state pV =nRT. Its internal energy change in a closed system is given by
dU =CydT (Eq. 3.5.3), where Cy (a function only of T') is the heat capacity at constant volume. Reversible expansion

"éT) dV. Substituting these expressions for dU

work is given by dw =—-pdV, which for an ideal gas becomes dw =—(
and dw in the first law, dU = dq + dw, and solving for dg, we obtain

(4.3.4)

dg=CydT + ﬁ‘;T dv (ideal gas, reversible
expansion work only)
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Dividing both sides by T gives

(4.3.5)
dg _CvdT +n Rﬂ (ideal gas, reversible

T T v expansion work only)

In the two adiabatic steps of the Carnot cycle, dg is zero. We obtain a relation among the volumes of the four labeled
states shown in Fig. 4.3.1 by integrating Eq. 4.3.5 over these steps and setting the integrals equal to zero:

% CydT v
Path BoC: jd—y? = [ nRIE=0 (43.6)
h
T CydT v
Path D A: fd—y? - L“VTlenV—g:o 43.7)

Adding these two equations (the integrals shown with limits cancel) gives the relation

VaVe _
which we can rearrange to
In E) —_In (ﬁ) (4.3.9)
Va) ™ Ve (ideal gas, Carnot cycle)

We obtain expressions for the heat in the two isothermal steps by integrating Eq. 4.3.4 with dT set equal to 0.

Path A—B: gn = nRTyIn (—XB) (43.10)
A
Vb

Path C»D: g = nRTcln(TC) “3.11)

The ratio of g. and gy, obtained from these expressions is

g T In(Vo/Ve)

de _ ¢, 7D/ 4.3.12
gn Ty I (Ve/Va) (43.12)
By means of Eq. 4.3.9, this ratio becomes
ge _ Tc (4.3.13)
gn T (Carnot cycle)

Accordingly, the unique function of 7; and T;, we seek that is equal to g./ gy is the ratio -7/ T;,. The efficiency, from
Eq. 4.3.3, is then given by

1c 4.3.14)
Th (Carnot engine)

Egs. 4.3.13 and 4.3.14, T; and T;, are temperatures on the ideal-gas scale. As we have seen, these equations must be
valid for any working substance; it is not necessary to specify as a condition of validity that the system is an ideal gas.

The ratio 7/ T, is positive but less than one, so the efficiency is less than one as deduced earlier on page 96. This
conclusion is an illustration of the Kelvin—Planck statement of the second law: A heat engine cannot have an efficiency
of unity—that is, it cannot in one cycle convert all of the energy transferred by heat from a single heat reservoir
into work. The example shown in Fig. 4.3.3 on page 93, with ¢ =1/4, must have T./ T, =3 /4 (e.g., 7. =300K and
1,=400K).

Keep in mind that a Carnot engine operates reversibly between two heat reservoirs. The expression of Eq. 4.3.14
gives the efficiency of this kind of idealized heat engine only. If any part of the cycle is carried out irreversibly,
dissipation of mechanical energy will cause the efficiency to be lower than the theoretical value given by Eq. 4.3.14.
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4.3.4 Thermodynamic temperature

The negative ratio g./qn for a Carnot cycle depends only on the temperatures of the two heat reservoirs. Kelvin
(1848) proposed that this ratio be used to establish an “absolute” temperature scale. The physical quantity now called
thermodynamic temperature is defined by the relation

T g (4.3.15)

Th  qn (Carnot cycle)

That is, the ratio of the thermodynamic temperatures of two heat reservoirs is equal, by definition, to the ratio of
the absolute quantities of heat transferred in the isothermal steps of a Carnot cycle operating between these two
temperatures. In principle, a measurement of ¢./qn during a Carnot cycle, combined with a defined value of the
thermodynamic temperature of one of the heat reservoirs, can establish the thermodynamic temperature of the other
heat reservoir. This defined value is provided by the triple point of H,O; its thermodynamic temperature is defined
as exactly 273.16 kelvins (page 33).

Just as measurements with a gas thermometer in the limit of zero pressure establish the ideal-gas temperature scale
(Sec. Gas constant), the behavior of a heat engine in the reversible limit establishes the thermodynamic temperature
scale. Note, however, that a reversible Carnot engine used as a “thermometer” to measure thermodynamic temperature
is only a theoretical concept and not a practical instrument, since a completely-reversible process cannot occur in
practice.

It is now possible to justify the statement in Sec. 2.3.6 that the ideal-gas temperature scale is proportional to the
thermodynamic temperature scale. Both Eq.

4.3.13 and Eq. 4.3.15 equate the ratio 7;/ Ty, to —q./ gn; but whereas 7; and T;, refer in Eq. 4.3.13 to the ideal-gas
temperatures of the heat reservoirs, in Eq. 4.3.15 they refer to the thermodynamic temperatures. This means that the
ratio of the ideal-gas temperatures of two bodies is equal to the ratio of the thermodynamic temperatures of the same
bodies, and therefore the two scales are proportional to one another. The proportionality factor is arbitrary, but must
be unity if the same unit (e.g., kelvins) is used in both scales. Thus, as stated on page 33, the two scales expressed in
kelvins are identical.
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BIOGRAPHICAL SKETCH

WILLIAM THOMSON, LORD KELVIN (1824-1907)

William Thomson was born in Belfast, Ireland. His mother died
when he was six. In 1832 the family moved to Glasgow, Scot-
land, where his father had been appointed as the chair of mathe-
matics at the University.

In 1845 Thomson was age 21. He had recently graduated
from Cambridge University with high honors in mathematics,
and was in Paris for discussions with French physicists and
mathematicians. He had learned about Carnot's book from
Clapeyron's 1834 paper but could not find a copy—no book-
seller in Paris had even heard of it. Nevertheless, the information
he had was sufficient for him to realize that Carnot's ideas would
allow a thermodynamic temperature scale to be defined, one that
does not depend on any particular gas.

The following year, Thomson became the Chair of Natural
Philosophy at Glasgow University, largely through the influence
of his father. He remained there until his retirement in 1899. His
concept of a thermodynamic temperature scale, his best-known
contribution to thermodynamics, was published in 1848.43

Thomson published other papers on the theory of heat, but
his ideas eventually changed as a result of hearing a presen-
tation by James Joule at a meeting in Oxford in 1847. Joule
was describing his experiments with the conversion of work
to thermal energy by a paddle wheel. In a letter written to his
nephew, J. T. Bottomley, Thomson wrote:*3©

I made Joule's acquaintance at the Oxford
meeting, and it quickly ripened into a life-long
friendship.

4.3.5. Ref. [97].
4.3.6. Ref. [17].

I heard his paper read in the section, and
felt strongly impelled at first to rise and say that
it must be wrong because the true mechanical
value of heat given, suppose in warm water, must,
for small differences of temperature, be propor-
tional to the square of its quantity. I knew from
Carnot that this must be true (and it is true; only
now I call it 'motivity', to avoid clashing with
Joule's 'mechanical value'.) But as I listened on
and on, I saw that (though Carnot had vitally
important truth, not to be abandoned) Joule had
certainly a great truth and a great discovery, and a
most important measurement to bring forward. So
instead of rising with my objection to the meeting
I waited till it was over, and said my say to Joule
himself, at the end of the meeting. This made my
first introduction to him. After that I had a long
talk over the whole matter at one of the conver-
saziones of the Association, and we became fast
friends from thenceforward.

The physicist Charles Everitt described Thomson's person-
ality as follows:*37

Thomson was the kind of man who created
all around him a sense of bustle and excitement.
...[He] was a man of violent enthusiasms. He
would take up a subject, work at it furiously for a
few weeks, throw out a string of novel ideas, and
then inexplicably drop everything and pass on.

During his career, Thomson published more than 600 papers
and received many honors. In addition to the theory of heat,
his work included a dynamical theory of electricity and mag-
netism, and the invention of the mirror galvanometer used as the
telegraph receiver for the first transatlantic submarine cables.

Thomson was the chief technical consultant for the initial
cable projects. As aresult of their success and his involvement in
the construction of a global cable network, he became extremely
wealthy and was knighted in 1866. In 1892 he became Baron
Kelvin of Largs. “Kelvin” is the name of the river that flows past
Glasgow University, “Largs” is the town where he had his home,
and kelvin is now the SI unit of thermodynamic temperature.

4.3.7. Ref. [53].

4.4 The Second Law for Reversible Processes

This section derives the existence and properties of the state function called entropy. To begin, a useful relation called

the Clausius inequality will be derived.
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4.4.1 The Clausius inequality

Consider an arbitrary cyclic process of a closed system. To avoid confusion, this system will be the “experimental
system” and the process will be the “experimental process” or “experimental cycle.” There are no restrictions on the
contents of the experimental system—it may have any degree of complexity whatsoever. The experimental process
may involve more than one kind of work, phase changes and reactions may occur, there may be temperature and
pressure gradients, constraints and external fields may be present, and so on. All parts of the process must be either
irreversible or reversible, but not impossible.

We imagine that the experimental cycle is carried out in a special way that allows us to apply the Kelvin—Planck
statement of the second law. The heat transferred across the boundary of the experimental system in each infinitesimal
path element of the cycle is exchanged with a hypothetical Carnot engine. The combination of the experimental
system and the Carnot engine is a closed supersystem (see Fig. 4.4.1 on page 100).

In the surroundings of the supersystem is a heat reservoir of arbitrary constant temperature T.,. By allowing
the supersystem to exchange heat with only this single heat reservoir, we will be able to apply the Kelvin—Planck
statement to a cycle of the supersystem.*!

We assume that we are able to control changes of the work coordinates of the experimental system from the
surroundings of the supersystem. We are also able to control the Carnot engine from these surroundings, for example
by moving the piston of a cylinder-and-piston device containing the working substance. Thus the energy transferred
by work across the boundary of the experimental system, and the work required to operate the Carnot engine, is
exchanged with the surroundings of the supersystem.

During each stage of the experimental process with nonzero heat, we allow the Carnot engine to undergo many
infinitesimal Carnot cycles with infinitesimal quantities of heat and work. In one of the isothermal steps of each
Carnot cycle, the Carnot engine is in thermal contact with the heat reservoir, as depicted in Fig. 4.4.1(a). In this step
the Carnot engine has the same temperature as the heat reservoir, and reversibly exchanges heat dg” with it. The sign
convention is that dg” is positive if heat is transferred in the direction of the arrow, from the heat reservoir to the Carnot
engine.

In the other isothermal step of the Carnot cycle, the Carnot engine is in thermal contact with the experimental
system at a portion of the system's boundary as depicted in Fig. 4.4.1(b). The Carnot engine now has the same
temperature, T, as the experimental system at this part of the boundary, and exchanges heat with it. The heat dq is
positive if the transfer is into the experimental system.

Tres TFCS
dq’

I v N I l
I T.. [ [ [
[ res | ! T, |
| | | l |
| | | |
I [ [ l dq [
| T [ | |
| b | | Ty |
I experimental I I experimental I
: system : : System :

(@) (b)

Figure 4.4.1. Experimental system, Carnot engine (represented by a small square box), and heat reservoir. The dashed lines indicate the
boundary of the supersystem.

(a) Reversible heat transfer between heat reservoir and Carnot engine.

(b) Heat transfer between Carnot engine and experimental system. The infinitesimal quantities dg” and dg are positive for transfer
in the directions indicated by the arrows.

4.4.1. This procedure is similar to ones described in Ref. [81], Sec. 16.1; Ref. [140], p. 36; Ref. [137], p. 21-23; Ref. [1], p. 68-69; and Ref.
[133].
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The relation between temperatures and heats in the isothermal steps of a Carnot cycle is given by Eq. 4.3.15. From
this relation we obtain, for one infinitesimal Carnot cycle, the relation T;,/ T;es = dg/dq’, or

dg

dq "= TresTb

(4.4.1)
After many infinitesimal Carnot cycles, the experimental cycle is complete, the experimental system has returned to its
initial state, and the Carnot engine has returned to its initial state in thermal contact with the heat reservoir. Integration
of Eq. 4.4.1 around the experimental cycle gives the net heat entering the supersystem during the process:

dg
"= Thes O - 4.4.2
q i § Ty ( )

The integration here is over each path element of the experimental process and over each surface element of the
boundary of the experimental system.

Keep in mind that the value of the cyclic integral § (dg/7) depends only on the path of the experimental cycle,
that this process can be reversible or irreversible, and that T is a positive constant.

In this experimental cycle, could the net heat ¢’ transferred to the supersystem be positive? If so, the net work
would be negative (to make the internal energy change zero) and the supersystem would have converted heat from a
single heat reservoir completely into work, a process the Kelvin—Planck statement of the second law says is impos-
sible. Therefore it is impossible for ¢’ to be positive, and from Eq. 4.4.2 we obtain the relation

93 dq _ (4.4.3)
T, ~ (cyclic process of a closed system)

This relation is known as the Clausius inequality. It is valid only if the integration is taken around a cyclic path in a
direction with nothing but reversible and irreversible changes—the path must not include an impossible change, such
as the reverse of an irreversible change. The Clausius inequality says that if a cyclic path meets this specification, it is
impossible for the cyclic integral ¢ (dg/T;) to be positive.

If the entire experimental cycle is adiabatic (which is only possible if the process is reversible), the Carnot engine
is not needed and Eq. 4.4.3 can be replaced by gﬁ (dg/Ty) =0.

4.4.2 Using reversible processes to define the entropy

Next let us investigate a reversible nonadiabatic process of the closed experimental system. Starting with a particular
equilibrium state A, we carry out a reversible process in which there is a net flow of heat into the system, and in which
dq is either positive or zero in each path element. The final state of this process is equilibrium state B. Let dgey
denote an infinitesimal quantity of heat in a reversible process. If dgyy is positive or zero during the process, then the
integral f: (dqrev/ Ty) must be positive. In this case the Clausius inequality tells us that if the system completes a cycle
by returning from state B back to state A by a different path, the integral f; (dgrev/ Tp) for this second path must be
negative. Therefore the change B— A cannot be carried out by any adiabatic process.

Any reversible process can be carried out in reverse. Thus, by reversing the reversible nonadiabatic process, it is
possible to change the state from B to A by areversible process with a net flow of heat out of the system and with dgey
either negative or zero in each element of the reverse path. In contrast, the absence of an adiabatic path from B to A
means that it is impossible to carry out the change A—B by a reversible adiabatic process.

The general rule, then, is that whenever equilibrium state A of a closed system can be changed to equilibrium
state B by a reversible process with finite “one-way” heat (i.e., the flow of heat is either entirely into the system or
else entirely out of it), it is impossible for the system to change from either of these states to the other by a reversible
adiabatic process.
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A simple example will relate this rule to experience. We can increase the temperature of a liquid by
allowing heat to flow reversibly into the liquid. It is impossible to duplicate this change of state by
a reversible process without heat—that is, by using some kind of reversible work. The reason is that
reversible work involves the change of a work coordinate that brings the system to a different final state.
There is nothing in the rule that says we can't increase the temperature irreversibly without heat, as we
can for instance with stirring work.

tes A and B can be arbitrarily close. We conclude that every equilibrium state of a closed system has other equi-
librium states infinitesimally close to it that are inaccessible by a reversible adiabatic process. This is Carathéodory's
principle of adiabatic inaccessibility.**2

Next let us consider the reversible adiabatic processes that are possible. To carry out a reversible adiabatic process,
starting at an initial equilibrium state, we use an adiabatic boundary and slowly vary one or more of the work coor-
dinates. A certain final temperature will result. It is helpful in visualizing this process to think of an N-dimensional
space in which each axis represents one of the N independent variables needed to describe an equilibrium state. A
point in this space represents an equilibrium state, and the path of a reversible process can be represented as a curve
in this space.

A suitable set of independent variables for equilibrium states of a closed system of uniform temperature consists
of the temperature 7" and each of the work coordinates (Sec. 3.10). We can vary the work coordinates independently
while keeping the boundary adiabatic, so the paths for possible reversible adiabatic processes can connect any arbitrary
combinations of work coordinate values.

There is, however, the additional dimension of temperature in the N-dimensional space. Do the paths for possible
reversible adiabatic processes, starting from a common initial point, lie in a volume in the N-dimensional space?
Or do they fall on a surface described by T as a function of the work coordinates? If the paths lie in a volume,
then every point in a volume element surrounding the initial point must be accessible from the initial point by a
reversible adiabatic path. This accessibility is precisely what Carathéodory's principle of adiabatic inaccessibility
denies. Therefore, the paths for all possible reversible adiabatic processes with a common initial state must lie on a
unique surface. This is an (N-1)-dimensional hypersurface in the N-dimensional space, or a curve if N is 2. One of
these surfaces or curves will be referred to as a reversible adiabatic surface.

Now consider the initial and final states of a reversible process with one-way heat (i.e., each nonzero infinitesimal
quantity of heat dg,., has the same sign). Since we have seen that it is impossible for there to be a reversible adiabatic
path between these states, the points for these states must lie on different reversible adiabatic surfaces that do not
intersect anywhere in the N-dimensional space. Consequently, there is an infinite number of nonintersecting reversible
adiabatic surfaces filling the N-dimensional space. (To visualize this for N =3, think of a flexed stack of paper sheets;
each sheet represents a different reversible adiabatic surface in three-dimensional space.) A reversible, nonadiabatic
process with one-way heat is represented by a path beginning at a point on one reversible adiabatic surface and ending
at a point on a different surface. If g is positive, the final surface lies on one side of the initial surface, and if ¢q is
negative, the final surface is on the opposite side.

The existence of reversible adiabatic surfaces is the justification for defining a new state function S, the entropy. S
is specified to have the same value everywhere on one of these surfaces, and a different, unique value on each different
surface. In other words, the reversible adiabatic surfaces are surfaces of constant entropy in the N-dimensional space.
The fact that the surfaces fill this space without intersecting ensures that S is a state function for equilibrium states,
because any point in this space represents an equilibrium state and also lies on a single reversible adiabatic surface
with a definite value of S.

We know the entropy function must exist, because the reversible adiabatic surfaces exist. For instance, Fig. 4.4.2
on page 103

4.4.2. Constantin Carathéodory in 1909 combined this principle with a mathematical theorem (Carathéodory's theorem) to deduce the existence
of the entropy function. The derivation outlined here avoids the complexities of that mathematical treatment and leads to the same results.
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Figure 4.4.2. A family of reversible adiabatic curves (two-dimensional reversible adiabatic surfaces) for an ideal gas with V and T as
independent variables. A reversible adiabatic process moves the state of the system along a curve, whereas a reversible process with
positive heat moves the state from one curve to another above and to the right. The curves are calculated for n=1mol and Cy ,,=(3/2) R.
Adjacent curves differ in entropy by 1%.
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Figure 4.4.3. Reversible paths in V--T space. The thin curves are reversible adiabatic surfaces.
(a) Two paths connecting the same pair of reversible adiabatic surfaces.
(b) A cyclic path.

shows a family of these surfaces for a closed system of a pure substance in a single phase. In this system, N is
equal to 2, and the surfaces are two-dimensional curves. Each curve is a contour of constant S. At this stage in the
derivation, our assignment of values of S to the different curves is entirely arbitrary.

How can we assign a unique value of S to each reversible adiabatic surface? We can order the values by letting a
reversible process with positive one-way heat, which moves the point for the state to a new surface, correspond to an
increase in the value of S. Negative one-way heat will then correspond to decreasing S. We can assign an arbitrary
value to the entropy on one particular reversible adiabatic surface. (The third law of thermodynamics is used for
this purpose—see Sec. 6.1.) Then all that is needed to assign a value of S to each equilibrium state is a formula for
evaluating the difference in the entropies of any two surfaces.

Consider a reversible process with positive one-way heat that changes the system from state A to state B. The path
for this process must move the system from a reversible adiabatic surface of a certain entropy to a different surface of
greater entropy. An example is the path A—B in Fig. 4.4.3(a) on page 103.

s in this figure are actually two-dimensional curves.) As before, we combine the experimental system with a Carnot
engine to form a supersystem that exchanges heat with a single heat reservoir of constant temperature 7;.s. The net
heat entering the supersystem, found by integrating Eq. 4.4.1, is

B dCIrev
A Tb

q" = Tres 4.44)
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and it is positive.

Suppose the same experimental system undergoes a second reversible process, not necessarily with one-way heat,

along a different path connecting the same pair of reversible adiabatic surfaces. This could be path C—D in Fig.

4.4.3(a). The net heat entering the supersystem during this second process is ¢’

144 D d rev
q" =T . T (4.4.5)
We can then devise a cycle of the supersystem in which the experimental system undergoes the reversible path
A-B->D—-C-A, as shown in Fig. 4.4.3(b). Step A—B is the first process described above, step D—C is the reverse
of the second process described above, and steps B—D and C—A are reversible and adiabatic. The net heat entering
the supersystem in the cycle is ¢"—¢q’’. In the reverse cycle the net heat is ¢’ —¢’. In both of these cycles the
heat is exchanged with a single heat reservoir; therefore, according to the Kelvin—Planck statement, neither cycle can
have positive net heat. Therefore ¢” and ¢”” must be equal, and Egs. 4.4.4 and 4.4.5 then show the integral [ (dgyev/
Ty,) has the same value when evaluated along either of the reversible paths from the lower to the higher entropy surface.

Note that since the second path (C—D) does not necessarily have one-way heat, it can take the experimental system
through any sequence of intermediate entropy values, provided it starts at the lower entropy surface and ends at the
higher. Furthermore, since the path is reversible, it can be carried out in reverse resulting in reversal of the signs of
AS and [ (dgrev/To).

It should now be apparent that a satisfactory formula for defining the entropy change of a reversible process in a
closed system is
d (4.4.6)
AS= f Cffrev (reversible process,
Ty
closed system)

This formula satisfies the necessary requirements: it makes the value of A S positive if the process has positive one-
way heat, negative if the process has negative one-way heat, and zero if the process is adiabatic. It gives the same value
of A S for any reversible change between the same two reversible adiabatic surfaces, and it makes the sum of the A S
values of several consecutive reversible processes equal to A S for the overall process.

In Eq. 4.4.6, A S is the entropy change when the system changes from one arbitrary equilibrium state to another.
If the change is an infinitesimal path element of a reversible process, the equation becomes

4 4.47)
ds =8drey (reversible process,

T closed system)

In Eq. 4.4.7, the quantity 1/7y is called an integrating factor for dq..y, a factor that makes the product
(1/7Ty) dgrey be an exact differential and the infinitesimal change of a state function. The quantity ¢/ Ty,
where ¢ is any nonzero constant, would also be a satisfactory integrating factor; so the definition of
entropy, using c =1, is actually one of an infinite number of possible choices for assigning values to the
reversible adiabatic surfaces.

4.4.3 Alternative derivation of entropy as a state function

The Clausius inequality ¢ (dg/Ty,) <0 (Eq. 4.4.3) can be used to show, by a more direct route than in the preceding
section, that (dg.v/Tp) is an exact differential during a reversible process of a closed system. When we equate A S to
this differential, as in Eq. 4.4.7, the entropy S can be shown to be a state function.
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The proof uses the fact that when a reversible process is reversed and the system passes through the same contin-
uous sequence of equilibrium states in reverse order, the heat dg., in each infinitesimal step changes its sign but not its
magnitude (Sec. 3.2.1). As a result, the integral f (dgrev/ Tpy) changes its sign but not its magnitude when the process
is reversed.

Consider an arbitrary reversible cyclic process of a closed system. Could the cyclic integral § (dgyey/Tp) for this
process be positive? No, that is impossible according to the Clausius inequality. Could the cyclic integral be negative?
No, because in this case gﬁ (dgrev/ Tp) for the reverse cycle is positive, which is also impossible. Thus the value of the
cyclic integral for a reversible cyclic process must be zero:

d (4.4.8)
4; v _ (reversible cyclic process

T of a closed system)

Let A and B be any two equilibrium states. Let path 1 and path 2 be two arbitrary but different reversible paths starting
at state A and ending at state B, and let path 3 be the path from state B to state A that is the reverse of path 2. When the
system changes from state A to state B along path 1, and then changes back to state A along path 3, it has undergone
a reversible cyclic process. From Eq. 4.4.8, the sum of the integrals of (dg.v/7p) along paths 1 and 3 is zero. The
integral of (dgrey/Tp) along path 3 has the same magnitude and opposite sign of the integral of (dg.y/T,) along path
2. Therefore the integral ff (dgrev/ Tv) must have the same value along paths 1 and 2. The result would be the same
for a reversible cycle using any other two paths from state A to state B. We conclude that the value of (dgrey/Tp)
integrated over a reversible path between any two equilibrium states depends only on the initial and final states and
not on the path; that is, (dg,/Tp) is an exact differential as defined on page (uninit).

When we equate A S to (dgrey/T1), the entropy change along a reversible path from any initial equilibrium state
A to any final equilibrium state B is given by

B B
ASpp=Sg—Sa= IA as = f dGrev (4.4.9)

A Tb
Since the value of f[f (dgrev/ Tv) depends only on the initial and final states A and B, so also does the value of A Sa_p.
If a value of S is assigned to a reference state, Eq. 4.4.9 in principle allows the value of S to be evaluated for any other
equilibrium state of the system. Each value of S then depends only on the state and not on the past or future history
of the system. Therefore, by the definition in Sec. 2.4.1 on page 37, the entropy is a state function.

4.4.4 Some properties of the entropy

It is not difficult to show that the entropy of a closed system in an equilibrium state is an extensive property. Suppose
a system of uniform temperature 7 is divided into two closed subsystems A and B. When a reversible infinitesimal
change occurs, the entropy changes of the subsystems are dSy =dga /7T and dS, =dgy /T and of the system dS =
dqrev/ T. But dgpey is the sum of dga and dgy, which gives dS =dSa +dSy. Thus, the entropy changes are additive, so
that entropy must be extensive: S=Sx+Sp.*+3

How can we evaluate the entropy of a particular equilibrium state of the system? We must assign an arbitrary value
to one state and then evaluate the entropy change along a reversible path from this state to the state of interest using
AS=f(erev/Tb)-

We may need to evaluate the entropy of a nonequilibrium state. To do this, we imagine imposing hypothetical
internal constraints that change the nonequilibrium state to a constrained equilibrium state with the same internal
structure. Some examples of such internal constraints were given in Sec. 2.4.4, and include rigid adiabatic partitions
between phases of different temperature and pressure, semipermeable membranes to prevent transfer of certain species
between adjacent phases, and inhibitors to prevent chemical reactions.

4.4.3. The argument is not quite complete, because we have not shown that when each subsystem has an entropy of zero, so does the entire
system. The zero of entropy will be discussed in Sec. 6.1.
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We assume that we can, in principle, impose or remove such constraints reversibly without heat, so there is no
entropy change. If the nonequilibrium state includes macroscopic internal motion, the imposition of internal con-
straints involves negative reversible work to bring moving regions of the system to rest.*** If the system is nonuniform
over its extent, the internal constraints will partition it into practically-uniform regions whose entropy is additive.
The entropy of the nonequilibrium state is then found from A S = f (dgrev/ Tv) using a reversible path that changes
the system from an equilibrium state of known entropy to the constrained equilibrium state with the same entropy
as the state of interest. This procedure allows every possible state (at least conceptually) to have a definite value of S.

4.5 The Second Law for Irreversible Processes

We know that during a reversible process of a closed system, each infinitesimal entropy change A S is equal to dg /Ty
and the finite change A S is equal to the integral [ (dg/Ti,)—but what can we say about dS and A S for an irreversible
process?

The derivation of this section will show that for an infinitesimal irreversible change of a closed system, dS is
greater than dg /Ty, and for an entire irreversible process A S is greater than f (dq/Ty). That is, the equalities that
apply to a reversible process are replaced, for an irreversible process, by inequalities.

The derivation begins with irreversible processes that are adiabatic, and is then extended to irreversible processes
in general.

4.5.1 Irreversible adiabatic processes

Consider an arbitrary irreversible adiabatic process of a closed system starting with a particular initial state A. The
final state B depends on the path of this process. We wish to investigate the sign of the entropy change A Sx_g. Our
reasoning will depend on whether or not there is work during the process.

If there is work along any infinitesimal path element of the irreversible adiabatic process (dw #0), we know from
experience that this work would be different if the work coordinate or coordinates were changing at a different rate,
because energy dissipation from internal friction would then be different. In the limit of infinite slowness, an adiabatic
process with initial state A and the same change of work coordinates would become reversible, and the net work
and final internal energy would differ from those of the irreversible process. Because the final state of the reversible
adiabatic process is different from B, there is no reversible adiabatic path with work between states A and B.

All states of a reversible process, including the initial and final states, must be equilibrium states. There
is therefore a conceptual difficulty in considering reversible paths between two states if either of these
states are nonequilibrium states. In such a case we will assume that the state has been replaced by a
constrained equilibrium state of the same entropy, as described in Sec. 4.4.4.

If, on the other hand, there is no work along any infinitesimal path element of the irreversible adiabatic process
(dw #0), the process is taking place at constant internal energy U in an isolated system. A reversible limit cannot
be reached without heat or work (page 55). Thus any reversible adiabatic change from state A would require work,
causing a change of U and preventing the system from reaching state B by any reversible adiabatic path.

So regardless of whether or not an irreversible adiabatic process A—B involves work, there is no reversible adia-
batic path between A and B. The only reversible paths between these states must be nonadiabatic. It follows that the
entropy change A Sa_p, given by the value of dg,., /Ty integrated over a reversible path from A to B, cannot be zero.

Next we ask whether A S5_p could be negative. In each infinitesimal path element of the irreversible adiabatic
process A—B, dq is zero and the integral ff (dg/T) along the path of this process is zero. Suppose the system
completes a cycle by returning along a different, reversible path from state B back to state A. The Clausius inequality
(Eq. 4.4.3) tells us that in this case the integral fBA (dgrev/ Tv) along the reversible path cannot be positive. But this
integral for the reversible path is equal to —A Sa_p, so A Sa_,p cannot be negative.

4.4.4. This concept amounts to defining the entropy of a state with macroscopic internal motion to be the same as the entropy of a state with
the same internal structure but without the motion, i.e., the same state frozen in time. By this definition, A S for a purely mechanical process (Sec.
3.2.4) is zero.
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Figure 4.5.1. Supersystem including the experimental system, a Carnot engine (square box), and a heat reservoir. The dashed rectangle
indicates the boundary of the supersystem.

We conclude that because the entropy change of the irreversible adiabatic process A—B cannot be zero, and it
cannot be negative, it must be positive.

In this derivation, the initial state A is arbitrary and the final state B is reached by an irreversible adiabatic process.
If the two states are only infinitesimally different, then the change is infinitesimal. Thus for an infinitesimal change
that is irreversible and adiabatic, dS must be positive.

4.5.2 Irreversible processes in general

To treat an irreversible process of a closed system that is nonadiabatic, we proceed as follows. As in Sec. 4.4.1, we
use a Carnot engine for heat transfer across the boundary of the experimental system. We move the boundary of the
supersystem of Fig. 4.4.1 so that the supersystem now includes the experimental system, the Carnot engine, and a heat
reservoir of constant temperature 7., as depicted in Fig. 4.5.1 on page 107.

During an irreversible change of the experimental system, the Carnot engine undergoes many infinitesimal cycles.
During each cycle, the Carnot engine exchanges heat dg” at temperature T with the heat reservoir and heat dg at
temperature Ty, with the experimental system, as indicated in the figure. We use the sign convention that dg” is positive
if heat is transferred to the Carnot engine, and dgq is positive if heat is transferred to the experimental system, in the
directions of the arrows in the figure.

The supersystem exchanges work, but not heat, with its surroundings. (The work involves the Carnot engine, but
not necessarily the experimental system.) During one infinitesimal cycle of the Carnot engine, the net entropy change
of the Carnot engine is zero, the entropy change of the experimental system is A S, the heat transferred between the
Carnot engine and the experimental system is dg, and the heat transferred between the heat reservoir and the Carnot
engine is given by dq’ = Tisdq/ Ty, (Eq. 4.4.1). The heat transfer between the heat reservoir and Carnot engine is
reversible, so the entropy change of the heat reservoir is

d¢’ _ dq

ASres:_K: T, “4.5.1)

The entropy change of the supersystem is the sum of the entropy changes of its parts:

ASSS=d5+dSres=dS—¥ 4.5.2)
b

The process within the supersystem is adiabatic and includes an irreversible change within the experimental system,
so according to the conclusions of Sec. 4.5.1, dS; is positive. Equation 4.5.2 then shows that dS, the infinitesimal
entropy change during the irreversible change of the experimental system, must be greater than dq/ Ty:

d (45.3)
ds>=4 (irreversible change,

T closed system)
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This relation includes the case of an irreversible adiabatic change, because it shows that if dq is zero, dS is greater
than zero.

By integrating both sides of Eq. 4.5.3 between the initial and final states of the irreversible process, we obtain a
relation for the finite entropy change corresponding to many infinitesimal cycles of the Carnot engine:

d “4.5.4)
AS> £q (irreversible process,

Ty closed system)

4.6 Applications

The lengthy derivation in Secs. 4.3—4.5 is based on the Kelvin—Planck statement describing the impossibility of
converting completely into work the energy transferred into the system by heat from a single heat reservoir. The
derivation has now given us all parts of the mathematical statement of the second law shown in the box on page
87. The mathematical statement includes an equality, dS = dg.v/ Tp, that applies to an infinitesimal reversible change,
and an inequality, dS > dq/ Ty, that applies to an infinitesimal irreversible change. It is convenient to combine the
equality and inequality in a single relation that is a general mathematical statement of the second law:

dg (4.6.1)
ds> T, (v closed system)

The inequality refers to an irreversible change and the equality to a reversible change, as indicated by the notation i
in the conditions of validity. The integrated form of this relation is

dg (4.6.2)

AS> T, (fmev, closed system)

During a reversible process, the states are equilibrium states and the temperature is usually uniform throughout the
system. The only exception is if the system happens to have internal adiabatic partitions that allow phases of different
temperatures in an equilibrium state. As mentioned in the footnote on page (uninit), when the process is reversible and
the temperature is uniform, we can replace dS =dgyey/ Ty, by dS =dqev/ T

The rest of Sec. 4.6 will apply Eqgs. 4.6.1 and 4.6.2 to various reversible and irreversible processes.

4.6.1 Reversible heating

def
The definition of the heat capacity C of a closed system is given by Eq. 3.1.9 on page 52: C = dq/dT. For reversible
heating or cooling of a homogeneous phase, dq is equal to 7 dS and we can write

nLC
AS= fﬂ Fdr (4.6.3)

where C should be replaced by Cy if the volume is constant, or by C,, if the pressure is constant (Sec. 3.1.5). If the
heat capacity has a constant value over the temperature range from 7; to 73, the equation becomes

AS=ClnL2 (4.6.4)
T

Heating increases the entropy, and cooling decreases it.

4.6.2 Reversible expansion of an ideal gas
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When the volume of an ideal gas, or of any other fluid, is changed reversibly and adiabatically, there is of course
no entropy change.

When the volume of an ideal gas is changed reversibly and isothermally, there is expansion work given by w =
-nRTIn(V,/ V) (Eq. 3.5.1). Since the internal energy of an ideal gas is constant at constant temperature, there must
be heat of equal magnitude and opposite sign: g=nRT In (V,/V}). The entropy change is therefore

v 4.6.5)
AS=nRIn=2 (reversible isothermal volume

Vi change of an ideal gas)

Isothermal expansion increases the entropy, and isothermal compression decreases it.

Since the change of a state function depends only on the initial and final states, Eq. 4.6.5 gives a valid expression
for A S of an ideal gas under the less stringent condition 7, = 77; it is not necessary for the intermediate states to be
equilibrium states of the same temperature.

4.6.3 Spontaneous changes in an isolated system

An isolated system is one that exchanges no matter or energy with its surroundings. Any change of state of an isolated
system that actually occurs is spontaneous, and arises solely from conditions within the system, uninfluenced by
changes in the surroundings—the process occurs by itself, of its own accord. The initial state and the intermediate
states of the process must be nonequilibrium states, because by definition an equilibrium state would not change over
time in the isolated system.

Unless the spontaneous change is purely mechanical, it is irreversible. According to the second law, during an
infinitesimal change that is irreversible and adiabatic, the entropy increases. For the isolated system, we can therefore
write

(4.6.6)

ds>0 (irreversible change, isolated system)

In later chapters, the inequality of Eq. 4.6.6 will turn out to be one of the most useful for deriving conditions for
spontaneity and equilibrium in chemical systems: The entropy of an isolated system continuously increases during a
spontaneous, irreversible process until it reaches a maximum value at equilibrium.

If we treat the universe as an isolated system (although cosmology provides no assurance that this is a valid
concept), we can say that as spontaneous changes occur in the universe, its entropy continuously increases. Clausius
summarized the first and second laws in a famous statement: Die Energie der Welt ist constant; die Entropie der
Welt strebt einem Maximum zu (the energy of the universe is constant; the entropy of the universe strives toward a
maximum).

4.6.4 Internal heat flow in an isolated system

Suppose the system is a solid body whose temperature initially is nonuniform. Provided there are no internal adiabatic
partitions, the initial state is a nonequilibrium state lacking internal thermal equilibrium. If the system is surrounded
by thermal insulation, and volume changes are negligible, this is an isolated system. There will be a spontaneous,
irreversible internal redistribution of thermal energy that eventually brings the system to a final equilibrium state of
uniform temperature.

In order to be able to specify internal temperatures at any instant, we treat the system as an assembly of phases,
each having a uniform temperature that can vary with time. To describe a region that has a continuous temperature
gradient, we approximate the region with a very large number of very small phases or parcels, each having a temper-
ature infinitesimally different from its neighbors.
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We use Greek letters to label the phases. The temperature of phase o at any given instant is 7¢. We can treat
each phase as a subsystem with a boundary across which there can be energy transfer in the form of heat. Let dgqgp
represent an infinitesimal quantity of heat transferred during an infinitesimal interval of time to phase a from phase
. The heat transfer, if any, is to the cooler from the warmer phase. If phases a and 8 are in thermal contact and 7
is less than T, then dq.g is positive; if the phases are in thermal contact and T is greater than TF, dgp is negative;
and if neither of these conditions is satisfied, dgg is zero.

To evaluate the entropy change, we need a reversible path from the initial to the final state. The net quantity of
heat transferred to phase a during an infinitesimal time interval is dg® = ZB +a 49ap. The entropy change of phase a is
the same as it would be for the reversible transfer of this heat from a heat reservoir of temperature 7%: dS*=dq®/T*“.
The entropy change of the entire system along the reversible path is found by summing over all phases:

dq“® dqap
ds = Ydse=y =3V =2F
a a a B#a
d d
- Y'Y ( gzﬁ N qua ) (4.6.7)
a B>a
There is also the condition of quantitative energy transfer, dggo =—dq.g, which we use to rewrite Eq. 4.6.7 in the form
1 1
is=Y Y (W‘ﬁ)d%ﬁ (4.6.8)
a Bra

Consider an individual term of the sum on the right side of Eq. 4.6.8 that has a nonzero value of dg.g due to finite
heat transfer between phases o and . If 7% is less than T®, then both dgepand (1/T%-1/ TP are positive. If, on the
other hand, 7* is greater than T8, both dgepand (1/T%-1 /T?) are negative. Thus each term of the sum is either zero
or positive, and as long as phases of different temperature are present, dS is positive.

This derivation shows that during a spontaneous thermal equilibration process in an isolated system, starting with
any initial distribution of the internal temperatures, the entropy continuously increases until the system reaches a state
of thermal equilibrium with a single uniform temperature throughout.*¢! The result agrees with Eq. 4.6.6.

4.6.5 Free expansion of a gas

Consider the free expansion of a gas shown in Fig. 3.5.3 on page 67. The system is the gas. Assume that the vessel
walls are rigid and adiabatic, so that the system is isolated. When the stopcock between the two vessels is opened, the
gas expands irreversibly into the vacuum without heat or work and at constant internal energy. To carry out the same
change of state reversibly, we confine the gas at its initial volume and temperature in a cylinder-and-piston device and
use the piston to expand the gas adiabatically with negative work. Positive heat is then needed to return the internal
energy reversibly to its initial value. Because the reversible path has positive heat, the entropy change is positive.

This is an example of an irreversible process in an isolated system for which a reversible path between the initial
and final states has both heat and work.

4.6.6 Adiabatic process with work

In general (page 80), an adiabatic process with a given initial equilibrium state and a given change of a work coordinate
has the least positive or most negative work in the reversible limit. Consider an irreversible adiabatic process with
work wi;. The same change of state can be accomplished reversibly by the following two steps: (1) a reversible
adiabatic change of the work coordinate with work w..y, followed by (2) reversible transfer of heat g, with no further
change of the work coordinate. Since wyy is algebraically less than wyy, gy must be positive in order to make A U
the same in the irreversible and reversible paths. The positive heat increases the entropy along the reversible path, and
consequently the irreversible adiabatic process has a positive entropy change. This conclusion agrees with the second-
law inequality of Eq. 4.6.1.

4.6.1. Leff, in Ref. [106], obtains the same result by a more complicated derivation.
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reversible
[d4/T, = AS
—
state | state 2
\/

irreversible
[dq/Ty < AS

Figure 4.7.1. Reversible and irreversible paths between the same initial and final equilibrium states of a closed system. The value of A S
is the same for both paths, but the values of the integral f (dq/Ty) are different.

4.7 Summary

Some of the important terms and definitions discussed in this chapter are as follows.
* Any conceivable process is either spontaneous, reversible, or impossible.
e A reversible process proceeds by a continuous sequence of equilibrium states.
e A spontaneous process is one that proceeds naturally at a finite rate.
e Anirreversible process is a spontaneous process whose reverse is impossible.

e A purely mechanical process is an idealized process without temperature gradients, and without friction or
other dissipative effects, that is spontaneous in either direction. This kind of process will be ignored in the
remaining chapters of this book.

o Except for a purely mechanical process, the terms spontaneous and irreversible are equivalent.

The derivation of the mathematical statement of the second law shows that during a reversible process of a closed
system, the infinitesimal quantity dg/T;, equals the infinitesimal change of a state function called the entropy, S. Here
dq is heat transferred at the boundary where the temperature is 7y,

In each infinitesimal path element of a process of a closed system, dS is equal to dg/ Ty if the process is reversible,
and is greater than dg /T, if the process is irreversible, as summarized by the relation dS >dq/ Ty.

Consider two particular equilibrium states 1 and 2 of a closed system. The system can change from state 1 to state
2 by either a reversible process, with A S equal to the integral [ (dg/T;), or an irreversible process, with A S greater
than [ (dg/Ty). It is important to keep in mind the point made by Fig. 4.7.1 on page 111:

because S is a state function, it is the value of the integral that is different in the two cases, and not the value of A S.

The second law establishes no general relation between entropy changes and heat in an open system, or for an
impossible process. The entropy of an open system may increase or decrease depending on whether matter enters
or leaves. It is possible to imagine different impossible processes in which dS is less than, equal to, and greater than

4.8 The Statistical Interpretation of Entropy

Because entropy is such an important state function, it is natural to seek a description of its meaning on the microscopic
level.
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Entropy is sometimes said to be a measure of “disorder.” According to this idea, the entropy increases whenever a
closed system becomes more disordered on a microscopic scale. This description of entropy as a measure of disorder
is highly misleading. It does not explain why entropy is increased by reversible heating at constant volume or pressure,
or why it increases during the reversible isothermal expansion of an ideal gas. Nor does it seem to agree with the
freezing of a supercooled liquid or the formation of crystalline solute in a supersaturated solution; these processes can
take place spontaneously in an isolated system, yet are accompanied by an apparent decrease of disorder.

Thus we should not interpret entropy as a measure of disorder. We must look elsewhere for a satisfactory micro-
scopic interpretation of entropy.

A rigorous interpretation is provided by the discipline of statistical mechanics, which derives a precise expression
for entropy based on the behavior of macroscopic amounts of microscopic particles. Suppose we focus our attention
on a particular macroscopic equilibrium state. Over a period of time, while the system is in this equilibrium state, the
system at each instant is in a microstate, or stationary quantum state, with a definite energy. The microstate is one that
is accessible to the system—that is, one whose wave function is compatible with the system's volume and with any
other conditions and constraints imposed on the system. The system, while in the equilibrium state, continually jumps
from one accessible microstate to another, and the macroscopic state functions described by classical thermodynamics
are time averages of these microstates.

The fundamental assumption of statistical mechanics is that accessible microstates of equal energy are equally
probable, so that the system while in an equilibrium state spends an equal fraction of its time in each such microstate.
The statistical entropy of the equilibrium state then turns out to be given by the equation

Ssat=kInW+C (4.8.1)

where k is the Boltzmann constant k =R /Na, W is the number of accessible microstates, and C is a constant.

In the case of an equilibrium state of a perfectly-isolated system of constant internal energy U, the accessible
microstates are the ones that are compatible with the constraints and whose energies all have the same value, equal to
the value of U.

It is more realistic to treat an equilibrium state with the assumption the system is in thermal equilibrium with
an external constant-temperature heat reservoir. The internal energy then fluctuates over time with extremely small
deviations from the average value U, and the accessible microstates are the ones with energies close to this average
value. In the language of statistical mechanics, the results for an isolated system are derived with a microcanonical
ensemble, and for a system of constant temperature with a canonical ensemble.

A change A S, of the statistical entropy function given by Eq. 4.8.1 is the same as the change A S of the macro-
scopic second-law entropy, because the derivation of Eq. 4.8.1 is based on the macroscopic relation dSs,=dg /T =
(dU-dw) /T with dU and dw given by statistical theory. If the integration constant C is set equal to zero, S, becomes
the third-law entropy S to be described in Chap. 6.

Equation 4.8.1 shows that a reversible process in which entropy increases is accompanied by an increase in the
number of accessible microstates of equal, or nearly equal, internal energies. This interpretation of entropy increase
has been described as the spreading and sharing of energy*$! and as the dispersal of energy.*32 It has even been
proposed that entropy should be thought of as a “spreading function” with its symbol S suggesting spreading.*8-3 434

4.8.1. Ref. [107].
4.8.2. Ref. [104].
4.8.3. Ref. [105].
4.8.4. The symbol S for entropy seems originally to have been an arbitrary choice by Clausius; see Ref. [89].
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BIOGRAPHICAL SKETCH
MAX KARL ERNST LUDWIG PLANCK (1858-1947)

Max Planck, best known for his formulation of the quantum
theory, had a passionate interest in thermodynamics in the early
part of his career.

He was born in Kiel, Germany, where his father was a distin-
guished law professor. His family had a long tradition of conser-
vatism, idealism, and excellence in scholarship.

As a youth, Planck had difficulty deciding between music
and physics as a career, finally settling on physics. He acquired
his interest in thermodynamics from studies with Hermann von
Helmholtz and Gustav Kirchhoff and from the writings of Rudolf
Clausius. His doctoral dissertation at the University of Munich
(1879) was on the second law.

In 1897, Planck turned his papers on thermodynamics into a
concise introductory textbook, Treatise on Thermodynamics. It
went through at least seven editions and has been translated into
English.*$>

Concerning the second law he wrote:*3:¢

Another controversy arose with relation to the
question of the analogy between the passage of
heat from a higher to a lower temperature and the
sinking of a weight from a greater to a smaller
height. I had emphasized the need for a sharp
distinction between these two processes...How-
ever, this theory of mine was contradicted by the
view universally accepted in those days, and I

4.8.5. Ref. [145].
4.8.6. Ref. [144], pages 29--30.

just could not make my fellow physicists see it
my way...

A consequence of this point of view [held by
others] was that the assumption of irreversibility
for proving the Second Law of Thermodynamics
was declared to be unessential; furthermore, the
existence of an absolute zero of temperature was
disputed, on the ground that for temperature, just
as for height, only differences can be measured.
It is one of the most painful experiences of my
entire scientific life that I have but seldom—in
fact, I might say, never—succeeded in gaining
universal recognition for a new result, the truth
of which I could demonstrate by a conclusive,
albeit only theoretical proof. This is what hap-
pened this time, too. All my sound arguments fell
on deaf ears.

Planck became an associate professor of physics at the Uni-
versity of Kiel. In 1889 he succeeded Kirchhoff as Professor
at Berlin University. By the end of the following year, at the
age of 42, he had worked out his quantum theory to explain
the experimental facts of blackbody radiation, a formulation that
started a revolution in physics. He was awarded the 1918 Nobel
Prize in Physics “in recognition of the services he rendered to
the advancement of Physics by his discovery of energy quanta.”

Planck was reserved and only enjoyed socializing with per-
sons of similar rank. He was a gifted pianist with perfect pitch,
and enjoyed hiking and climbing well into his old age. He was
known for his fairness, integrity, and moral force.

He endured many personal tragedies in his later years. His
first wife died after 22 years of a happy marriage. His elder son
was killed in action during World War I. Both of his twin daugh-
ters died in childbirth.

Planck openly opposed the Nazi persecution of Jews but
remained in Germany during World War II out of a sense of
duty. The war brought further tragedy: his house in Berlin was
destroyed by bombs, and his second son was implicated in the
failed 1944 attempt to assassinate Hitler and was executed by
the Gestapo. Planck and his second wife escaped the bombings
by hiding in the woods and sleeping in haystacks in the coun-
tryside. They were rescued by American troops in May, 1945.
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water

Figure 4.9.1.

4.9 Problems

Problem 4.9.1. Explain why an electric refrigerator, which transfers energy by means of heat from the cold food storage compartment to the
warmer air in the room, is not an impossible “Clausius device.”

Problem 4.9.2. A system consisting of a fixed amount of an ideal gas is maintained in thermal equilibrium with a heat reservoir at temperature
T. The system is subjected to the following isothermal cycle:

1. The gas, initially in an equilibrium state with volume V), is allowed to expand into a vacuum and reach a new equilibrium state of
volume V.

2. The gas is reversibly compressed from V"’ to Vp.
For this cycle, find expressions or values for w, gﬁ dq/T, and gﬁdSA
Problem 4.9.3. In an irreversible isothermal process of a closed system:
a) Is it possible for A S to be negative?
b) Is it possible for A S to be less than ¢ /T?

Problem 4.9.4. Suppose you have two blocks of copper, each of heat capacity Cy = 200.0%. Initially one block has a uniform temperature of
300.00K and the other 310.00K. Calculate the entropy change that occurs when you place the two blocks in thermal contact with one another
and surround them with perfect thermal insulation. Is the sign of A S consistent with the second law? (Assume the process occurs at constant
volume.)

Problem 4.9.5. Refer to the apparatus shown in Figs. 3.11.2 on page 83 and 3.11.5 on page 85 and described in Probs. 3.11.3 and 3.11.8. For
both systems, evaluate A S for the process that results from opening the stopcock. Also evaluate [ dg/ Tex for both processes (for the apparatus
in Fig. 3.11.5, assume the vessels have adiabatic walls). Are your results consistent with the mathematical statement of the second law?

Problem 4.9.6. Figure 4.9.1 on page 114 shows the walls of a rigid thermally-insulated box (cross hatching). The system is the contents of
this box. In the box is a paddle wheel immersed in a container of water, connected by a cord and pulley to a weight of mass m. The weight
rests on a stop located a distance / above the bottom of the box. Assume the heat capacity of the system, Cy, is independent of temperature.
Initially the system is in an equilibrium state at temperature 77. When the stop is removed, the weight irreversibly sinks to the bottom of the
box, causing the paddle wheel to rotate in the water. Eventually the system reaches a final equilibrium state with thermal equilibrium. Describe
a reversible process with the same entropy change as this irreversible process, and derive a formula for A § in terms of m, h, Cy, and Tj.
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Chapter 5
Thermodynamic Potentials

This chapter begins with a discussion of mathematical properties of the total differential of a dependent variable. Three
extensive state functions with dimensions of energy are introduced: enthalpy, Helmholtz energy, and Gibbs energy.
These functions, together with internal energy, are called thermodynamic potentials.> ! Some formal mathematical
manipulations of the four thermodynamic potentials are described that lead to expressions for heat capacities, surface
work, and criteria for spontaneity in closed systems.

5.1 Total Differential of a Dependent Variable

Recall from Sec. 2.4.1 that the state of the system at each instant is defined by a certain minimum number of state
functions, the independent variables. State functions not treated as independent variables are dependent variables.
Infinitesimal changes in any of the independent variables will, in general, cause an infinitesimal change in each depen-
dent variable.

A dependent variable is a function of the independent variables. The total differential of a dependent variable
is an expression for the infinitesimal change of the variable in terms of the infinitesimal changes of the independent
variables. As explained in Sec. F.2 of Appendix F, the expression can be written as a sum of terms, one for each
independent variable. Each term is the product of a partial derivative with respect to one of the independent variables
and the infinitesimal change of that independent variable. For example, if the system has two independent variables,
and we take these to be 7" and V, the expression for the total differential of the pressure is

d
_(9r op
dp_(aT)VdT+(aV)TdV (5.1.1)

Thus, in the case of a fixed amount of an ideal gas with pressure given by p=nRT /V, the total differential of the

pressure can be written

nRT
\

dp=$dT— dv (5.1.2)

5.2 Total Differential of the Internal Energy

For a closed system undergoing processes in which the only kind of work is expansion work, the first law becomes
dU=dg+dw=dg- ppdV. Since it will often be useful to make a distinction between expansion work and other kinds
of work, this book will sometimes write the first law in the form

(5.2.1)

_ _ ’
dU=dg-py,dV +dw (closed system)

5.0.1. The term thermodynamic potential should not be confused with the chemical potential, u, to be introduced on page 116.
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116 THERMODYNAMIC POTENTIALS

where dw’ is nonexpansion work—that is, any thermodynamic work that is not expansion work.

Consider a closed system of one chemical component (e.g., a pure substance) in a single homogeneous phase.
The only kind of work is expansion work, with V as the work variable. This kind of system has two independent
variables (Sec. 2.4.3). During a reversible process in this system, the heat is dg =T dS, the work is dw =-pdV, and
an infinitesimal internal energy change is given by

(5.2.2)
dU=TdS-pdV (closed system, C =1,
P=1,dw’ =0)

In the conditions of validity shown next to this equation, C = 1 means there is one component (C is the number of
components) and P =1 means there is one phase (P is the number of phases).

The appearance of the intensive variables 7" and p in Eq. 5.2.2 implies, of course, that the temperature and pressure
are uniform throughout the system during the process. If they were not uniform, the phase would not be homogeneous
and there would be more than two independent variables. The temperature and pressure are strictly uniform only if
the process is reversible; it is not necessary to include “reversible” as one of the conditions of validity.

A real process approaches a reversible process in the limit of infinite slowness. For all practical purposes, there-
fore, we may apply Eq. 5.2.2 to a process obeying the conditions of validity and taking place so slowly that the
temperature and pressure remain essentially uniform—that is, for a process in which the system stays very close to
thermal and mechanical equilibrium.

Because the system under consideration has two independent variables, Eq. 5.2.2 is an expression for the total
differential of U with S and V as the independent variables. In general, an expression for the differential dX of a state
function X is a total differential if

1. itis a valid expression for dX, consistent with the physical nature of the system and any conditions and con-
straints;

2. itis a sum with the same number of terms as the number of independent variables;

3. each term of the sum is a function of state functions multiplied by the differential of one of the independent
variables.

Note that the work coordinate of any kind of dissipative work—work without a reversible limit—cannot appear in the
expression for a total differential, because it is not a state function (Sec. 3.10).

As explained in Appendix F, we may identify the coefficient of each term in an expression for the total differential
of a state function as a partial derivative of the function. We identify the coefficients on the right side of Eq. 5.2.2 as

follows:
oU oU
r-(35), -r=(37), (>-23)

Now let us consider some of the ways a system might have more than two independent variables. Suppose the system
has one phase and one substance, with expansion work only, and is open so that the amount n of the substance can
vary. Such a system has three independent variables. Let us write the formal expression for the total differential of U
with S, V, and # as the three independent variables:

5.2.4)
dU = (%_g) ds + (g_l‘i) dv + (%_U) dn (pure substance,
Von Sn nJsyv P=1,dw"=0)

We have seen above that if the system is closed, the partial derivatives are (0U /0S)y=T and (0U/0V)s=—p. Since
both of these partial derivatives are for a closed system in which z is constant, they are the same as the first two partial
derivatives on the right side of Eq. 5.2.4.

The quantity given by the third partial derivative, (0 U /dn)g.y, is represented by the symbol u (mu). This quantity
is an intensive state function called the chemical potential.
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5.3 ENTHALPY, HELMHOLTZ ENERGY, AND GIBBS ENERGY 117

With these substitutions, Eq. 5.2.4 becomes

(5.2.5)
dU=TdS -pdV + pdn (pure substance,
P=1,dw’ =0)

and this is a valid expression for the total differential of U under the given conditions.

If a system contains a mixture of s different substances in a single phase, and the system is open so that the amount
of each substance can vary independently, there are 2 + s independent variables and the total differential of U can be

written
s (5.2.6)
dU=TdS—pdV+Z pidn; (open system,
i=1 P=1,dw"=0)

The coeflicient y; is the chemical potential of substance i. We identify it as the partial derivative (0 U/0n;)s,v,n,,,-

The term —p dV on the right side of Eq. 5.2.6 is the reversible work. However, the term 7 dS does not
equal the reversible heat as it would if the system were closed. This is because the entropy change dS
is partly due to the entropy of the matter transferred across the boundary. It follows that the remaining
term, Y. pu;dn; (sometimes called the “chemical work”), should not be interpreted as the energy brought
into the system by the transfer of matter.>-2-!

Suppose that in addition to expansion work, other kinds of reversible work are possible. Each work coordinate
adds an additional independent variable. Thus, for a closed system of one component in one phase, with reversible
nonexpansion work given by dw’ =Y dX, the total differential of U becomes

(5.2.7)
dU=TdS-pdV+YdX (closed system,
C=1P=1)

5.3 Enthalpy, Helmholtz Energy, and Gibbs Energy

For the moment we shall confine our attention to closed systems with one component in one phase. The total differen-
tial of the internal energy in such a system is given by Eq. 5.2.2: dU =TdS - pdV. The independent variables in this
equation, S and V, are called the natural variables of U.

In the laboratory, entropy and volume may not be the most convenient variables to measure and control. Entropy
is especially inconvenient, as its value cannot be measured directly. The way to change the independent variables is
to make Legendre transforms, as explained in Sec. F.4 in Appendix F.

A Legendre transform of a dependent variable is made by subtracting one or more products of conjugate variables.
In the total differential dU =7dS—pdV, T and S are conjugates (that is, they comprise a conjugate pair), and —p and
V are conjugates. Thus the products that can be subtracted from U are either 7S or —p V, or both. Three Legendre
transforms of the internal energy are possible, defined as follows:

def
Enthalpy H = U+pV (5.3.1)
Helmbholtz energy A < U-TS (5.3.2)
Gibbs energy G & U-TS+pV=H-TS (5.3.3)

These definitions are used whether or not the system has only two independent variables.

5.2.1. Ref. [101].
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BIOGRAPHICAL SKETCH

JOSIAH WILLARD GIBBS (1839-1903)

Willard Gibbs's brilliant and rigorous formulation of the theoret-
ical basis of classical thermodynamics was essential for further
development of the subject.

Gibbs was born in New Haven, Connecticut, and lived there
all his life. His father was a professor in the Yale Divinity School.
Gibbs was Professor of Mathematical Physics at Yale College
from 1871 until his death.

Gibbs never married. In demeanor he was serene, kindly,
reserved, and self-effacing. A biographer wrote:33!

Gibbs' attitude toward his discoveries is also
illuminating as to his character. ...he made no
effort to “sell” his discoveries (aside from the
usual distribution of reprints of his papers) or to
popularize the results. He was so confident of
their rightness and ability to stand on their own
feet that he was entirely content to let their value
and importance be “discovered” by others. The
fact that he had made a discovery was to him
an irrelevant matter; the important thing was the
truth established.

In 1873, when he was 34, the first two of Gibbs's remarkable
papers on theoretical thermodynamics appeared in an obscure
journal, Transactions of the Connecticut Academy.>3>333 These
papers explored relations among state functions using two- and
three-dimensional geometrical constructions.

James Clerk Maxwell promoted Gibbs's ideas in England,
and made a small plaster model of the three-dimensional S--V --
U surface for H,O which he sent to Gibbs.

5.3.1. Ref. [183], page 83.
5.3.2. Ref. [68].
5.3.3. Ref. [67].

The two papers of 1873 were followed by a monumental
paper in the same journal—in two parts (1876 and 1878) and
over 300 pages in length!—entitled simply “On the Equilib-
rium of Heterogeneous Substances”.>*# This third paper used
an analytical rather than geometrical approach. From the first
and second laws of thermodynamics, it derived the conditions
needed for equilibrium in the general case of a multiphase, multi-
component system. It introduced the state functions now known
as enthalpy, Helmholtz energy,”>*> Gibbs energy, and chemical
potential. Included in the paper was the exposition of the Gibbs
phase rule.

The only public comment Gibbs ever made on his thermo-
dynamic papers was in a letter of 1881 accepting membership in
the American Academy of Arts and Sciences:>3¢

The leading idea which I followed in my
paper on the Equilibrium of Heterogeneous Sub-
stances was to develop the rdles of energy and
entropy in the theory of thermo-dynamic equilib-
rium. By means of these quantities the general
condition of equilibrium is easily expressed, and
by applying this to various cases we are led at
once to the special conditions which charac-
terize them. We thus obtain the consequences
resulting from the fundamental principles of
thermo-dynamics (which are implied in the defin-
itions of energy and entropy) by a process which
seems more simple, and which lends itself more
readily to the solution of problems, than the usual
method, in which the several parts of a cyclic
operation are explicitly and separately consid-
ered. Although my results were in a large measure
such as had previously been demonstrated by
other methods, yet, as I readily obtained those
which were to me before unknown, I was con-
firmed in my belief in the suitableness of the
method adopted.

Gibbs had a visit about 1898 from a young Gilbert Lewis.
He told Lewis that he was rather lonely at Yale, where few others
were actively interested in his work.>37

5.3.4. Ref. [69].

5.3.5. Hermann von Helmholtz, a German physiologist and physicist, intro-
duced the term ““free energy" for this quantity in 1882.

5.3.6. Ref. [183], page 89.
5.3.7. Ref. [142].

The enthalpy, Helmholtz energy, and Gibbs energy are important functions used extensively in thermodynamics.
They are state functions (because the quantities used to define them are state functions) and are extensive (because
U, S, and V are extensive). If temperature or pressure are not uniform in the system, we can apply the definitions to
constituent phases, or to subsystems small enough to be essentially uniform, and sum over the phases or subsystems.
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5.4 CLOSED SYSTEMS 119

Alternative names for the Helmholtz energy are Helmholtz function, Helmholtz free energy, and work
function. Alternative names for the Gibbs energy are Gibbs function and Gibbs free energy. Both the
Helmbholtz energy and Gibbs energy have been called simply free energy, and the symbol F has been
used for both. The nomenclature in this book follows the recommendations of the [IUPAC Green Book
(Ref. [36]).

Expressions for infinitesimal changes of H, A, and G are obtained by applying the rules of differentiation to their
defining equations:

dH = dU+pdV +Vdp (5.3.4)
dA = dU-TdS-SdT (5.3.5)
dG = dU-TdS-SdT +pdV +Vdp (5.3.6)

These expressions for dH, dA, and dG are general expressions for any system or phase with uniform 7 and p. They
are not total differentials of H, A, and G, as the variables in the differentials in each expression are not independent.

A useful property of the enthalpy in a closed system can be found by replacing dU in Eq. 5.3.4 by the first law
expression dg—pdV +dw’, to obtain dH = dg + V dp + dw’. Thus, in a process at constant pressure (dp = 0) with
expansion work only (dw’ =0), we have

(5.3.7)
dH =dq (closed system, constant p

dw’=0)
The enthalpy change under these conditions is equal to the heat. The integrated form of this relation is [dH = [dg, or

(5.3.8)
AH=gq (closed system, constant p

w’ =0)
Equation 5.3.7 is analogous to the following relation involving the internal energy, obtained from the first law:

(5.3.9)
dU =dq (closed system, constant V

dw’ =0)

That is, in a process at constant volume with expansion work only, the internal energy change is equal to the heat.

5.4 Closed Systems

n order to find expressions for the total differentials of H, A, and G in a closed system with one component in one
phase, we must replace dU in Eqs. 5.3.4-5.3.6 with

dU=TdS-pdV 54.1)
to obtain
dH = TdS+Vdp (5.4.2)
dA = -§dT-pdV (54.3)
dG = -SdT+Vdp 5.4.4)

Equations 5.4.1-5.4.4 are sometimes called the Gibbs equations. They are expressions for the total differentials of the
thermodynamic potentials U, H, A, and G in closed systems of one component in one phase with expansion work only.
Each equation shows how the dependent variable on the left side varies as a function of changes in two independent
variables (the natural variables of the dependent variable) on the right side.
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120 THERMODYNAMIC POTENTIALS

By identifying the coefficients on the right side of Eqs. 5.4.1-5.4.4, we obtain the following relations (which again
are valid for a closed system of one component in one phase with expansion work only):

from Eq. 5.4.1 (a—U) =T (5.4.5)
35 ),
oU
(W)s - (5.4.6)
from Eq. 5.4.2 (a—H) =T (5.4.7)
95 ),
aH)
HY _ 5438
(ap s ( )
dA
from Eq. 5.4.3 (W)v - =s (5.4.9)
A
(W)T - (5.4.10)
from Eq. 5.4.4 (%—G) - =s (54.11)
p
0G
96 Ly 54.12
( ap )T ( )

This book now uses for the first time an extremely useful mathematical tool called the reciprocity relation of a total
differential (Sec. F.2). Suppose the independent variables are x and y and the total differential of a dependent state
function f is given by

df =adx+bdy (5.4.13)

where a and b are functions of x and y. Then the reciprocity relation is

(%) B (%)y (5.4.14)

The reciprocity relations obtained from the Gibbs equations (Eqs. 5.4.1-5.4.4) are called Maxwell relations (again
valid for a closed system with C=1, P=1, and dw’ =0):

from Eq. 5.4.1 (%)S - -(%)V (5.4.15)
from Eq. 5.4.2 (g—g)s - (%)F (5.4.16)
from Eq. 5.4.3 (%)T - (%)V (5.4.17)
from Eq. 5.4.4 -(g—i)T - (%)F (5.4.18)

5.5 Open Systems
An open system of one substance in one phase, with expansion work only, has three independent variables. The total

differential of U is given by Eq. 5.2.5:
dU=TdS-pdV + pdn (5.5.1)

In this open system the natural variables of U are S, V, and n. Substituting this expression for dU into the expressions
for dH, dA, and dG given by Eqgs. 5.3.4-5.3.6, we obtain the following total differentials:

dH = TdS+Vdp+pudn (5.52)
dA = -SdT-pdV + udn (5.5.3)
dG = -SdT +Vdp+ pdn (5.54)
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5.6 EXPRESSIONS FOR HEAT CAPACITY 121

Note that these are the same as the four Gibbs equations (Eqs. 5.4.1-5.4.4) with the addition of a term p dn to allow
for a change in the amount of substance.

Identification of the coefficient of the last term on the right side of each of these equations shows that the chemical
potential can be equated to four different partial derivatives:

oU oH 0A 0G
= (W)S,V- (W)S,,: (W)T,v- (W)T,p (5.5.5)

All four of these partial derivatives must have the same value for a given state of the system; the value, of course,
depends on what that state is.

The last partial derivative on the right side of Eq. 5.5.5, (0 G/dn)r ), is especially interesting because it is the
rate at which the Gibbs energy increases with the amount of substance added to a system whose intensive properties
remain constant. Thus, p is revealed to be equal to Gy, the molar Gibbs energy of the substance.

Suppose the system contains several substances or species in a single phase (a mixture) whose amounts can be
varied independently. We again assume the only work is expansion work. Then, making use of Eq. 5.2.6, we find the
total differentials of the thermodynamic potentials are given by

dU = TdS-pdV+)  pdn; (5.5.6)
dH = TdS+Vdp+lZ pidn; (5.5.7)
dA = —SdT—pdV+lZ: pidn; (5.5.8)
dG = —SdT+Vdp+lZ: widn; (5.5.9)

The independent variables on the right side of each of these equations are the natural variables of the corresponding
thermodynamic potential. Section F.4 shows that all of the information contained in an algebraic expression for a state
function is preserved in a Legendre transform of the function. What this means for the thermodynamic potentials is
that an expression for any one of them, as a function of its natural variables, can be converted to an expression for each
of the other thermodynamic potentials as a function of its natural variables.

Willard Gibbs, after whom the Gibbs energy is named, called Eqs. 5.5.6-5.5.9 the fundamental equations of ther-
modynamics, because from any single one of them not only the other thermodynamic potentials but also all thermal,
mechanical, and chemical properties of the system can be deduced.>>! Problem 5.5.9.4 illustrates this useful applica-
tion of the total differential of a thermodynamic potential.

In Egs. 5.5.6-5.5.9, the coefficient y; is the chemical potential of species i. The equations show that y; can be
equated to four different partial derivatives, similar to the equalities shown in Eq. 5.5.5 for a pure substance:

aU) (aH) (aA) (aG)
i=|l = =| — =| — = — 5.5.10
H (ani S, V.njzi an; S,p.j4i on; T,V.njsi on; T,p.njsi ( )

The partial derivative (0 G/0n;)r p .y, is called the partial molar Gibbs energy of species i, another name for the
chemical potential as will be discussed in Sec. 9.2.6.

5.6 Expressions for Heat Capacity

As explained in Sec. 3.1.5, the heat capacity of a closed system is defined as the ratio of an infinitesimal quantity of

heat transferr%df across the boundary under specified conditions and the resulting infinitesimal temperature change:
€

heat capacity = dgq/dT. The heat capacities of isochoric (constant volume) and isobaric (constant pressure) processes

are of particular interest.

5.5.1. Ref. [69], p. 86.
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122 THERMODYNAMIC POTENTIALS

The heat capacity at constant volume, Cy, is the ratio dg/dT for a process in a closed constant-volume system
with no nonexpansion work—that is, no work at all. The first law shows that under these conditions the internal energy
change equals the heat: dU =dq (Eq. 5.3.9). We can replace dg by dU and write Cy as a partial derivative:

o a_U) (5.6.1)
V=\aT)y (closed system)

If the closed system has more than two independent variables, additional conditionsare needed to define
Cy unambiguously. For instance, if the system is a gas mixture in which reaction can occur, we might
specify that the system remains in reaction equilibrium as 7' changes at constant V.

Equation 5.6.1 does not require the condition dw’ =0, because all quantities appearing in the equation
are state functions whose relations to one another are fixed by the nature of the system and not by the
path. Thus, if heat transfer into the system at constant V causes U to increase at a certain rate with
respect to 7', and this rate is defined as Cy, the performance of electrical work on the system at constant

V will cause the same rate of increase of U with respect to T" and can equally well be used to evaluate
Cy.

Note that Cy is a state function whose value depends on the state of the system—that is, on 7', V, and any additional
independent variables. Cy is an extensive property: the combination of two identical phases has twice the value of Cy
that one of the phases has by itself. et

For a phase containing a pure substance, the molar heat capacity at constant volume is defined by Cy,, = Cy/n.
Cy . is an intensive property.

If the system is an ideal gas, its internal energy depends only on 7, regardless of whether V is constant, and Eq.
5.6.1 can be simplified to

U (5.6.2)

Cv= dr (closed system, ideal gas)

Thus the internal energy change of an ideal gas is given by dU = CydT, as mentioned earlier in Sec. 3.5.3.

The heat capacity at constant pressure, C,, is the ratio dg/dT for a process in a closed system with a constant,
uniform pressure and with expansion work only. Under these conditions, the heat dq is equal to the enthalpy change
dH (Eq. 5.3.7), and we obtain a relation analogous to Eq. 5.6.1:

o _(3H (5.6.3)
P=\or), (closed system)

C, is an extensive state function. For a phase containing a pure substance, the molar heat capacity at constant
pressure is C, , = C,/n, an intensive property.

Since the enthalpy of a fixed amount of an ideal gas depends only on T (Prob. 5.9.1), we can write a relation
analogous to Eq. 5.6.2:

dH (5.6.4)

C,= I (closed system, ideal gas)

5.7 Surface Work

Sometimes we need more than the usual two independent variables to describe an equilibrium state of a closed system
of one substance in one phase. This is the case when, in addition to expansion work, another kind of work is possible.
The total differential of U is then given by dU=T7TdS-pdV +Y dX (Eq. 5.2.7), where Y dX represents the nonexpan-
sion work dw’.

A good example of this situation is surface work in a system in which surface area is relevant to the description of
the state.

A liquid—gas interface behaves somewhat like a stretched membrane. The upper and lower surfaces of the liquid
film in the device depicted in Fig. 5.7.1 on page 123
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Figure 5.7.1. Device to measure the surface tension of a liquid film. The film is stretched between a bent wire and a sliding rod.

exert a force F on the sliding rod, tending to pull it in the direction that reduces the surface area. We can measure
the force by determining the opposing force Fiy needed to prevent the rod from moving. This force is found to be
proportional to the length of the rod and independent of the rod position x. The force also depends on the temperature
and pressure.

The surface tension or interfacial tension, y, is the force exerted by an interfacial surface per unit length. The film
shown in Fig. 5.7.1 has two surfaces, so we have y = % where [ is the rod length.

To increase the surface area of the film by a practically-reversible process, we slowly pull the rod to the right in
the +x direction. The system is the liquid. The x component of the force exerted by the system on the surroundings
at the moving boundary, F;"*, is equal to —F (F is positive and F.”* is negative). The displacement of the rod results
in surface work given by Eq. 3.1.2: dw’ =—F;**dx =2 y I dx. The increase in surface area, dAy, is 2 ldx, so the surface

work is dw’ = y dA where y is the work coefficient and Ay is the work coordinate. Equation 5.2.7 becomes
dU=TdS-pdV + y dA; (5.7.1)
Substitution into Eq. 5.3.6 gives
dG=-SdT+Vdp+y dA, (5.7.2)

which is the total differential of G with T, p, and A, as the independent variables. Identifying the coefficient of the
last term on the right side as a partial derivative, we find the following expression for the surface tension:

0G
v (a_As)T,,, (5.7.3)

That is, the surface tension is not only a force per unit length, but also a Gibbs energy per unit area.
From Eq. 5.7.2, we obtain the reciprocity relation

0y [0S
(W).D,As— _( A )T,p (5.7.4)

It is valid to replace the partial derivative on the left side by (0 y /0 T), because y is independent of A,. Thus, the
variation of surface tension with temperature tells us how the entropy of the liquid varies with surface area.

5.8 Criteria for Spontaneity

In this section we combine the first and second laws in order to derive some general relations for changes during a
reversible or irreversible process of a closed system. The temperature and pressure will be assumed to be practically
uniform during the process, even if the process is irreversible. For example, the volume might be changing at a finite
rate but very slowly, or there might be a spontaneous homogeneous reaction in a mixture of uniform temperature and
pressure.

The second law states that dS is equal to dg /T if the process is reversible, and is greater than dq /T if the process
is irreversible:

(5.8.1)
dS>dq/T (e, closed system)

or
dg<Tds o

(irev closed system)

rev ?
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124 THERMODYNAMIC POTENTIALS

The inequalities in these relations refer to an irreversible process and the equalities to a reversible process, as indicated
by the notation ",
When we substitute dg from Eq. 5.8.2 into the first law in the form dU =dg— pdV +dw’, where dw’ is nonexpan-

sion work, we obtain the relation
(5.8.3)
(irev closed system)

rev ?

dU <TdS - pdV +dw’

We substitute this relation for dU into the differentials of enthalpy, Helmholtz energy, and Gibbs energy given by Eqgs.
5.3.4-5.3.6 to obtain three more relations:

(5.8.4)
(irev closed system)

rev ?

dH <TdS+Vdp +dw’

(5.8.5)
(irev closed system)

rev ?

dA <-8dT - pdV +dw’

(5.8.6)
(irev_ closed system)

rev

dG<-8dT +Vdp +dw’

The last two of these relations provide valuable criteria for spontaneity under common laboratory conditions. Equation
5.8.5 shows that during a spontaneous irreversible change at constant temperature and volume, dA is less than dw’. If
the only work is expansion work (i.e., dw’ is zero),the Helmholtz energy decreases during a spontaneous process at
constant 7 and V and has its minimum value when the system reaches an equilibrium state.

Equation 5.8.6 is especially useful. From it, we can conclude the following:

+ Reversible nonexpansion work at constant 7" and p is equal to the Gibbs energy change. For example, if the
system is a galvanic cell operated in the reversible limit (Sec. 3.8.3) at constant T and p, the electrical work is
given by dwel, rev =dG. There is an application of this relation in Sec. 14.3.1.

¢ During a spontaneous process at constant 7" and p in a closed system with expansion work only, the Gibbs
energy continuously decreases until the system reaches an equilibrium state.

Ben-Amotz and Honig3 ! developed a “rectification” procedure that simplifies the mathematical manip-
ulation of inequalities. Following this procedure, we can write

dS=dq/T +do (5.8.7)

where d6 is an excess entropy function that is positive for an irreversible change and zero for a reversible
change (d6 >0). Solving for dg gives the expression dg =7 dS —T d@ that, when substituted in the
first law expression dU = dg—pdV +dw’, produces

dU=TdS-pdV +dw’-Td6 (5.8.8)

The equality of this equation is equivalent to the combined equality and inequality of Eq. 5.8.3. Then
by substitution of this expression for dU into Egs. 5.3.4-5.3.6, we obtain equalities equivalent to Egs.
5.8.4-5.8.6, for example

dG=-SdT+Vdp+dw’'-T d0 (5.8.9)

Equation 5.8.9 tells us that during a process at constant 7 and p, with expansion work only (dw’ =0),
dG has the same sign as —7"df: negative for an irreversible change and zero for a reversible change.

5.8.1. Refs. [11] and [88].
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5.9 Problems

Problem 5.9.1. Show that the enthalpy of a fixed amount of an ideal gas depends only on the temperature.
Problem 5.9.2. From concepts in this chapter, show that the heat capacities Cy and C,, of a fixed amount of an ideal gas are functions only of 7.

Problem 5.9.3. During the reversible expansion of a fixed amount of an ideal gas, each increment of heat is given by the expression dg =
CydT + (nRT/V)dV (Eq. 4.3.4).

a) A necessary and sufficient condition for this expression to be an exact differential is that the reciprocity relation must be satisfied for
the independent variables 7" and V (see Appendix F). Apply this test to show that the expression is not an exact differential, and that
heat therefore is not a state function.

b) By the same method, show that the entropy increment during the reversible expansion, given by the expression dS=dg/7, is an exact
differential, so that entropy is a state function.

Problem 5.9.4. This problem illustrates how an expression for one of the thermodynamic potentials as a function of its natural variables
contains the information needed to obtain expressions for the other thermodynamic potentials and many other state functions.

From statistical mechanical theory, a simple model for a hypothetical “hard-sphere” liquid (spherical molecules of finite size without
attractive intermolecular forces) gives the following expression for the Helmholtz energy with its natural variables 7', V, and n as the indepen-
dent variables:

A=-nRTIn [CT3/2 (%—b)]—nRT+na

Here a, b, and c are constants. Derive expressions for the following state functions of this hypothetical liquid as functions of 7', V, and n.
a) The entropy, S
b) The pressure, p
¢) The chemical potential, p
d) The internal energy, U
e) The enthalpy, H
f) The Gibbs energy, G
g) The heat capacity at constant volume, Cy

h) The heat capacity at constant pressure, C;, (hint: use the expression for p to solve for V as a function of 7, p, and n; then use
H=U+pV)

Problem 5.9.5. Figure 5.9.1 on page 125 depicts a hypothetical liquid in equilibrium with its vapor. The liquid and gas are confined in a
cylinder by a piston. An electrical resistor is immersed in the liquid. The system is the contents of the cylinder to the left of the piston (the
liquid, gas, and resistor). The initial state of the system is described by

Vi=0.2200m3® T;=300.0K p;=2.50x10°Pa

A constant current / =0.5000A is passed for 1600s through the resistor, which has electric resistance Rej = 50.00 Q. The piston moves slowly to
the right against a constant external pressure equal to the vapor pressure of the liquid, 2.50 x 10°Pa, and some of the liquid vaporizes. Assume
that the process is adiabatic and that 7" and p remain uniform and constant. The final state is described by

V5=0.2400m>  T75=3000K p,=2.50x10Pa
a) Calculate g, w, AU, and AH.
b) Is the process reversible? Explain.
c) Devise a reversible process that accomplishes the same change of state, and use it to calculate A S.

d) Compare ¢ for the reversible process with A H. Does your result agree with Eq. 5.3.8?

gas

liquid

Figure 5.9.1.
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THERMODYNAMIC POTENTIALS

t/°C 7/107%Jcm™

15 7.350
20 7.275
25 7.199
30 7.120
35 7.041

Table 5.9.1. Surface tension of water at 1 bar”>-!"
“'Ref. [175]

Problem 5.9.6. Use the data in Table 5.9.1 on page 126 to evaluate (0.5/dAs)T,p at 25 °C, which is the rate at which the entropy changes with
the area of the air—water interface at this temperature.

Problem 5.9.7. When an ordinary rubber band is hung from a clamp and stretched with constant downward force F by a weight attached to
the bottom end, gentle heating is observed to cause the rubber band to contract in length. To keep the length / of the rubber band constant
during heating, F must be increased. The stretching work is given by dw’ = F dI. From this information, find the sign of the partial derivative
(0T /01)s,p; then predict whether stretching of the rubber band will cause a heating or a cooling effect.

(Hint: make a Legendre transform of U whose total differential has the independent variables needed for the partial derivative, and write
a reciprocity relation.)

You can check your prediction experimentally by touching a rubber band to the side of your face before and after you rapidly stretch it.
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Chapter 6
The Third Law and Cryogenics

The third law of thermodynamics concerns the entropy of perfectly-ordered crystals at zero kelvins.

When a chemical reaction or phase transition is studied at low temperatures, and all substances are pure crystals
presumed to be perfectly ordered, the entropy change is found to approach zero as the temperature approaches zero
kelvins:

. _ (6.0.1)
ITII)%A §=0 (pure, perfectly—ordered crystals)
Equation 6.0.1 is the mathematical statement of the Nernst heat theorem®"-! or third law of thermodynamics. It is

true in general only if each reactant and product is a pure crystal with identical unit cells arranged in perfect spatial
order.

6.1 The Zero of Entropy

There is no theoretical relation between the entropies of different chemical elements. We can arbitrarily choose the
entropy of every pure crystalline element to be zero at zero kelvins. Then the experimental observation expressed by
Eq. 6.0.1 requires that the entropy of every pure crystalline compound also be zero at zero kelvins, in order that the
entropy change for the formation of a compound from its elements will be zero at this temperature.

A classic statement of the third law principle appears in the 1923 book Thermodynamics and the Free Energy of
Chemical Substances by G. N. Lewis and M. Randall:®!!

“If the entropy of each element in some crystalline state be taken as zero at the absolute zero of temper-
ature: every substance has a finite positive entropy, but at the absolute zero of temperature the entropy
may become zero, and does so become in the case of perfect crystalline substances.”

According to this principle, every substance (element or compound) in a pure, perfectly-ordered crystal at 0K, at
any pressure,®!2 has a molar entropy of zero:

6.1.1)

Sm(0K) =0 (pure, perfectly—ordered crystal)

This convention establishes a scale of absolute entropies at temperatures above zero kelvins called third-law entropies,
as explained in the next section.

6.0.1. Nernst preferred to avoid the use of the entropy function and to use in its place the partial derivative —(dA/9d7T)y (Eq. 5.4.9). The
original 1906 version of his heat theorem was in the form limr_0 (0 AA/0T)y0 (Ref. [39]).

6.1.1. Ref. [111], p. 448.

6.1.2. The entropy becomes independent of pressure as 7' approaches zero kelvins. This behavior can be deduced from the relation (0S/0p)r =
—aV (Table 7.5.1 on page 150) combined with the experimental observation that the cubic expansion coefficient a approaches zero as T approaches
zero kelvins.
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128 THE THIRD LAW AND CRYOGENICS

6.2 Molar Entropies

With the convention that the entropy of a pure, perfectly-ordered crystalline solid at zero kelvins is zero, we can
establish the third-law value of the molar entropy of a pure substance at any temperature and pressure. Absolute values
of S, are what are usually tabulated for calculational use.

6.2.1 Third-law molar entropies

h to evaluate the entropy of an amount n of a pure substance at a certain temperature 7~ and a certain pressure. The
same substance, in a perfectly-ordered crystal at zero kelvins and the same pressure, has an entropy of zero. The
entropy at the temperature and pressure of interest, then, is the entropy change A S = fo dq/ T of areversible heating
process at constant pressure that converts the perfectly-ordered crystal at zero kelvins to the state of interest.

Consider a reversible isobaric heating process of a pure substance while it exists in a single phase. The definition
of heat capacity as dg/dT (Eq. 3.1.9) allows us to substitute C,dT for dg, where C, is the heat capacity of the phase
at constant pressure.

If the substance in the state of interest is a liquid or gas, or a crystal of a different form than the perfectly-ordered
crystal present at zero kelvins, the heating process will include one or more equilibrium phase transitions under condi-
tions where two phases are in equilibrium at the same temperature and pressure (Sec. 2.2.2). For example, a reversible
heating process at a pressure above the triple point that transforms the crystal at 0K to a gas may involve transitions
from one crystal form to another, and also melting and vaporization transitions.

Each such reversible phase transition requires positive heat g.s. Because the pressure is constant, the heat is
equal to the enthalpy change (Eq. 5.3.8). The ratio g/ is called the molar heat or molar enthalpy of the transition,
AysH (see Sec. 8.3.1). Because the phase transition is reversible, the entropy change during the transition is given by
AusS = qus/ n Tys Where Ty is the transition temperature.

With these considerations, we can write the following expression for the entropy change of the entire heating
process:

_ T’ Cp nAtrsH
As_fo TdT+ZT (6.2.1)

The resulting operational equation for the calculation of the molar entropy of the substance at the temperature and

pressure of interest is
(6.2.2)

. AS T’ Cpm AuwsH
Sn(T)y=—= PRAT + Yy —— (pure substance
"5 fo T Z Tos clc)mstant P)

where C, , = C,/n is the molar heat capacity at constant pressure. The summation is over each equilibrium phase
transition occurring during the heating process.

Since C, 1, is positive at all temperatures above zero kelvins, and Ay H is positive for all transitions occurring
during a reversible heating process, the molar entropy of a substance is positive at all temperatures above zero kelvins.

The heat capacity and transition enthalpy data required to evaluate S, (T”) using Eq.

6.2.2 come from calorimetry. The calorimeter can be cooled to about 10K with liquid hydrogen, but it is difficult to
make measurements below this temperature. Statistical mechanical theory may be used to approximate the part of the
integral in Eq. 6.2.2 between zero kelvins and the lowest temperature at which a value of C, i, can be measured. The
appropriate formula for nonmagnetic nonmetals comes from the Debye theory for the lattice vibration of a monatomic
crystal. This theory predicts that at low temperatures (from 0K to about 30 K), the molar heat capacity at constant
volume is proportional to T3 Cym=a T3, where a is a constant. For a solid, the molar heat capacities at constant
volume and at constant pressure are practically equal. Thus for the integral on the right side of Eq. 6.2.2 we can, to a
good approximation, write

r Cp,m 2 "Cpm
fo ‘ f T2dT+ I , =T (6.2.3)
where 7" is the lowest temperature at which C,, 1, is measured. The first term on the right side of Eq. 6.2.3 is

afoT T2T = (aT?/3) =a(T”)3/3 (6.2.4)
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Figure 6.2.1. Properties of hydrogen chloride (HCI): the dependence of Cp,m, Cp,m/ T, and Sy, on temperature at a pressure of 1bar. The
discontinuities are at a solid—solid phase transition, the melting temperature, and the vaporization temperature. (Condensed-phase data
from Ref. [65]; gas-phase data from Ref. [28], p. 762.)

But a(T"")? is the value of C,, at 7"/, so Eq. 6.2.2 becomes

o™ (6.2.5)

. +IT Cp.m dT + Z AuwsH (pure substance,

Sm(T,) ’” T Ti
IS

constant p)

In the case of a metal, statistical mechanical theory predicts an electronic contribution to the molar
heat capacity, proportional to T at low temperature, that should be added to the Debye T3 term: C, pom =
aT?+bT. The error in using Eq. 6.2.5, which ignores the electronic term, is usually negligible if the
heat capacity measurements are made down to about 10K.

We may evaluate the integral on the right side of Eq. 6.2.5 by numerical integration. We need the area under the
curve of C, /T plotted as a function of T between some low temperature, T"’, and the temperature T~ at which the
molar entropy is to be evaluated. Since the integral may be written in the form

T Cp, T=T’
[, mdr={ """ Cpmdin(T/K) (6.2.6)

we may also evaluate the integral from the area under a curve of C, ,, plotted as a function of In (7' / K).

The procedure of evaluating the entropy from the heat capacity is illustrated for the case of hydrogen chloride in
Fig. 6.2.1 on page 129.
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130 THE THIRD LAW AND CRYOGENICS

The areas under the curves of C, ,/T versus T, and of C, , versus In(7T/K), in a given temperature range are
numerically identical (Eq. 6.2.6). Either curve may be used in Eq. 6.2.2 to find the dependence of S;,, on 7. Note how
the molar entropy increases continuously with increasing 7" and has a discontinuity at each phase transition.

As explained in Sec. 6.1, by convention the zero of entropy of any substance refers to the pure,
perfectly-ordered crystal at zero kelvins. In practice, experimental entropy values depart from this
convention in two respects. First, an element is usually a mixture of two or more isotopes, so that the
substance is not isotopically pure. Second, if any of the nuclei have spins, weak interactions between
the nuclear spins in the crystal would cause the spin orientations to become ordered at a very low
temperature. Above 1K, however, the orientation of the nuclear spins become essentially random, and
this change of orientation is not included in the Debye T3 formula.

The neglect of these two effects results in a practical entropy scale, or conventional entropy scale, on
which the crystal that is assigned an entropy of zero has randomly-mixed isotopes and randomly-ori-
ented nuclear spins, but is pure and ordered in other respects. This is the scale that is used for published
values of absolute " third-law" molar entropies. The shift of the zero away from a completely-pure and
perfectly-ordered crystal introduces no inaccuracies into the calculated value of A S for any process
occurring above 1K, because the shift is the same in the initial and final states. That is, isotopes remain
randomly mixed and nuclear spins remain randomly oriented.

6.2.2 Molar entropies from spectroscopic measurements

Statistical mechanical theory applied to spectroscopic measurements provides an accurate means of evaluating the
molar entropy of a pure ideal gas from experimental molecular properties. This is often the preferred method of
evaluating Sy, for a gas. The zero of entropy is the same as the practical entropy scale—that is, isotope mixing and
nuclear spin interactions are ignored. Intermolecular interactions are also ignored, which is why the results apply only
to an ideal gas.

The statistical mechanics formula writes the molar entropy as the sum of a translational contribution
and an internal contribution: Sy, = Sm,trans + Sm.int. The translational contribution is given by the Sackur--
Tetrode equation:

(21 M)*2(RT)>?

Sm,trans =RIn » h3 Nf\‘

+(5/2)R 6.2.7)

Here h is the Planck constant and N, is the Avogadro constant. The internal contribution is given by
Smint=RIngin+ RT (dIn gin /dT) (6.2.8)
where giy is the molecular partition function defined by

Gin=)_ exp (=€;/kT) (6.2.9)

In Eq. 6.2.9, ¢ is the energy of a molecular quantum state relative to the lowest energy level, & is
the Boltzmann constant, and the sum is over the quantum states of one molecule with appropriate
averaging for natural isotopic abundance. The experimental data needed to evaluate g, consist of the
energies of low-lying electronic energy levels, values of electronic degeneracies, fundamental vibra-
tional frequencies, rotational constants, and other spectroscopic parameters.

When the spectroscopic method is used to evaluate S, with p set equal to the standard pressure p° = 1 bar, the
value is the standard molar entropy, Sy, of the substance in the gas phase. This value is useful for thermodynamic
calculations even if the substance is not an ideal gas at the standard pressure, as will be discussed in Sec. 7.9.
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6.3 CRYOGENICS 131

Se/ (J- K tmol™1)
Substance  calorimetric  spectroscopic®>! Sy, o/ (J-K~'-mol)

HCI 186.3 +0.4%22 186.901 0.6+0.4
CO 193.4+0.4%23 197.65+0.04 43404
NO 208.0+0.4%24 210.758 2.8+04
N,O (NNO) 215.3+0.4%25 219.957 47+04

H,0 185.4+0.2026 188.834 +0.042 34402

Table 6.2.1. Standard molar entropies of several substances (ideal gases at 7=298.15K and p = 1 bar) and molar residual entropies

6.2.3 Residual entropy

Ideally, the molar entropy values obtained by the calorimetric (third-law) method for a gas should agree closely with
the values calculated from spectroscopic data. Table 6.2.1 on page 131 shows that for some substances this agreement
is not present. The table lists values of Sy, for ideal gases at 298.15 K evaluated by both the calorimetric and spectro-
scopic methods. The quantity Sy, in the last column is the difference between the two Sy, values, and is called the
molar residual entropy.

In the case of HCI, the experimental value of the residual entropy is comparable to its uncertainty, indicating
good agreement between the calorimetric and spectroscopic methods. This agreement is typical of most substances,
particularly those like HCl whose molecules are polar and asymmetric with a large energetic advantage of forming
perfectly-ordered crystals.

The other substances listed in Table 6.2.1 on page 131 have residual entropies that are greater than zero within the
uncertainty of the data. What is the meaning of this discrepancy between the calorimetric and spectroscopic results?
We can assume that the true values of Sy, at 298.15K are the spectroscopic values, because their calculation assumes
the solid has only one microstate at 0 K, with an entropy of zero, and takes into account all of the possible accessible
microstates of the ideal gas. The calorimetric values, on the other hand, are based on Eq. 6.2.2 which assumes the
solid becomes a perfectly-ordered crystal as the temperature approaches 0K.027

The conventional explanation of a nonzero residual entropy is the presence of random rotational orientations of
molecules in the solid at the lowest temperature at which the heat capacity can be measured, so that the crystals are not
perfectly ordered. The random structure is established as the crystals form from the liquid, and becomes frozen into the
crystals as the temperature is lowered below the freezing point. This tends to happen with almost-symmetric molecules
with small dipole moments which in the crystal can have random rotational orientations of practically equal energy.
In the case of solid H,O it is the arrangement of intermolecular hydrogen bonds that is random. Crystal imperfections
such as dislocations can also contribute to the residual entropy. If such crystal imperfection is present at the lowest
experimental temperature, the calorimetric value of Sy, for the gas at 298.15K is the molar entropy increase for the
change at 1 bar from the imperfectly-ordered solid at OK to the ideal gas at 298.15K, and the residual entropy Sp, o is
the molar entropy of this imperfectly-ordered solid.

6.3 Cryogenics

The field of cryogenics involves the production of very low temperatures, and the study of the behavior of matter at
these temperatures. These low temperatures are needed to evaluate third-law entropies using calorimetric measure-
ments. There are some additional interesting thermodynamic applications.

6.2.7. The calorimetric values in Table 6.2.1 were calculated as follows. Measurements of heat capacities and heats of transition were used
in Eq. 6.2.2 to find the third-law value of Sy, for the vapor at the boiling point of the substance at p = 1 atm. This calculated value for the gas was
corrected to that for the ideal gas at p = 1 bar and adjusted to 7 =298.15 K with spectroscopic data.
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Figure 6.3.1. Joule-Thomson expansion of a gas through a porous plug. The shaded area represents a fixed-amount sample of the gas (a)
at time ¢1; (b) at a later time 7;.

6.3.1 Joule-Thompson expansion

A gas can be cooled by expanding it adiabatically with a piston (Sec. 3.5.3), and a liquid can be cooled by pumping
on its vapor to cause evaporation (vaporization). An evaporation procedure with a refrigerant fluid is what produces
the cooling in an ordinary kitchen refrigerator.

For further cooling of a fluid, a common procedure is to use a continuous throttling process in which the fluid
is forced to flow through a porous plug, valve, or other constriction that causes an abrupt drop in pressure. A slow
continuous adiabatic throttling of a gas is called the Joule--Thomson experiment, or Joule—Kelvin experiment, after
the two scientists who collaborated between 1852 and 1862 to design and analyze this procedure.®3-!

The principle of the Joule-Thomson experiment is shown in Fig. 6.3.1 on page 132.

A tube with thermally insulated walls contains a gas maintained at a constant pressure p’ at the left side of a
porous plug and at a constant lower pressure p’’ at the right side. Because of the pressure difference, the gas flows
continuously from left to right through the plug. The flow is slow, and the pressure is essentially uniform throughout
the portion of the tube at each side of the plug, but has a large gradient within the pores of the plug.

After the gas has been allowed to flow for a period of time, a steady state develops in the tube. In this steady state,
the gas is assumed to have a uniform temperature 7" at the left side of the plug and a uniform temperature 7" (not
necessarily equal to 7”) at the right side of the plug.

Consider the segment of gas whose position at times ¢, and ¢, is indicated by shading in Fig. 6.3.1. This segment
contains a fixed amount of gas and expands as it moves through the porous plug from higher to lower pressure. We
can treat this gas segment as a closed system. During the interval between times #; and #,, the system passes through
a sequence of different states, none of which is an equilibrium state since the process is irreversible. The energy
transferred across the boundary by heat is zero, because the tube wall is insulated and there is no temperature gradient
at either end of the gas segment. We calculate the energy transferred by work at each end of the gas segment from
dw =—py Asdx, where py, is the pressure (either p” or p’’) at the moving boundary, Ay is the cross-section area of the
tube, and x is the distance along the tube. The result is

w=-p' (V; =V)-p"" (VJ"=V") (6.3.1)

where the meaning of the volumes V/, V,, and so on is indicated in the figure.

The internal energy change A U of the gas segment must be equal to w, since ¢ is zero. Now let us find the enthalpy
change A H. At each instant, a portion of the gas segment is in the pores of the plug, but this portion contributes an
unchanging contribution to both U and H because of the steady state. The rest of the gas segment is in the portions on
either side of the plug, with enthalpies U’ +p’ V"’ at the leftand U’’ + p”” V"” at the right. The overall enthalpy change
of the gas segment must be

AH=AU+(p' Vi +p"" Vi) =(p' Vi +p"" V") (6.3.2)

which, when combined with the expression of Eq. 6.3.1 for w= A U, shows that A H is zero. In other words, the gas
segment has the same enthalpy before and after it passes through the plug: the throttling process is isenthalpic.

6.3.1. William Thomson later became Lord Kelvin.
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6.3 CRYOGENICS 133

Figure 6.3.2. Adiabatic demagnetization to achieve a low temperature in a paramagnetic solid.

The temperatures T’ and 7'’ can be measured directly. When values of 7" versus p’’ are plotted for a series
of Joule-Thomson experiments having the same values of 7" and p’ and different values of p’’, the curve drawn
through the points is a curve of constant enthalpy. The slope at any point on this curve is equal to the Joule-Thomson
coefficient (or Joule—Kelvin coefficient) defined by

def (0T
pir = (@)H 6.3.3)

For an ideal gas, ujt is zero because the enthalpy of an ideal gas depends only on 7' (Prob. 5.9.1); T cannot change if H
is constant. For a nonideal gas, pyr is a function of 7 and p and the kind of gas.®32 For most gases, at low to moderate
pressures and at temperatures not much greater than room temperature, ujk is positive. Under these conditions, a
Joule-Thomson expansion to a lower pressure has a cooling effect, because T will decrease as p decreases at constant
H. Hydrogen and helium, however, have negative values of ujx at room temperature and must be cooled by other
means to about 200K and 40K, respectively, in order for a Joule-Thomson expansion to cause further cooling.

The cooling effect of a Joule-Thomson expansion is often used to cool a gas down to its condensation temperature.
This procedure can be carried out continuously by pumping the gas through the throttle and recirculating the cooler
gas on the low-pressure side through a heat exchanger to help cool the gas on the high-pressure side. Starting at room
temperature, gaseous nitrogen can be condensed by this means to liquid nitrogen at 77.4 K. The liquid nitrogen can
then be used as a cooling bath for gaseous hydrogen. At 77.4K, hydrogen has a positive Joule-Thomson coefficient,
so that it in turn can be converted by a throttling process to liquid hydrogen at 20.3 K. Finally, gaseous helium, whose
Joule-Thomson coefficient is positive at 20.3 K, can be converted to liquid helium at 4.2 K. Further cooling of the
liquid helium to about 1K can be carried out by pumping to cause rapid evaporation.

6.3.2 Magnetization

The work of magnetization of an isotropic paramagnetic phase can be written dw’ = Bdniy,e, wWhere B is the magni-
tude of the magnetic flux density and mp,, is the magnitude of the magnetic dipole moment of the phase. The total
differential of the internal energy of a closed isotropic phase with magnetization is given by

dU=TdS-pdV +Bdmp,, (6.3.4)

with §, V, and m,,, as the independent variables.

The technique of adiabatic demagnetization can be used to obtain temperatures below 1K. This method, sug-
gested by Peter Debye in 1926 and independently by William Giauque in 1927, requires a paramagnetic solid in which
ions with unpaired electrons are sufficiently separated that at 1 K the orientations of the magnetic dipoles are almost
completely random. Gadolinium(III) sulfate octahydrate, Gd,(SO4)3 - 8 H>O, is commonly used.

Figure 6.3.2 on page 133 illustrates the principle of the technique. The solid curve shows the temperature depen-
dence of the entropy of a paramagnetic solid in the absence of an applied magnetic field, and the dashed curve is for
the solid in a constant, finite magnetic field. The temperature range shown is from 0K to approximately 1 K. At 0K,
the magnetic dipoles are perfectly ordered. The increase of S shown by the solid curve between OK and 1K is due
almost entirely to increasing disorder in the orientations of the magnetic dipoles as heat enters the system.

6.3.2. See Sec. 7.5.2 for the relation of the Joule-Thomson coefficient to other properties of a gas.
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134 THE THIRD LAW AND CRYOGENICS

the process that occurs when the paramagnetic solid, surrounded by gaseous helium in thermal contact with liquid
helium that has been cooled to about 1K, is slowly moved into a strong magnetic field. The process is isothermal
magnetization, which partially orients the magnetic dipoles and reduces the entropy. During this process there is heat
transfer to the liquid helium, which partially boils away. In path B, the thermal contact between the solid and the liquid
helium has been broken by pumping away the gas surrounding the solid, and the sample is slowly moved away from
the magnetic field. This step is a reversible adiabatic demagnetization. Because the process is reversible and adiabatic,
the entropy change is zero, which brings the state of the solid to a lower temperature as shown.

The sign of (07 /0B)s,, is of interest because it tells us the sign of the temperature change during a reversible
adiabatic demagnetization (path B of Fig. 6.3.2 on page 133). To change the independent variables in Eq. 6.3.4 to S,
p, and B, we define the Legendre transform

, def
H = U+pV—Bmpyy, (6.3.5)
(H' is sometimes called the magnetic enthalpy.) From Eqgs. 6.3.4 and 6.3.5 we obtain the total differential

dH'=TdS +Vdp—mpadB (6.3.6)

From it we find the reciprocity relation

6 T _ ammag
(ﬁ)s,p-‘( 35 )p,B ©.3.7)

According to Curie's law of magnetization, the magnetic dipole moment m,,,, of a paramagnetic phase at constant
magnetic flux density B is proportional to 1/7. This law applies when B is small, but even if B is not small m,,
decreases with increasing 7. To increase the temperature of a phase at constant B, we allow heat to enter the system,
and § then increases. Thus, (0 my.g/0S), 5 is negative and, according to Eq. 6.3.7, (07T /0 B)s,, must be positive.
Adiabatic demagnetization is a constant-entropy process in which B decreases, and therefore the temperature also
decreases.

We can find the sign of the entropy change during the isothermal magnetization process shown as path A in Fig.
6.3.dZ?.3.2 on page 133. In order to use 7, p, and B as the independent variables, we define the Legendre transform
G’ = H'-TS. Its total differential is

dG’=-SdT +V dp -y, dB (6.3.8)

From this total differential, we obtain the reciprocity relation

0S _ ammag
(ﬁ)m—( 9T )p,B (639

Since mm,g at constant B decreases with increasing T, as explained above, we see that the entropy change during

isothermal magnetization is negative.

By repeatedly carrying out a procedure of isothermal magnetization and adiabatic demagnetization, starting each
stage at the temperature produced by the previous stage, it has been possible to attain a temperature as low as 0.0015K.
The temperature can be reduced still further, down to 16 microkelvins, by using adiabatic nuclear demagnetization.
However, as is evident from the figure, if in accordance with the third law both of the entropy curves come together
at the absolute zero of the kelvin scale, then it is not possible to attain a temperature of zero kelvins in a finite number
of stages of adiabatic demagnetization. This conclusion is called the principle of the unattainability of absolute zero.
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BIOGRAPHICAL SKETCH

WALTHER HERMANN NERNST (1864-1941)

Walther Nernst was a German physical chemist best known for
his heat theorem, also known as the third law of thermodynamics.

Nernst was born in Briesen, West Prussia (now Poland). His
father was a district judge.

From all accounts, Nernst was not an easy person to get along
with. Gilbert Lewis, who spent a semester in Nernst's labora-
tory, was one of those who developed an enmity toward him; in
later years, Lewis delighted in pointing out what he considered
to be errors in Nernst's writings. The American physicist Robert
A. Millikan, who studied with Nernst at Gottingen, wrote in a
memorial article:33

He was a little fellow with a fish-like mouth
and other well-marked idiosyncrasies. However,
he was in the main popular in the laboratory,
despite the fact that in the academic world he
nearly always had a quarrel on with somebody.
He lived on the second floor of the institute with
his wife and three young children. As we stu-
dents came to our work in the morning we would
not infrequently meet him in his hunting suit
going out for some early morning shooting. ...His
greatest weakness lay in his intense prejudices
and the personal, rather than the objective, char-
acter of some of his judgments.

At Leipzig University, in 1888, he published the Nernst equa-
tion, and in 1890 the Nernst distribution law.

In 1891 he moved to the University of Gottingen, where in
1895 he became director of the Gottingen Physicochemical Insti-
tute.

6.3.3. Ref. [125].

In 1892 Nernst married Emma Lohmeyer, daughter of a Got-
tingen medical professor. They had two sons, both killed in
World War I, and three daughters.

Nernst wrote an influential textbook of physical chemistry,
the second in the field, entitled Theoretische Chemie vom Stand-
punkte der Avogadroschen Regel und der Thermodynamik. It
was first published in 1893 and its last edition was in 1926.

Nernst began work in 1893 on a novel electric incandescent
lamp based on solid-state electrolytes. His sale of the patent in
1898 made him wealthy, but the lamp was not commercially
successful.

In 1905 Nernst was appointed director of the Berlin Physic-
ochemical Institute; at the end of that year he reported the
discovery of his heat theorem.

Nernst was awarded the Nobel Prize in Chemistry for the
year 1920 “in recognition of his work in thermochemistry”. In
his Nobel Lecture, describing the heat theorem, he said:

...in all cases chemical affinity and evolution
of heat become identical at low temperatures.
Not, and this is the essential point, in the sense
that they intersect at absolute zero, but rather in
the sense that they invariably become practically
identical some distance before absolute zero is
reached; in other words the two curves become
mutually tangential in the vicinity of absolute
ZEro0.

If we frame this principle in quite general
terms, i.e. if we apply it not only to chemical
but to all processes, then we have the new heat
theorem which gives rise to a series of very far-
reaching consequences ...

Nernst would have nothing to do with the Nazis. When
they passed the 1933 law barring Jews from state employment,
he refused to fire the Jewish scientists at the Berlin institute,
and instead took the opportunity to retire. He caused a stir at a
meeting by refusing to stand for the singing of the Horst Wessel
Lied. Before his death he ordered that letters he had received
be burned, perhaps to protect his correspondents from the Nazi
authorities.®3#

6.3.4. Ref. [35].
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WILLIAM FRANCIS GIAUQUE (1895-1982)

William Giauque was an American chemist who made important
contributions to the field of cryogenics. He received the 1949
Nobel Prize in Chemistry “for his contributions in the field of
chemical thermodynamics, particularly concerning the behav-
iour of substances at extremely low temperatures.”

Giauque was born in Niagara Falls, Ontario, Canada, but as
his father was a citizen of the United States, William was able
to adopt American citizenship. His father worked as a weigh-
master and station agent for the Michigan Central Railroad in
Michigan.

Giauque's initial career goal after high school was electrical
engineering. After working for two years at the Hooker Elec-
trochemical Company in Niagara Falls, New York, he left to
continue his education with the idea of becoming a chemical
engineer. Hearing of the scientific reputation of G. N. Lewis,
the chair of the chemistry department at the University of Cal-
ifornia at Berkeley (page 224), and motivated by the free tuition
there, he enrolled instead in that department.®3-

Giauque spent the rest of his life in the chemistry department
at Berkeley, first as an undergraduate; then as a graduate stu-
dent; and finally, after receiving his Ph.D. in 1922, as a faculty
member. Some of his undergraduate courses were in engineering,
which later helped him in the design and construction of the
heavy equipment for producing the high magnetic fields and the
liquid hydrogen and helium needed in his research.

Beginning in 1928, with the help of his graduate students
and collaborators, he began to publish papers on various aspects
of the third law.®3¢ The research included the evaluation of

6.3.5. Ref. [143].
6.3.6. Ref. [167].

third-law molar entropies and comparison to molar entropies cal-
culated from spectroscopic data, and the study of the residual
entropy of crystals. Faint unexplained lines in the absorption
spectrum of gaseous oxygen led him to the discovery of the pre-
viously unknown 7O and '80 isotopes of oxygen.

Giauque's best-known accomplishment is his invention and
exploitation of cooling to very low temperatures by adiabatic
demagnetization. In 1924, he learned of the unusual properties
of gadolinium sulfate octahydrate at the temperature of liquid
helium. In his Nobel Lecture, he said:3-7

I was greatly surprised to find, that the appli-
cation of a magnetic field removes a large amount
of entropy from this substance, at a temperature
so low that it had been thought that there was
practically no entropy left to remove. ... Those
familiar with thermodynamics will realize that
in principle any process involving an entropy
change may be used to produce either cooling or
heating. Accordingly it occurred to me that adia-
batic demagnetization could be made the basis of
a method for producing temperatures lower than
those obtainable with liquid helium.

It wasn't until 1933 that he was able to build the equipment
and publish the results from his first adiabatic demagnetization
experiment, reporting a temperature of 0.25K.63$

He was married to a botanist and had two sons. According
to one biography:©-39

Giauque's students remember pleasant
Thanksgiving dinners at the Giauque home, with
Muriel [his wife] as cook and Frank (as she called
him) as raconteur, with a keen sense of humor.
The stories he most enjoyed telling were those in
which the joke was on him. ...Giauque's conser-
vatism was legendary. He always appeared at the
university dressed in an iron-gray tweed suit. ...A
dominant personality himself, Giauque not only
tolerated but respected students who disagreed
with him, and he was especially pleased when
they could prove their point.

6.3.7. Ref. [66].
6.3.8. Ref. [63].
6.3.9. Ref. [143].
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6.4 Problems

Problem 6.4.1. Calculate the molar entropy of carbon disulfide at 25.00 °C and 1 bar from the heat capacity data for the solid in Table 6.4.1 on
page 137 and the following data for p = 1bar. At the melting point, 161.11K, the molar enthalpy of fusion is AgysH =4.39x 103 J-mol~!. The
molar heat capacity of the liquid in the range 161-300 K is described by Cp m=a +bT, where the constants have the values a = 74.67-K~!-mol~!
and b =0.0034J-K~2mol .

T/K Cpm/(J-K ' -mol™)

15.05 6.9
20.15 12.0
29.76 20.8
42.22 29.2
57.52 35.6
75.54 40.0
94.21 45.0
108.93 48.5
131.54 52.6
156.83 56.6

Table 6.4.1. Molar heat capacity of CSx(s) at p=1 bar0®41-
0.4.1Ref. [25]
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Chapter 7

Pure Substances in Single Phases

This chapter applies concepts introduced in earlier chapters to the simplest kind of system, one consisting of a pure
substance or a single component in a single phase. The system has three independent variables if it is open, and two
if it is closed. Relations among various properties of a single phase are derived, including temperature, pressure, and
volume. The important concepts of standard states and chemical potential are introduced.

7.1 Volume Properties

Two volume properties of a closed system are defined as follows:

bi . fficient def 1 70V 711

cubic expansion coefficien a = V(W)p (7.1.1)

. e def 1 /0V

isothermal compressibility x«; = ——(—) (7.1.2)
Viop)r

The cubic expansion coeflicient is also called the coefficient of thermal expansion and the expansivity
coefficient. Other symbols for the isothermal compressibility are g and y7.

These definitions show that «a is the fractional volume increase per unit temperature increase at constant pressure,
and 7 is the fractional volume decrease per unit pressure increase at constant temperature. Both quantities are inten-
sive properties. Most substances have positive values of a,”-!'! and all substances have positive values of 7, because
a pressure increase at constant temperature requires a volume decrease.

If an amount 7 of a substance is in a single phase, we can divide the numerator and denominator of the right sides
of Egs. 7.1.1 and 7.1.2 by n to obtain the alternative expressions

_ 1 (0Vm (7.1.3)
“= Va\ 0T J, (pure substance, P=1)
1 (3 V (7.1.4)
1=y \%p ); (pure substance, P=1)

where V;, is the molar volume. P in the conditions of validity is the number of phases. Note that only intensive
properties appear in Eqs. 7.1.3 and 7.1.4; the amount of the substance is irrelevant. Figures 7.1.1 and 7.1.2 show the
temperature variation of @ and 7 for several substances.

7.1.1. The cubic expansion coefficient is not always positive. « is negative for liquid water below its temperature of maximum density, 3.98 °C.
The crystalline ceramics zirconium tungstate (ZrW,Og) and hafnium tungstate (HfW,Og) have the remarkable behavior of contracting uniformly
and continuously in all three dimensions when they are heated from 0.3K to about 1050K; « is negative throughout this very wide temperature range
(Ref. [118]). The intermetallic compound YbGaGe has been found to have a value of « that is practically zero in the range 100-300K (Ref. [159]).
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Figure 7.1.1. The cubic expansion coefficient of several substances and an ideal gas as functions of temperature at p = 1 bar.”-!2 Note that
because liquid water has a density maximum at 4 °C, « is zero at that temperature.

7.1.2. Based on data in Ref. [51], p. 104; Ref. [75]; and Ref. [180], p. 28.
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Figure 7.1.2. The isothermal compressibility of several substances as a function of temperature at p = 1 bar. (Based on data in Ref. [51];
Ref. [96]; and Ref. [180], p. 28.)

If we choose T and p as the independent variables of the closed system, the total differential of V is given by

oV oV
dv = (W)pdT+ (W)po (7.1.5)

With the substitutions (0V/07T),=a V (from Eq.
7.1.1)and (0 V /0 p)r=—-x7V (from Eq.
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7.2 INTERNAL PRESSURE 141

7.1.2), the expression for the total differential of V becomes

(7.1.6)
dV=aVdT -xrVdp (closed system,
C=1,P=1)

To find how p varies with T in a closed system kept at constant volume, we set dV equal to zero in Eq. 7.1.6:
0=aVdT —xrVdp,ordp/dT =a/xr. Since dp/dT under the condition of constant volume is the partial derivative
(0p/0T)y, we have the general relation

7.1.7)
(a_p) -2 (closed system,
0T)v wr C=1P=1)

7.2 Internal Pressure

The partial derivative (0 U /0 V)t applied to a fluid phase in a closed system is called the internal pressure. (Note
that U and p V have dimensions of energy; therefore, U /V has dimensions of pressure.)

To relate the internal pressure to other properties, we divide Eq.

5.22bydV:dU/dV =T (dS/dV)-p. Then we impose a condition of constant 7: (U /0 V)r=T(dS/0V)r—p.
When we make a substitution for (0.5/0 V)7 from the Maxwell relation of Eq. 5.4.17, we obtain

(7.2.1)
(g_g) = T(%) -p (closed system,
r v fluid phase, C =1)
This equation is sometimes called the “thermodynamic equation of state” of the fluid.
For an ideal-gas phase, we can write p=nRT /V and then

op\ _nR _p
(37),= 7 =% 7:22)
Making this substitution in Eq. 7.2.1 gives us
(7.2.3)
(%)T =0 (closed system

of an ideal gas)

showing that the internal pressure of an ideal gas is zero.

In Sec. 3.5.1, an ideal gas was defined as a gas (1) that obeys the ideal gas equation, and (2) for which
U in a closed system depends only on 7. Equation 7.2.3, derived from the first part of this definition,
expresses the second part. It thus appears that the second part of the definition is redundant, and that we
could define an ideal gas simply as a gas obeying the ideal gas equation. This argument is valid only
if we assume the ideal-gas temperature is the same as the thermodynamic temperature (Secs. 2.3.6 and
4.3.4) since this assumption is required to derive Eq. 7.2.3. Without this assumption, we can't define
an ideal gas solely by pV =nRT, where T is the ideal gas temperature.

Here is a simplified interpretation of the significance of the internal pressure. When the volume of a fluid increases,
the average distance between molecules increases and the potential energy due to intermolecular forces changes. If
attractive forces dominate, as they usually do unless the fluid is highly compressed, expansion causes the potential
energy to increase. The internal energy is the sum of the potential energy and thermal energy. The internal pressure,
(80U /0 V)r,is the rate at which the internal energy changes with volume at constant temperature. At constant temper-
ature, the thermal energy is constant so that the internal pressure is the rate at which just the potential energy changes
with volume. Thus, the internal pressure is a measure of the strength of the intermolecular forces and is positive if
attractive forces dominate.”->! In an ideal gas, intermolecular forces are absent and therefore the internal pressure of
an ideal gas is zero.

7.2.1. These attractive intermolecular forces are the cohesive forces that can allow a negative pressure to exist in a liquid; see page 31.
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142 PURE SUBSTANCES IN SINGLE PHASES

With the substitution (0p/07T)y=a/x7 (Eq. 7.1.7), Eq. 7.2.1 becomes

(7.2.4)
( g U) = er (closed system,
T

= -P
av KT fluid phase, C=1)

The internal pressure of a liquid at p = 1 bar is typically much larger than 1 bar (see Prob. 7.10.6). Equation 7.2.4 shows
that, in this situation, the internal pressure is approximately equal to a T/« 7.

7.3 Thermal Properties

For convenience in derivations to follow, expressions from Chap. 5 are repeated here that apply to processes in a
closed system in the absence of nonexpansion work (i.e., dw’ = 0). For a process at constant volume we have’-'!

dU=dg Cy= (%)V (73.1)
and for a process at constant pressure we have’-32
oH
dH=dq C,= (—) (1.3.2)
r=\37),

A closed system of one component in a single phase has only two independent variables. In such a system, the
partial derivatives above are complete and unambiguous definitions of Cy and C, because they are expressed with two
independent variables—T and V for Cy, and T and p for C,. As mentioned on page 122, additional conditions would
have to be specified to define Cy for a more complicated system; the same is true for C,,.

For a closed system of an ideal gas we have’-33

AU dH

G=g G=77T

(7.3.3)

7.3.1 The relation between Cy ,, and C, ,

The value of C, , for a substance is greater than Cy . The derivation is simple in the case of a fixed amount of an
ideal gas. Using substitutions from Eq. 7.3.3, we write

_dH dU _dH-U) _d(pV) _
=ar ar-_ ar -~ _ar 'R (7.3.4)

C,-Cy

Division by n to obtain molar quantities and rearrangement then gives

(7.3.5)

Com=Crm+R (ideal gas, pure substance)

For any phase in general, we proceed as follows. First we write

0H 6(U+pV)] (GU) av
P=\aT), aT » \0T)/, oT/,
Then we write the total differential of U with T and V as independent variables and identify one of the coefficients as
CV:
oU oU oU

7.3.1. Egs. 5.3.9 and 5.6.1.
7.3.2. Egs. 5.3.7 and 5.6.3.
7.3.3. Egs. 5.6.2 and 5.6.4.
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When we divide both sides of the preceding equation by d7" and impose a condition of constant p, we obtain

(%)p: Cr+ (%)T(%)[ (7.3.8)

Substitution of this expression for (0 U/0T),, in the equation for C, yields

cmcr-[188) 139,

Finally we set the partial derivative (0 U /0 V)7 (the internal pressure) equal to (¢ T /x7) —p (Eq. 7.2.4) and (0V/
0T)pequal to a V to obtain

a’TV
C,=Cy+ prm (7.3.10)
and divide by n to obtain molar quantities:
2T Vi
Cpm=Cym+E—"2 - (7.3.11)

Since the quantity a’TVy/x must be positive, C, 1, is greater than Cy .

7.3.2 The measurement of heat capacities

The most accurate method of evaluating the heat capacity of a phase is by measuring the temperature change resulting
from heating with electrical work. The procedure in general is called calorimetry, and the apparatus containing the
phase of interest and the electric heater is a calorimeter. The principles of three commonly-used types of calorimeters
with electrical heating are described below.

7.3.2.1 Adiabatic calorimeters

An adiabatic calorimeter is designed to have negligible heat flow to or from its surroundings. The calorimeter contains
the phase of interest, kept at either constant volume or constant pressure, and also an electric heater and a temperature-
measuring device such as a platinum resistance thermometer, thermistor, or quartz crystal oscillator. The contents may
be stirred to ensure temperature uniformity.

To minimize conduction and convection, the calorimeter usually is surrounded by a jacket separated by an air
gap or an evacuated space. The outer surface of the calorimeter and inner surface of the jacket may be polished to
minimize radiation emission from these surfaces. These measures, however, are not sufficient to ensure a completely
adiabatic boundary, because energy can be transferred by heat along the mounting hardware and through the electrical
leads. Therefore, the temperature of the jacket, or of an outer metal shield, is adjusted throughout the course of the
experiment so as to be as close as possible to the varying temperature of the calorimeter. This goal is most easily
achieved when the temperature change is slow.

To make a heat capacity measurement, a constant electric current is passed through the heater circuit for a known
period of time. The system is the calorimeter and its contents. The electrical work we performed on the system by the
heater circuit is calculated from the integrated form of Eq. 3.8.53.8.5 on page 75: we; =1% Ry A t, where I is the electric
current, R, is the electric resistance, and At is the time interval. We assume the boundary is adiabatic and write the
first law in the form

dU =—pdV + dwe + AWeon (7.3.12)

where —pdV is expansion work and wqy is any continuous mechanical work from stirring (the subscript “cont” stands
for continuous). If electrical work is done on the system by a thermometer using an external electrical circuit, such as
a platinum resistance thermometer, this work is included in weop;.

Consider first an adiabatic calorimeter in which the heating process is carried out at constant volume. There is no
expansion work, and Eq. 7.3.12 becomes

(7.3.13)

dU = dwe1 + dweont (constant V)
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Figure 7.3.1. Typical heating curve of an adiabatic calorimeter.

An example of a measured heating curve (temperature 7 as a function of time ) is shown in Fig. 7.3.1.

We select two points on the heating curve, indicated in the figure by open circles. Time ¢, is at or shortly before the
instant the heater circuit is closed and electrical heating begins, and time #, is after the heater circuit has been opened
and the slope of the curve has become essentially constant.

In the time periods before #; and after #,, the temperature may exhibit a slow rate of increase due to the continuous
work weon from stirring and temperature measurement. If this work is performed at a constant rate throughout the
course of the experiment, the slope is constant and the same in both time periods as shown in the figure.

The relation between the slope and the rate of work is given by a quantity called the energy equivalent, ¢.The
energy equivalent is the heat capacity of the calorimeter under the conditions of an experiment. The heat capacity of
a constant-volume calorimeter is given by e =(dU/0T)y (Eq. 5.6.1). Thus, at times before #; or after #,, when dw,;
is zero and dU equals dw,qy, the slope r of the heating curve is given by

dr dT dU 1 dWcom
TG0 e dr (7.3.14)
The rate of the continuous work is therefore dwcon/df = € . This rate is constant throughout the experiment. In the
time interval from #; to t,, the total quantity of continuous work is weone= € 1 (f2—1t1), where r is the slope of the heating
curve measured outside this time interval.
To find the energy equivalent, we integrate Eq. 7.3.13 between the two points on the curve:
(7.3.15)

AU =wWei +Weont=Wel + €7 (12—11) (constant V)

Then the average heat capacity between temperatures 7} and 7 is

AU _ Welt€r(ta—1)

“TT-T L-T

(7.3.16)

Solving for €, we obtain
Wel

= ¢ 7.3.17
L-Ti-r(t2-1) ( )

€

The value of the denominator on the right side is indicated by the vertical line in Fig. 7.3.1. It is the temperature change
that would have been observed if the same quantity of electrical work had been performed without the continuous
work.

Next, consider the heating process in a calorimeter at constant pressure. In this case the enthalpy change is given
by dH =dU + pdV which, with substitution from Eq. 7.3.12, becomes

(7.3.18)

dH = dwe + dw(rsub|cont) (constant p)

We follow the same procedure as for the constant-volume calorimeter, using Eq. 7.3.18 in place of Eq. 7.3.13 and
equating the energy equivalent € to (0 H /0 T)p, the heat capacity of the calorimeter at constant pressure (Eq. 5.6.3).

We obtain the relation
(7.3.19)

AH=We +Weong=Wel + €1 (I2—17) (constant p)
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slope =1,

slope =71

1 1 t
51 153

Figure 7.3.2. Typical heating curve of an isothermal-jacket calorimeter.

in place of Eq. 7.3.15 and end up again with the expression of Eq. 7.3.17 for €.

The value of € calculated from Eq. 7.3.17 is an average value for the temperature interval from 7) to 7>, and we
can identify this value with the heat capacity at the temperature of the midpoint of the interval. By taking the difference
of values of ¢ measured with and without the phase of interest present in the calorimeter, we obtain Cy or C, for the
phase alone.

It may seem paradoxical that we can use an adiabatic process, one without heat, to evaluate a quantity defined by
heat (heat capacity=dq/dT). The explanation is that energy transferred into the adiabatic calorimeter as electrical
work, and dissipated completely to thermal energy, substitutes for the heat that would be needed for the same change
of state without electrical work.

7.3.2.2 Isothermal-jacket calorimeters

A second common type of calorimeter is similar in construction to an adiabatic calorimeter, except that the sur-
rounding jacket is maintained at constant temperature. It is sometimes called an isoperibol calorimeter. A correction
is made for heat transfer resulting from the difference in temperature across the gap separating the jacket from the
outer surface of the calorimeter. It is important in making this correction that the outer surface have a uniform tem-
perature without “hot spots.”

Assume the outer surface of the calorimeter has a uniform temperature 7 that varies with time, the jacket temper-
ature has a constant value T.y, and convection has been eliminated by evacuating the gap. Then heat transfer is by
conduction and radiation, and its rate is given by Newton's law of cooling

d

d—‘f =k (T =Toy) (7.3.20)
where k is a constant (the thermal conductance). Heat flows from a warmer to a cooler body, so dg/dt is positive if
T is less than T¢ and negative if T is greater than T

The possible kinds of work are the same as for the adiabatic calorimeter: expansion work —pdV, intermittent work

wer done by the heater circuit, and continuous work weon. By combining the first law and Eq. 7.3.20, we obtain the
following relation for the rate at which the internal energy changes:

dU _ dq dw _ dv dWel dWcom
d—t—a'f'd—t——k(T—Text)—pd—t'f' ar + ar (7321)
For heating at constant volume (dV /dt =0), this relation becomes
dU _ dWel dWcon[ (7322)
dr ~k (T = Texo) + dr + dr (cosntant V)

An example of a heating curve is shown in Fig. 7.3.2.
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146 PURE SUBSTANCES IN SINGLE PHASES

In contrast to the curve of Fig. 7.3.1, the slopes are different before and after the heating interval due to the
changed rate of heat flow. Times #; and ¢, are before and after the heater circuit is closed. In any time interval before
time #; or after time #,, the system behaves as if it is approaching a steady state of constant temperature 7, (called
the convergence temperature), which it would eventually reach if the experiment were continued without closing
the heater circuit. T is greater than T because of the energy transferred to the system by stirring and electrical
temperature measurement. By setting dU /d¢ and dw,;/dt equal to zero and T equal to T, in Eq. 7.3.22, we obtain
AWeont/dt =k (Teo — Texy). We assume dw,qy/df is constant. Substituting this expression into Eq. 7.3.22 gives us a
general expression for the rate at which U changes in terms of the unknown quantities k and 7..:

v dvel (7.3.23)
W__k (T-Ty) R (constant V)

This relation is valid throughout the experiment, not only while the heater circuit is closed. If we multiply by d¢ and
integrate from ¢, to f,, we obtain the internal energy change in the time interval from ¢, to #:

(7.3.24)

n
AU=-k Ll (T-To)dt +we (constant V)

All the intermittent work wy is performed in this time interval.

The derivation of Eq. 7.3.24 is a general one. The equation can be applied also to a isothermal-jacket
calorimeter in which a reaction is occurring. Section 11.5.2 will mention the use of this equation for
an internal energy correction of a reaction calorimeter with an isothermal jacket.

The average value of the energy equivalent in the temperature range 7 to 75 is

AU —e(k/€) [P (T-Tx)dt+wa
‘TT-T =T, (7.3.25)

Solving for €, we obtain

€= Wel
(L=Th) + (k/€) [[*(T~Tx)dr

(7.3.26)

The value of we is known from we =2 RejA t, where At is the time interval during which the heater circuit is closed.
The integral can be evaluated numerically once 7% is known.

For heating at constant pressure, dH is equal to dU + pdV, and we can write

d# _dv 4V _ o dwer  dweont (7.3.27)
& dr TPar k(T =Tex) + ar T dr (constant p)

which is analogous to Eq. 7.3.22. By the procedure described above for the case of constant V, we obtain

(7.3.28)

n
AH=-k fr. (T—Too)dt + wey (constant p)

At constant p, the energy equivalent is equal to C,= A H/(1T;~-T), and the final expression for ¢ is the same as that
given by Eq. 7.3.26.

To obtain values of k /e and T, for use in Eq. 7.3.26, we need the slopes of the heating curve in time intervals
(rating periods) just before ¢, and just after #,. Consider the case of constant volume. In these intervals, dw,/dt is zero
and dU /dt equals —k (T - T,) (from Eq. 7.3.23). The heat capacity at constant volume is Cy =dU /dT. The slope r
in general is then given by

r=S =S =k 6) (T-Ty) (7.3.29)

146



7.3 THERMAL PROPERTIES 147

80 T T
H,0()

60 = Ny 7

40 - H,O(g) 7]
e ——————————————

Cpm/IK ™  mol™?

N>(g)

0 100 200 300 400 500 600
T/K

Figure 7.3.3. Temperature dependence of molar heat capacity at constant pressure (p = 1 bar) of H,O, N, and C(graphite).

Applying this relation to the points at times #; and #,, we have the following simultaneous equations in the unknowns
k/eand T.:

ri=—(k/e) (T1-Ts) rp=—(k/€)(Th-Tx) (7.3.30)
The solutions are
jey=T=r2  p _nb-nh (7.3.31)
€ _Tz—Tl e ri—r -
Finally, k is given by
_ _(r-n
k—(k/e)e—(Tz_Tl)e (7.3.32)

When the pressure is constant, this procedure yields the same relations for k/ €, T, and k.

7.3.2.3 Continuous—flow calorimeters

A flow calorimeter is a third type of calorimeter used to measure the heat capacity of a fluid phase. The gas or liquid
flows through a tube at a known constant rate past an electrical heater of known constant power input. After a steady
state has been achieved in the tube, the temperature increase A T at the heater is measured.

If dwe/dz is the rate at which electrical work is performed (the electric power) and dm /d¢ is the mass flow rate,

then in time interval A f a quantity w = (dwe)/ df) A t of work is performed on an amount n= (dm/dt) At/ M of the fluid
(where M is the molar mass). If heat flow is negligible, the molar heat capacity of the substance is given by

w M (dwe/dt)

Com=7AT= AT (dm/dt)

(7.3.33)

To correct for the effects of heat flow, A T is usually measured over a range of flow rates and the results extrapolated
to infinite flow rate.

7.3.3 Typical values

Figure 7.3.3 on page 147 shows the temperature dependence of C, i, for several substances. The discontinuities seen at
certain temperatures occur at equilibrium phase transitions. At these temperatures the heat capacity is in effect infinite,
since the phase transition of a pure substance involves finite heat with zero temperature change.
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148 PURE SUBSTANCES IN SINGLE PHASES

7.4 Heating at Constant Volume or Pressure

Consider the process of changing the temperature of a phase at constant volume.”+! The rate of change of internal
energy with T under these conditions is the heat capacity at constant volume: Cy=(0U /0 T)y (Eq. 7.3.1). Accord-
ingly, an infinitesimal change of U is given by

(7.4.1)
dU =CydT (closed system,
C=1, P=1, constant V)

and the finite change of U between temperatures 77 and 75 is

T (7.4.2)
AU= IT CydT (closed system,
: C=1, P=1, constant V)

Three comments, relevant to these and other equations in this chapter, are in order:

1. Equation 7.4.2 allows us to calculate the finite change of a state function, U, by integrating Cy over T. The
equation was derived under the condition that V is constant during the process, and the use of the integration
variable T implies that the system has a single, uniform temperature at each instant during the process. The
integrand Cy may depend on both V and 7, and we should integrate with V held constant and Cy treated as a
function only of 7.

2. Suppose we want to evaluate A U for a process in which the volume is the same in the initial and final states
(V,=V)) butis different in some intermediate states, and the temperature is not uniform in some of the interme-
diate states. We know the change of a state function depends only on the initial and final states, so we can still
use Eq. 7.4.2 to evaluate A U for this process. We integrate with V held constant, although V was not constant
during the actual process.

In general: A finite change A X of a state function, evaluated under the condition that another state function
Y is constant, is the same as A X under the less stringent condition ¥, = ¥;. (Another application of this principle
was mentioned in Sec. 4.6.2.)

3. For a pure substance, we may convert an expression for an infinitesimal or finite change of an extensive prop-
erty to an expression for the change of the corresponding molar property by dividing by n. For instance, Eq.
7.4.1 becomes

dUp=Cy ndT (7.4.3)
and Eq. 7.4.2 becomes
T:
AUy = f Tzcv,de (7.4.4)
1

If, at a fixed volume and over the temperature range 7] to 75, the value of Cy is essentially constant (i.e., independent
of T), Eq. 7.4.2 becomes
(7.4.5)
AU=Cy(TL,-T)) (closed system, C =1
P=1, constant V and Cy)

An infinitesimal entropy change during a reversible process in a closed system is given according to the second law
by dS=dq/T. At constant volume, dq is equal to dU which in turn equals CydT. Therefore, the entropy change is
c (7.4.6)
dsS= TVdT (closed system,
C=1,P=1, constant V)

7.4.1. Keeping the volume exactly constant while increasing the temperature is not as simple as it may sound. Most solids expand when heated,
unless we arrange to increase the external pressure at the same time. If we use solid walls to contain a fluid phase, the container volume will change
with temperature. For practical purposes, these volume changes are usually negligible.
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Integration yields the finite change

(7.4.7)
AS= TT2 %dT (closed system
' C=1,P=1, constant V)

If Cy is treated as constant, Eq. 7.4.7 becomes

T (7.4.8)
AS=Cy lnT2 (closed system, C =1
! P=1, constant V and Cy)

(More general versions of the two preceding equations have already been given in Sec. 4.6.1.)

Since Cy is positive, we see from Eqs. 7.4.2 and 7.4.7 that heating a phase at constant volume causes both U and
S to increase.

We may derive relations for a temperature change at constant pressure by the same methods. From C, = (0 H/

0T), (Eq. 7.3.2), we obtain
(7.4.9)

AH= ITTZ C,dT (closed system,
: C=1, P=1, constant p)

If C, is treated as constant, Eq. 7.4.9 becomes

(7.4.10)
AH=C,(T,-T) (closed system, C =1
P=1, constant p and Cy,)

From dS=dq/T and Eq. 7.3.2 we obtain for the entropy change at constant pressure

C (7.4.11)
ds= T"dT (closed system,
C=1, P=1, constant p)
Integration gives
(7.4.12)
AS= ITZ & dT (closed system,
n T

C=1, P=1, constant p)
or, with C, treated as constant,
T (7.4.13)
AS=C, IHTZ (closed system, C =1,
1

P=1, constant p and C,)

C, is positive, so heating a phase at constant pressure causes H and S to increase.
The Gibbs energy changes according to (0G/0T),=-S (Eq. 5.4.11), so heating at constant pressure causes G to
decrease.

7.5 Partial Derivatives with Respect to 7', p, and V

7.5.1 Tables of partial derivatives

The tables in this section collect useful expressions for partial derivatives of the eight state functions 7', p, V, U, H, A,
G, and S in a closed, single-phase system. Each derivative is taken with respect to one of the three easily-controlled
variables T, p, or V while another of these variables is held constant. We have already seen some of these expressions,
and the derivations of the others are indicated below.

We can use these partial derivatives (1) for writing an expression for the total differential of any of the eight
quantities, and (2) for expressing the finite change in one of these quantities as an integral under conditions of constant
T, p, or V. For instance, given the expressions

as\ G as\ _
(W)p —T and (W)T =—aV (751)
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Partial General Ideal Partial General Ideal

derivative expression gas derivative expression gas
o 1 _p (%)

(av)T oV v ap ), PV v

(ﬂ) —erV v (a_A) _ _
op/r ’ p ov)r P P
oU G

(W)T (—(XT+KTP)V 0 (W)T 1% 1%

(2Y)  eL 0 (29 L _
ov T Kt p av T Kr P
0 H) ( 9S ) \%
-— 1-aT)V 0 -— -aV -

( plr ( ) op/r T

(a_H) al-1 0 (ﬂ) a 2
aVv T KTt ov T KT T

Table 7.5.1. Constant temperature: expressions for partial derivatives of state functions with respect to pressure and volume in a closed,

single-phase system

we may write the total differential of S, taking T and p as the independent variables, as

dS:%dT—anp

Furthermore, the first expression is equivalent to the differential form

— CP
dS =—%dT

(7.5.2)

(7.5.3)

provided p is constant; we can integrate this equation to obtain the finite change A S under isobaric conditions as

shown in Eq. 7.4.12.

Both general expressions and expressions valid for an ideal gas are given in Tables 7.5.1, 7.5.2, and 7.5.3.

Partial General Ideal Partial General Ideal
derivative ~ expression  gas derivative ~ expression  gas
oT 1 T 0A pV
(W)p oV v (W)p —apV=5 S-S
14 % 14 24 S, IS
ar), “ T v/, aV 4
oU 0G
(W)p Cp—apV CV (W)p =S =S
(M) S _ or (E) _S _Is
av), av'? Vv av), aV Vv
0H oS Cp Cp
(ﬁ)p S S (W)p T T
AR GT (25) G S
ov)/, aV 14 ov/, aTV Vv

Table 7.5.2. Constant pressure: expressions for partial derivatives of state functions with respect to temperature and volume in a closed,

single-phase system
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Partial General Ideal Partial General Ideal
derivative  expression gas derivative  expression gas
or KT T 0A
C » (77), - -
(a_) . P (a_A) _x1§ _Is
oT )y Kr T op )y a )4
oU 0G aV pV
(W)V Cv Cv (W)V S S T
(a_U) KTCP_O,TV Icv (E) V__KTS V_T_S
opJy a p opJy a
0H aV N Cy Cy
(77), G+ig0-en G 7)., T T
(a—H) Gy i-ar) 2L (ﬂ) G gy &
op )y a p opy aT p

Table 7.5.3. Constant volume: expressions for partial derivatives of state functions with respect to temperature and pressure in a closed,
single-phase system

We may derive the general expressions as follows. We are considering differentiation with respect
only to T, p, and V. Expressions for (0V /dT),, (0V/0dp)r,and (0 p/0T)y come from Egs. 7.1.1,
7.1.2, and 7.1.7 and are shown as functions of & and x7. The reciprocal of each of these three expres-
sions provides the expression for another partial derivative from the general relation

1

(GY/ax)z: (ax/ay):

(7.5.4)

This procedure gives us expressions for the six partial derivatives of T, p, and V.

The remaining expressions are for partial derivatives of U, H, A, G, and S. We obtain the expression
for (AU /0T)y from Eq. 7.3.1, for (0 U /0 V)r from Eq. 7.2.4, for (0H/0T), from Eq. 7.3.2, for
(0A/0T)y from Eq. 5.4.9, for (0 A/0dV)r from Eq. 5.4.10, for (0 G/ 0 p)r from Eq. 5.4.12, for
(0G/0T), from Eq. 5.4.11, for (05/07T)y from Eq. 7.4.6, for (05/07T), from Eq. 7.4.11, and for
(0S/0 p)r from Eq. 5.4.18.

We can transform each of these partial derivatives, and others derived in later steps, to two other par-
tial derivatives with the same variable held constant and the variable of differentiation changed. The
transformation involves multiplying by an appropriate partial derivative of T, p, or V. For instance,
from the partial derivative (U /0V)r=(aT /%) - p, we obtain

(32),-(39),(32),~12Z-r)wm=carmy

The remaining partial derivatives can be found by differentiating U=H-pV, H=U+pV,A=U—-
TS, and G=H-TS and making appropriate substitutions. Whenever a partial derivative appears in a
derived expression, it is replaced with an expression derived in an earlier step. The expressions derived
by these steps constitute the full set shown in Tables 7.5.1, 7.5.2, and 7.5.3.

(7.5.5)

Bridgman’--! devised a simple method to obtain expressions for these and many other partial deriva-
tives from a relatively small set of formulas.

7.5.1. Ref. [21]; Ref. [23], p. 199-241.
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State function =~ General expression Ideal gas Approximate expression
change for liquid or solid
AU Im (—aT+xrp)Vdp O -aTVAp
p1
P2
AH f (1—aT)Vdp 0 (1—aT)VAp
pP1
AA f“prVdp nRTIEE v (p3=p?)/2
P pP1
AG "vdp nRTIWZ2  vap
P pP1
AS —fpzanp _nRIn22 —aVAp
P P1

Table 7.6.1. Changes of state functions during an isothermal pressure change in a closed, single-phase system

7.5.2 The Joule-Thomson coefficient

The Joule—Thomson coefficient of a gas was defined in Eq. 6.3.3 on page 133 by uyr=(97/0 p)g. It can be evaluated
with measurements of 7 and p during adiabatic throttling processes as described in Sec. 6.3.1.

To relate pyr to other properties of the gas, we write the total differential of the enthalpy of a closed, single-phase
system in the form

0H 0H
and divide both sides by dp:
dH _(0H\ dT (0H
o 57),5+ (%), (727
Next we impose a condition of constant H; the ratio d7'/dp becomes a partial derivative:
0H\ (0T 0H
- (54), 4, (3
oT P ap H ap T ( )
Rearrangement gives
OT\ _ _(3H/dp)r
(55),~~rrar, 739

The left side of this equation is the Joule-Thomson coefficient. An expression for the partial derivative (0 H/0 p)r is
given in Table 7.5.1, and the partial derivative (0 /0 T), is the heat capacity at constant pressure (Eq. 5.6.3). These
substitutions give us the desired relation

(d]—l)L (aj—l)tm
= = 7-5.10
Hir G Co.m ( )

7.6 Isothermal Pressure Changes

In various applications, we will need expressions for the effect of changing the pressure at constant temperature on the
internal energy, enthalpy, entropy, and Gibbs energy of a phase. We obtain the expressions by integrating expressions
found in Table 7.5.1. For example, A U is given by f (0U /0 p)rdp. The results are listed in the second column of
Table 7.6.17.6.1 on page 152.

7.6.1 Ideal gases

Simplifications result when the phase is an ideal gas. In this case, we can make the substitutions V=nRT /p,a=1/T,
and x7 =1/ p, resulting in the expressions in the third column of Table 7.6.1.
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7.8 CHEMICAL POTENTIAL AND FUGACITY 153

The expressions in the third column of Table 7.6.1 may be summarized by the statement that, when an ideal gas
expands isothermally, the internal energy and enthalpy stay constant, the entropy increases, and the Helmholtz energy
and Gibbs energy decrease.

7.6.2 Condensed phases

Solids, and liquids under conditions of temperature and pressure not close to the critical point, are much less compress-
ible than gases. Typically the isothermal compressibility, %7, of a liquid or solid at room temperature and atmospheric
pressure is no greater than 1 x 10™*bar~! (see Fig. 7.1.2 on page 140), whereas an ideal gas under these conditions has
xr=1/p=1bar!. Consequently, it is frequently valid to treat V for a liquid or solid as essentially constant during
a pressure change at constant temperature. Because # 7 is small, the product #7p for a liquid or solid is usually much
smaller than the product a T. Furthermore, x 7 for liquids and solids does not change rapidly with p as it does for gases,
and neither does a.

With the approximations that V, «, and x 7 are constant during an isothermal pressure change, and that xp is
negligible compared with a T, we obtain the expressions in the last column of Table 7.6.1.

7.7 Standard States of Pure Substances

It is often useful to refer to a reference pressure, the standard pressure, denoted p°. The standard pressure has
an arbitrary but constant value in any given application. Until 1982, chemists used a standard pressure of 1 atm
(1.01325 x 10° Pa). The IUPAC now recommends the value p° = 1bar (exactly 10°Pa).”7-! This book uses the latter
value unless stated otherwise. (Note that there is no defined standard remperature.)

A superscript degree symbol (-) denotes a standard quantity or standard-state conditions. An alternative symbol
for this purpose, used extensively outside the U.S., is a superscript Plimsoll mark (&).7-72

A standard state of a pure substance is a particular reference state appropriate for the kind of phase and is
described by intensive variables. This book follows the recommendations of the IUPAC Green Book’-7- for var-
ious standard states.

o The standard state of a pure gas is the hypothetical state in which the gas is at pressure p° and the temperature
of interest, and the gas behaves as an ideal gas. The molar volume of a gas at 1 bar may have a measurable
deviation from the molar volume predicted by the ideal gas equation due to intermolecular forces. We must
imagine the standard state in this case to consist of the gas with the intermolecular forces magically “turned
off” and the molar volume adjusted to the ideal-gas value RT /p°.

o The standard state of a pure liquid or solid is the unstressed liquid or solid at pressure p° and the temperature
of interest. If the liquid or solid is stable under these conditions, this is a real (not hypothetical) state.

Section 9.7 will introduce additional standard states for constituents of mixtures.

7.8 Chemical Potential and Fugacity

The chemical potential, u, of a pure substance has as one of its definitions (page 121)

d_ef _Q (781)
po= m=g (pure substance)

7.7.1. See Ref. [90].

7.7.2. The Plimsoll mark is named after the British merchant Samuel Plimsoll, at whose instigation Parliament passed an act in 1875 requiring
the symbol to be placed on the hulls of cargo ships to indicate the maximum depth for safe loading. The unicode glyph U+29B5, CIRCLE
WITH HORIZONTAL BAR (©) approximates the appearance of this mark.

7.7.3. Ref. [36], p. 61-62.
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154 PURE SUBSTANCES IN SINGLE PHASES

That is, u is equal to the molar Gibbs energy of the substance at a given temperature and pressure. (Section 9.2.6 will
introduce a more general definition of chemical potential that applies also to a constituent of a mixture.) The chemical
potential is an intensive state function.

The total differential of the Gibbs energy of a fixed amount of a pure substance in a single phase, with 7" and p
as independent variables, is dG=-SdT + V dp (Eq. 5.4.4). Dividing both sides of this equation by n gives the total
differential of the chemical potential with these same independent variables:

(7.8.2)

dp==SmdT + Vmdp (pure substance, P=1)

(Since all quantities in this equation are intensive, it is not necessary to specify a closed system; the amount of the
substance in the system is irrelevant.)

We identify the coefficients of the terms on the right side of Eq. 7.8.2 as the partial derivatives

(a 1 ) s, (7.8.3)
p

/T (pure substance, P=1)

and
uy _y (7.8.4)
ap /)y ™ (pure substance, P=1)

Since Vy, is positive, Eq. 7.8.4 shows that the chemical potential increases with increasing pressure in an isothermal
process.

The standard chemical potential, ;°, of a pure substance in a given phase and at a given temperature is the
chemical potential of the substance when it is in the standard state of the phase at this temperature and the standard
pressure p°.

There is no way we can evaluate the absolute value of y at a given temperature and pressure, or of p° at the same
temperature,’ 8! but we can measure or calculate the difference p— u°. The general procedure is to integrate dyu = Vp,dp
(Eq. 7.8.2 with dT set equal to zero) from the standard state at pressure p° to the experimental state at pressure p’:

(7.8.5)

’ o_ P’
w(p')—p'= L“ Vmdp (constant T')

7.8.1 Gases

For the standard chemical potential of a gas, this book will usually use the notation u° (g) to emphasize the choice of
a gas standard state.

An ideal gas is in its standard state at a given temperature when its pressure is the standard pressure. We find
the relation of the chemical potential of an ideal gas to its pressure and its standard chemical potential at the same
temperature by setting V;, equal to RT /p in Eq. 7.8.5: u(p’)—pu° = fpp (RT/p)dp=RTIn(p’/p°). The general
relation for u as a function of p, then, is

p (7.8.6)

u=p°(g)+RTIn D (pure ideal gas, constant T')

This function is shown as the dashed curve in Fig. 7.8.1 on page 155.

7.8.1. At least not to any useful degree of precision. The values of p and p° include the molar internal energy whose absolute value can only
be calculated from the Einstein relation; see Sec. 2.6.2.
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3]

Figure 7.8.1. Chemical potential as a function of pressure at constant temperature, for a real gas (solid curve) and the same gas behaving
ideally (dashed curve). Point A is the gas standard state. Point B is a state of the real gas at pressure p’. The fugacity f(p”) of the real
gas at pressure p’ is equal to the pressure of the ideal gas having the same chemical potential as the real gas (point C).

If a gas is not an ideal gas, its standard state is a hypothetical state. The fugacity, f, of a real gas (a gas that is not
necessarily an ideal gas) is defined by an equation with the same form as Eq. 7.8.6:

_ A (7.8.7)
u=p(g) +RTIHF (pure gas)
or
def n=p (g (7.8.8)
f = pexp [T] (pure gas)

Note that fugacity has the dimensions of pressure. Fugacity is a kind of effective pressure. Specifically, it is the
pressure that the hypothetical ideal gas (the gas with intermolecular forces “turned off”’) would need to have in order
for its chemical potential at the given temperature to be the same as the chemical potential of the real gas (see point C
in Fig. 7.8.1). If the gas is an ideal gas, its fugacity is equal to its pressure.

To evaluate the fugacity of a real gas at a given T and p, we must relate the chemical potential to the pres-
sure—volume behavior. Let u” be the chemical potential and f” be the fugacity at the pressure p” of interest; let u2”” be
the chemical potential and £’ be the fugacity of the same gas at some low pressure p’’ (all at the same temperature).
Then we use Eq. 7.8.5 to write u’ — u° () =RTIn(f/p°) and p’"— pu° (g) =RTIn(f""/ p°), from which we obtain

’ 77 f,
W =n =RTIn (7.8.9)

By integrating d iz = V;,dp from pressure p’’ to pressure p’, we obtain

W-n'= " du=[" Vudp (7.8.10)
u P
Equating the two expressions for p"— y’” and dividing by RT gives

L (7 Y

lnf,, = o ﬁ

dp (7.8.11)

In principle, we could use the integral on the right side of Eq. 7.8.11 to evaluate f” by choosing the lower integration
limit p”” to be such a low pressure that the gas behaves as an ideal gas and replacing £’ by p”’. However, because the
integrand Vj,,/RT becomes very large at low pressure, the integral is difficult to evaluate. We avoid this difficulty by
subtracting from the preceding equation the identity

ln%:f e (7.8.12)
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which is simply the result of integrating the function 1/p from p’’ to p’. The result is

A (E_l)
I _L” X7 )dP (7.8.13)
Now we take the limit of both sides of Eq. 7.8.13 as p’’ approaches zero. In this limit, the gas at pressure p’’

rr_7

approaches ideal-gas behavior, f’” approaches p”’, and the ratio f'p’’/f’’p’ approaches f’/p’:

! "'(ﬁ_l)
1np,_f0 X7 )P (7.8.14)

The integrand (V,,/RT —1/p) of this integral approaches zero at low pressure, making it feasible to evaluate the
integral from experimental data.
The fugacity coefficient ¢ of a gas is defined by

eff

)~ Lo f=gp (7.8.15)

(pure gas)
The fugacity coefficient at pressure p” is then given by Eq. 7.8.14:

% ( Vin 1)d (7.8.16)

4 — —_—— —
Ing(p”) —I RT p (pure gas, constant T')

0

The isothermal behavior of real gases at low to moderate pressures (up to at least 1 bar) is usually adequately described
by a two-term equation of state of the form given in Eq. 2.2.8:

Vm:¥+B (7.8.17)

Here B is the second virial coefficient, a function of 7. With this equation of state, Eq. 7.8.16 becomes
Bp

For a real gas at temperature 7 and pressure p, Eq. 7.8.16 or 7.8.18 allows us to evaluate the fugacity coefficient from
an experimental equation of state or a second virial coefficient. We can then find the fugacity from f = ¢ p.

As we will see in Sec. 9.7, the dimensionless ratio ¢ = f/ p is an example of an activity coefficient and
the dimensionless ratio f/p° is an example of an activity.

7.8.2 Liquids and solids

The dependence of the chemical potential on pressure at constant temperature is given by Eq. 7.8.5. With an approx-
imation of zero compressibility, this becomes

(7.8.19)
pn=p+Valp-p°) (pure liquid or solid,
constant 7')

7.9 Standard Molar Quantities of a Gas

A standard molar quantity of a substance is the molar quantity in the standard state at the temperature of interest.
We have seen (Sec. 7.7) that the standard state of a pure liquid or solid is a real state, so any standard molar quantity
of a pure liquid or solid is simply the molar quantity evaluated at the standard pressure and the temperature of interest.

The standard state of a gas, however, is a hypothetical state in which the gas behaves ideally at the standard
pressure without influence of intermolecular forces. The properties of the gas in this standard state are those of an
ideal gas. We would like to be able to relate molar properties of the real gas at a given temperature and pressure to the
molar properties in the standard state at the same temperature.
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Equation of state

Difference General expression at pressure p V=nRT/p+nB
Un—Us (2) Iop/[Vm—T(%)p]dp+RT—p’Vm —pT%
Hyn—Hi, (2) fop’ [Vm—T(%)p]dP p(B_T%)
An=Am (g) RTlni: +f0p, (Vm—%)dmRT—p’Vm RTln%
Gin—Gin(g) RTln§:+f0p,(Vm—7T)dp RTInL 45
Sim=Si (2) —Rlnii—fop, [(% p—g]dp —Rln;:o—p%
Cun=Gimte) =} 1 a;]Yf;)pdp 7t

Table 7.9.1. Real gases: expressions for differences between molar properties and standard molar values at the same temperature

We begin by using Eq. 7.8.7 to write an expression for the chemical potential of the real gas at pressure p’:

1w () +RT1n’%

’

u(p)

’ £
,u"(g)+RTln%+RTln% (7.9.1)

We then substitute from Eq. 7.8.14 to obtain a relation between the chemical potential, the standard chemical poten-
tial, and measurable properties, all at the same temperature:

N P _ﬂ) (7.9.2)
u(p')=p (g)+RTlnp°+IO (Vm o) dp (pure 296)
Note that this expression for u is not what we would obtain by simply integrating du = V;,dp from p° to p’, because
the real gas is not necessarily in its standard state of ideal-gas behavior at a pressure of 1 bar.
Recall that the chemical potential p of a pure substance is also its molar Gibbs energy G,,= G/n. The standard
chemical potential p° (g) of the gas is the standard molar Gibbs energy, G, (g). Therefore Eq. 7.9.2 can be rewritten
in the form

Gm(p') =G (2) +RTIn

’ ’
pr _RT)
po+f0 (Vm —)dp (7.9.3)

The middle column of Table 7.9.1 on page 157 contains an expression for G, (p’) —Gr, (g) taken from this equation.

This expression contains all the information needed to find a relation between any other molar property and its
standard molar value in terms of measurable properties. The way this can be done is as follows.

The relation between the chemical potential of a pure substance and its molar entropy is given by Eq. 7.8.3:

S, = _(%)p (7.9.4)

The standard molar entropy of the gas is found from Eq. 7.9.4 by changing u to p°(g):

Sn(@=-( 472 (7.9.5)
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By substituting the expression for u given by Eq. 7.9.2 into Eq. 7.9.4 and comparing the result with Eq. 7.9.5, we
obtain

Sm(p’) =Sia (2) —Rln%—f: [(%)p—g] dp (7.9.6)
The expression for Sy, —Sm (g) in the middle column of Table 7.9.1 comes from this equation. The equation, together
with a value of Sy, for a real gas obtained by the calorimetric method described in Sec. 6.2.1, can be used to evaluate
Sm ().

Now we can use the expressions for G, and Sy, to find expressions for molar quantities such as Hy, and C,
relative to the respective standard molar quantities. The general procedure for a molar quantity X, is to write an
expression for Xy, as a function of Gy, and S, and an analogous expression for Xy, (g) as a function of Gy, (g) and
Sm (g). Substitutions for G, and Sy, from Eqs. 7.9.3 and 7.9.6 are then made in the expression for X,,, and the
difference X, — X, (g) taken.

For example, the expression for U, — Uy, (g) in the middle column Table 7.9.1 was derived as follows. The equa-
tion defining the Gibbs energy, G=U-TS + pV, was divided by the amount » and rearranged to

Un=Gm+TSm—pVn (7.9.7)
The standard-state version of this relation is
Un(g)=Gm(g) +TSn(g2)—p°Vm(g) (7.9.8)

where from the ideal gas law p°Vj; (g) can be replaced by RT. Substitutions from Eqs. 7.9.3 and 7.9.6 were made in
Eq. 7.9.7 and the expression for Uy, (g) in Eq. 7.9.8 was subtracted, resulting in the expression in the table.

For a real gas at low to moderate pressures, we can approximate Vy, by (RT/p) + B where B is the second virial
coefficient (Eq. 7.8.17). Equation 7.9.2 then becomes

’uz'u"(g)+RTln%+Bp (7.9.9)
The expressions in the last column of Table 7.9.1 use this equation of state. We can see what the expressions look

like if the gas is ideal simply by setting B equal to zero. They show that when the pressure of an ideal gas increases at
constant temperature, Gy, and Ay, increase, Sy, decreases, and Uy, Hy, and C, i, are unaffected.
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7.10 Problems

Problem 7.10.1. Derive the following relations from the definitions of a, xr, and p:

__i(a_P) _i(a_P)
¢ p\oT/, T p\op)r

Problem 7.10.2. Use equations in this chapter to derive the following expressions for an ideal gas:
a=1/T xr=1/p
Problem 7.10.3. For a gas with the simple equation of state

RT
Vm=T+B

(Eq. 2.2.8), where B is the second virial coefficient (a function of T'), find expressions for «, x7, and (0 Uy, /0 V)7 in terms of dB/dT and
other state functions.

Problem 7.10.4. Show that when the virial equation p Viu=RT (1+B,p +C, p*+--+) (Eq. 2.2.3) adequately represents the equation of state
of a real gas, the Joule-Thomson coefficient is given by

_RT?[dB,/dT +(dCp/dT) p+---]
- -

HiT
Note that the limiting value at low pressure, RT2 (dB,/dT) / Cp,m, is not necessarily equal to zero even though the equation of state approaches
that of an ideal gas in this limit.

Problem 7.10.5. The quantity (87 /0 V)y is called the Joule coefficient. James Joule attempted to evaluate this quantity by measuring the
temperature change accompanying the expansion of air into a vacuum—the “Joule experiment.” Write an expression for the total differential
of U with T and V as independent variables, and by a procedure similar to that used in Sec. 7.5.2 show that the Joule coefficient is equal to

p—aT/xr
Cy

Problem 7.10.6. p—V-T data for several organic liquids were measured by Gibson and Loeffler.”-!0-! The following formulas describe the
results for aniline.

e Molar volume as a function of temperature at p = 1 bar (298-358 K):
Vm=a+bT +cT?+dT?
where the parameters have the values
a =69.287 cm3-mol ! ¢ =—1.0443 x 10~*cm3-K~2-mol !
b =0.08852cm3-K~!-mol ! d =1.940x 1077 cm3-K~3-mol !
e Molar volume as a function of pressure at 7 =298.15K (1-1000 bar):
Vm=e—f1In(g+ p/bar)
where the parameter values are
e=156.812cm3mol~!  f=8.5834cm3mol~!  ¢=2006.6
a) Use these formulas to evaluate a, 7, (0p/07)y, and (0 U/d V)7 (the internal pressure) for aniline at 7 =298.15K and p = 1.000bar.
b) Estimate the pressure increase if the temperature of a fixed amount of aniline is increased by 0.10K at constant volume.
Problem 7.10.7.
a) From the total differential of H with 7" and p as independent variables, derive the relation (0 Cpm/0 p)T = —T(02%Vin/0T?) P
b) Evaluate (0 Cj,m/0 p)r for liquid aniline at 300.0K and 1 bar using data in Prob. 7.10.6.
Problem 7.10.8.
a) From the total differential of V with 7" and p as independent variables, derive the relation (0 a /0 p)r=—(0x7/0T)).

b) Use this relation to estimate the value of a for benzene at 25 °C and 500bar, given that the value of « is 1.2 x 103K ! at 25°C and
I bar. (Use information from Fig. 7.1.2 on page 140.)

Problem 7.10.9. Certain equations of state supposed to be applicable to nonpolar liquids and gases are of the form p =Tf (Viy) —a/ V,3, where
f (Vi) is a function of the molar volume only and a is a constant.

a) Show that the van der Waals equation of state (p+a/ V,,Z,) (Vmm—b) =RT (where a and b are constants) is of this form.

7.10.1. Ref. [70].
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b) Show that any fluid with an equation of state of this form has an internal pressure equal to a / V2.

Problem 7.10.10. Suppose that the molar heat capacity at constant pressure of a substance has a temperature dependence given by Cp, m =
a+bT+cT? where a, b, and ¢ are constants. Consider the heating of an amount n of the substance from 7 to 75 at constant pressure. Find
expressions for A H and A S for this process in terms of a, b, ¢, n, Ty, and T».

Problem 7.10.11. At p = 1atm, the molar heat capacity at constant pressure of aluminum is given by
Com=a+bT
where the constants have the values
a=20.67J- K 'mol~!  5=0.01238J-K~%mol"!
Calculate the quantity of electrical work needed to heat 2.000 mol of aluminum from 300.00K to 400.00K at 1 atm in an adiabatic enclosure.

Problem 7.10.12. The temperature dependence of the standard molar heat capacity of gaseous carbon dioxide in the temperature range
298 K-2000K is given by

c

C,;’J,ﬂ:aﬁ—bTﬁ-T2

where the constants have the values

a=442JK 'mol™! »=88x107JK2mol™! ¢=-8.6x10J-K-mol™!
Calculate the enthalpy and entropy changes when one mole of CO» is heated at 1 bar from 300.00K to 800.00K. You can assume that at this
pressure Cp 1y, is practically equal to Cp, m.

Problem 7.10.13. This problem concerns gaseous carbon dioxide. At 400K, the relation between p and Vi, at pressures up to at least 100 bar
is given to good accuracy by a virial equation of state truncated at the second virial coefficient, B. In the temperature range 300 K-800K the
dependence of B on temperature is given by

B=a'+b'T+c'T*+d'T?
where the constants have the values

—521 cm3-mol~!

b’ = 2.08cm3K~!-mol~!

¢’ = -2.89x1073cm3-K~2-mol !
d’ = 1.397x10"%cm3-K~3-mol"!

Q
1]

a) From information in Prob. 7.7.10.12, calculate the standard molar heat capacity at constant pressure, Cp m, at 7 =400.0K.
b) Estimate the value of C, p, under the conditions 7' =400.0K and p = 100.0bar.

Problem 7.10.14. A chemist, needing to determine the specific heat capacity of a certain liquid but not having an electrically heated calorimeter
at her disposal, used the following simple procedure known as drop calorimetry. She placed 500.0 g of the liquid in a thermally insulated
container equipped with a lid and a thermometer. After recording the initial temperature of the liquid, 24.80 °C, she removed a 60.17-g
block of aluminum metal from a boiling water bath at 100.00 °C and quickly immersed it in the liquid in the container. After the con-
tents of the container had become thermally equilibrated, she recorded a final temperature of 27.92 °C. She calculated the specific heat
capacity C,/m of the liquid from these data, making use of the molar mass of aluminum (M =26.9815 g'mol~!) and the formula for the
molar heat capacity of aluminum given in Prob. 7.7.10.11.

a) From these data, find the specific heat capacity of the liquid under the assumption that its value does not vary with temperature. Hint:
Treat the temperature equilibration process as adiabatic and isobaric (A H =0), and equate A H to the sum of the enthalpy changes in
the two phases.

b) Show that the value obtained in part (a) is actually an average value of C,/m over the temperature range between the initial and final
temperatures of the liquid given by

T
jT (Cp/m)dT
To-Ti

Problem 7.10.15. Suppose a gas has the virial equation of state p Viy=RT (1+B,p +C, p?), where B, and C,, depend only on 7', and higher
powers of p can be ignored.

a) Derive an expression for the fugacity coefficient, ¢, of this gas as a function of p.

b) For CO,(g) at 0.00 °C, the virial coefficients have the values B, =—6.67 x 10~ 3bar~! and Cp=-3.4x 1073bar 2. Evaluate the fugacity
f at 0.00°C and p =20.0bar.

Problem 7.10.16. Table 7.10.1 on page 161 lists values of the molar volume of gaseous H>O at 400.00 °C and 12 pressures.
a) Evaluate the fugacity coefficient and fugacity of H,O(g) at 400.00 °C and 200 bar.
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p/10°Pa V471073 m3-mol !

p/10°Pa Viy /1073 m3-mol~!

1
10
20
40
60
80

55.896 100
5.5231 120
2.7237 140
1.3224 160
0.85374 180
0.61817 200

0.47575
0.37976
0.31020
0.25699
0.21447
0.17918

Table 7.10.1. Molar volume of H,O(g) at 400.00 °C7-10-2-

b) Show that the second virial coefficient B in the virial equation of state, p Vi =RT (1+B/Vyp+C/ Vn% +---), is given by

7.10.2 based on data in Ref. [75]

B:RTlim(
p—0

Vm 1

RT p

)

where the limit is taken at constant 7. Then evaluate B for HyO(g) at 400.00 °C.

161
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Chapter 8

Phase Transitions and Equilibria of Pure Substances

A system of two or more phases of a single substance, in the absence of internal constraints, is in an equilibrium state
when each phase has the same temperature, the same pressure, and the same chemical potential. This chapter describes
the derivation and consequences of this simple principle, the general appearance of phase diagrams of single-substance
systems, and quantitative aspects of the equilibrium phase transitions of these systems.

8.1 Phase Equilibria

8.1.1 Equilibrium conditions

d system is an equilibrium state, this state does not change over time (Sec. 2.4.4). We expect an isolated system that is
not in an equilibrium state to undergo a spontaneous, irreversible process and eventually to reach an equilibrium state.
Just how rapidly this process occurs is a matter of kinetics, not thermodynamics. During this irreversible adiabatic
process, the entropy increases until it reaches a maximum in the equilibrium state.

A general procedure will now be introduced for finding conditions for equilibrium with given constraints. The pro-
cedure is applied to phase equilibria of single-substance, multiphase systems in the next section, to transfer equilibria
in multicomponent, multiphase systems in Sec. 9.2.7, and to reaction equilibria in Sec. 11.7.3.

The procedure has five steps:

1. Write an expression for the total differential of the internal energy U consistent with any constraints and with
the number of independent variables of the system.

2. Impose conditions of isolation for the system, including dU =0, thereby reducing the number of independent
variables.

3. Designate a particular phase, o', as a reference phase and make the substitution dS « =d§- Y asqr 4% (This
is valid because entropy is extensive: S=)  S% dS=) dS*)

4. Rearrange to obtain an expression for the total differential of the entropy consistent with the reduced number
of independent variables.

5. The conditions for an equilibrium state are those that make the infinitesimal entropy change, dS, equal to zero
for all infinitesimal changes of the independent variables of the isolated system.

8.1.2 Equilibrium in a multiphase system

In this section we consider a system of a single substance in two or more uniform phases with distinctly different
intensive properties. For instance, one phase might be a liquid and another a gas. We assume the phases are not
separated by internal partitions, so that there is no constraint preventing the transfer of matter and energy among the
phases. (A tall column of gas in a gravitational field is a different kind of system in which intensive properties of an
equilibrium state vary continuously with elevation; this case will be discussed in Sec. 8.1.4.)
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Phase ,(x' will be the reference phase. Since internal energy is extensive, we can write U = U « 4 Y 4o U and
dU=dU* +) 4o AU We assume any changes are slow enough to allow each phase to be practically uniform at all
times. Treating each phase as an open subsystem with expansion work only, we use the relation dU=TdS-pdV +
pdn (Eq. 5.2.5) to replace each dU“ term:

dU = (T*'dS* = p® dv® + u* dn®)
+ Y (TdS*=pdV©+ p*dn®) (8.1.1)
ata’
This is an expression for the total differential of U when there are no constraints.

We isolate the system by enclosing it in a rigid, stationary adiabatic container. The constraints needed to isolate
the system, then, are given by the relations

dU=0 (constant internal energy) (8.1.2)

dve' + Z dve=0 (no expansion work) (8.1.3)
afa’

dn®’+ ) dn"=0 (closed system) (8.1.4)
ata’

Each of these relations is an independent restriction that reduces the number of independent variables by one. When
we substitute expressions for dU, dV“/, and dn® from these relations into Eq. (uninit), make the further substitution
dsS? =dS - Zﬂ sa’ dS“, and collect term with the same differentials on the right side, we obtain

0= T9ds+ Y (T9-T*)ds"= Y (p*=p*)dve
a#a’ a#a’

+ Z (u*- ,u“,)dno‘ (8.1.5)

afa’

Solving for dS, we obtain

as = Y L;,TadS“— Y ’ﬁ%”adva

ata’ T ata’
pe =
+y Tdn (8.1.6)
afa’

This is an expression for the total differential of S in the isolated system.

In an isolated system, an equilibrium state cannot change spontaneously to a different state. Once the isolated
system has reached an equilibrium state, an imagined finite change of any of the independent variables consistent
with the constraints (a so-called virtual displacement) corresponds to an impossible process with an entropy decrease.
Thus, the equilibrium state has the maximum entropy that is possible for the isolated system. In order for S to be a
maximum, dS must be zero for an infinitesimal change of any of the independent variables of the isolated system.

This requirement is satisfied in the case of the multiphase system only if the coefficient of each term in the sums
on the right side of Eq. 8.1.6 is zero. Therefore, in an equilibrium state the temperature of each phase is equal to the
temperature T of the reference phase, the pressure of each phase is equal to p"", and the chemical potential in each
phase is equal to p* . That is, at equilibrium the temperature, pressure, and chemical potential are uniform throughout
the system. These are, respectively, the conditions described in Sec. 2.4.4 of thermal equilibrium, mechanical equi-
librium, and transfer equilibrium. These conditions must hold in order for a multiphase system of a pure substance
without internal partitions to be in an equilibrium state, regardless of the process by which the system attains that state.

8.1.3 Simple derivation of equilibrium conditions

Here is a simpler, less formal derivation of the three equilibrium conditions in a multiphase system of a single sub-
stance.
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h

==}

Figure 8.1.1. Closed system of constant-volume slab-shaped fluid phases stacked in the vertical direction. The shaded phase is reference
phase o’

It is intuitively obvious that, unless there are special constraints (such as internal partitions), an equilibrium state
must have thermal and mechanical equilibrium. A temperature difference between two phases would cause a spon-
taneous transfer of heat from the warmer to the cooler phase; a pressure difference would cause spontaneous flow of
matter.

When some of the substance is transferred from one phase to another under conditions of constant 7 and p, the
intensive properties of each phase remains the same including the chemical potential. The chemical potential of a
pure phase is the Gibbs energy per amount of substance in the phase. We know that in a closed system of constant
T and p with expansion work only, the total Gibbs energy decreases during a spontaneous process and is constant
during a reversible process (Eq. 5.8.6). The Gibbs energy will decrease only if there is a transfer of substance from
a phase of higher chemical potential to a phase of lower chemical potential, and this will be a spontaneous change.
No spontaneous transfer is possible if both phases have the same chemical potential, so this is a condition for an
equilibrium state.

8.1.4 Tall column of gas in a gravitational field

The earth's gravitational field is an example of an external force field that acts on a system placed in it. Usually we
ignore its effects on the state of the system. If, however, the system's vertical extent is considerable we must take the
presence of the field into account to explain, for example, why gas pressure varies with elevation in an equilibrium
state.

A tall column of gas whose intensive properties are a function of elevation may be treated as an infinite number of
uniform phases, each of infinitesimal vertical height. We can approximate this system with a vertical stack of many
slab-shaped gas phases, each thin enough to be practically uniform in its intensive properties, as depicted in Fig. 8.1.1.

The system can be isolated from the surroundings by confining the gas in a rigid adiabatic container. In order to
be able to associate each of the thin slab-shaped phases with a definite constant elevation, we specify that the volume
of each phase is constant so that in the rigid container the vertical thickness of a phase cannot change.

We can use the phase of lowest elevation as the reference phase o, as indicated in the figure. We repeat the
derivation of Sec. 8.1.2 with one change: for each phase a the volume change dV “ is set equal to zero. Then the second
sum on the right side of Eq. 8.1.6, with terms proportional to dV“, drops out and we are left with

! a a a
ds = Z, TaT—;/TdSO% Z/ ”T—;f‘dna (8.1.7)
aFa a#a
In the equilibrium state of the isolated system, dS is equal to zero for an infinitesimal change of any of the independent
variables. In this state, therefore, the coefficient of each term in the sums on the right side of Eq. 8.1.7 must be zero.
We conclude that in an equilibrium state of a tall column of a pure gas, the temperature and chemical potential are
uniform throughout. The equation, however, gives us no information about pressure.

We will use this result to derive an expression for the dependence of the fugacity f on elevation in an equilibrium
state. We pick an arbitrary position such as the earth's surface for a reference elevation at which 4 is zero, and define
the standard chemical potential p° (g) as the chemical potential of the gas under standard state conditions at this
reference elevation. At h =0, the chemical potential and fugacity are related by Eq. 7.8.7 which we write in the
following form, indicating the elevation in parentheses:

1£(0) = 1° (2) +RT1n]% (8.1.8)
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Imagine a small sample of gas of mass m that is initially at elevation 2 =0. The vertical extent of this sample should
be small enough for the variation of the gravitational force field within the sample to be negligible. The gravitational
work needed to raise the gas to an arbitrary elevation & is w’ =mgh (page 69). We assume this process is carried out
reversibly at constant volume and without heat, so that there is no change in 7, p, V, S, or f. The internal energy U
of the gas must increase by mgh=nM gh, where M is the molar mass. Then, because the Gibbs energy G depends on
U according to G=U-TS +pV, G must also increase by nM g h.

The chemical potential p is the molar Gibbs energy G/n. During the elevation process, f remains the same and
[ increases by M g h:

(8.1.9)

p(h)=p(0)+Mgh (f(h)=£(0))

From Eqgs. 8.1.8 and 8.1.9, we can deduce the following general relation between chemical potential, fugacity, and
elevation:

(8.1.10)
w(h)=p° (g)+RT1nf(—il)+Mgh (pure gas in
P gravitational field)

Compare this relation with the equation that defines the fugacity when the effect of a gravitational field is negligible:
pn=p(g)+RTIn(f/p°) (Eq. 7.8.7 on page 155). The additional term M g 4 is needed when the vertical extent of the
gas is considerable.

Some thermodynamicists call the expression on the right side of Eq. 8.1.10 the “total chemical poten-
tial” or “gravitochemical potential”” and reserve the term “chemical potential” for the function u° (g) +
RTIn(f/p°). With these definitions, in an equilibrium state the “total chemical potential” is the same
at all elevations and the “chemical potential” decreases with increasing elevation.

This book instead defines the chemical potential y of a pure substance at any elevation as the molar
Gibbs energy at that elevation, as recommended in a 2001 TUPAC technical report.®-!-! When the chem-
ical potential is defined in this way, it has the same value at all elevations in an equilibrium state.

We know that in the equilibrium state of the gas column, the chemical potential x(4) has the same value at each
elevation 4. Equation 8.1.10 shows that in order for this to be possible, the fugacity must decrease with increasing
elevation. By equating expressions from Eq. 8.1.10 for p(h) at an arbitrary elevation /4, and for p(0) at the reference
elevation, we obtain

p (@ +RTI S M=y @) + RTIn LD S.1.11)

Solving for f(h) gives
(8.1.12)
f(h) = f(0) e™Meh/RT (pure gas at equilibrium

in gravitational field)
If we treat the gas as ideal, so that the fugacity equals the pressure, this equation becomes

(8.1.13)
p(h) = p(0) e~ Meh/RT (pure ideal gas at equilibrium
in gravitational field)

Equation 8.1.13 is the barometric formula for a pure ideal gas. It shows that in the equilibrium state of a tall column
of an ideal gas, the pressure decreases exponentially with increasing elevation.

8.1.1. Ref. [2].
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This derivation of the barometric formula has introduced a method that will be used in Sec. 9.8.1 for dealing
with mixtures in a gravitational field. There is, however, a shorter derivation based on Newton's second law and
not involving the chemical potential. Consider one of the thin slab-shaped phases of Fig. 8.1.1. Let the density of
the phase be p, the area of each horizontal face be Ay, and the thickness of the slab be 8 . The mass of the phase is
then m = pA8 h. The pressure difference between the top and bottom of the phase is 8p. Three vertical forces act on
the phase: an upward force pAjy at its lower face, a downward force —(p + 8p) A; at its upper face, and a downward
gravitational force —-mg=—pA,g 8 h. If the phase is at rest, the net vertical force is zero: pA;— (p+dp)As— pAgdh=0,
or 8p=—p g dh. In the limit as the number of phases becomes infinite and 8 4 and 8 p become infinitesimal, this

becomes
(8.1.14)
dp=-pgdh (fluid at equilibrium
in gravitational field)

Equation 8.1.14 is a general relation between changes in elevation and hydrostatic pressure in any fluid. To apply it to
an ideal gas, we replace the density by p=nM /V =M /V,=Mp/RT and rearrange todp/p=—-(gM /RT)dh. Treating
g and T as constants, we integrate from /4 =0 to an arbitrary elevation / and obtain the same result as Eq. 8.1.13.

8.1.5 The pressure in a liquid droplet

The equilibrium shape of a small liquid droplet surrounded by vapor of the same substance, when the effects of gravity
and other external forces are negligible, is spherical. This is the result of the surface tension of the liquid—gas interface
which acts to minimize the ratio of surface to volume. The interface acts somewhat like the stretched membrane of an
inflated balloon, resulting in a greater pressure inside the droplet than the pressure of the vapor in equilibrium with it.

We can derive the pressure difference by considering a closed system containing a spherical liquid droplet and
surrounding vapor. We treat both phases as open subsystems. An infinitesimal change dU of the internal energy is the
sum of contributions from the liquid and gas phases and from the surface work ydA,, where y is the surface tension
of the liquid—gas interface and Aj is the surface area of the droplet (Sec. 5.7):

dU = dU'+dU&+ ydA
= T'dS'-p'av'+ pldn!
+78dS¢-pedVE+ ptdné + ydA, (8.1.15)

Note that Eq. 8.1.15 is not an expression for the total differential of U, because V' and A, are not independent vari-
ables. A derivation by a procedure similar to the one used in Sec. 8.1.2 shows that at equilibrium the liquid and gas
have equal temperatures and equal chemical potentials, and the pressure in the droplet is greater than the gas pressure
by an amount that depends on r:

p1=pg+27y (8.1.16)
Equation 8.1.16 is the Laplace equation. The pressure difference is significant if r is small, and decreases as r increases.
The limit 7 — co represents the flat surface of bulk liquid with p' equal to p®.

The derivation of Eq. 8.1.16 is left as an exercise (Prob. 8.5.1). The Laplace equation is valid also for a liquid
droplet in which the liquid and the surrounding gas may both be mixtures (Prob. 9.9.3 on page 233).

The Laplace equation can also be applied to the pressure in a gas bubble surrounded by liquid. In this case the
liquid and gas phases switch roles, and the equation becomes p¢=p'+2y /r.

8.1.6 The number of independent variables

From this point on in this book, unless stated otherwise, the discussions of multiphase systems will implicitly assume
the existence of thermal, mechanical, and transfer equilibrium. Equations will not explicitly show these equilibria as
a condition of validity.

In the rest of this chapter, we shall assume the state of each phase can be described by the usual variables: tem-
perature, pressure, and amount. That is, variables such as elevation in a gravitational field, interface surface area, and
extent of stretching of a solid, are not relevant.
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How many of the usual variables of an open multiphase one-substance equilibrium system are independent? To
find out, we go through the following argument. In the absence of any kind of equilibrium, we could treat phase o
as having the three independent variables 7%, p®, and n®, and likewise for every other phase. A system of P phases
without thermal, mechanical, or transfer equilibrium would then have 3 P independent variables.

We must decide how to count the number of phases. It is usually of no thermodynamic significance
whether a phase, with particular values of its intensive properties, is contiguous. For instance, splitting
a crystal into several pieces is not usually considered to change the number of phases or the state of
the system, provided the increased surface area makes no significant contribution to properties such as
internal energy. Thus, the number of phases P refers to the number of different kinds of phases.

Each independent relation resulting from equilibrium imposes a restriction on the system and reduces the number
of independent variables by one. A two-phase system with thermal equilibrium has the single relation 7% = T*. For
a three-phase system, there are two such relations that are independent, for instance 7% =T and 77 = T“. (The addi-
tional relation 77 = T* is not independent since we may deduce it from the other two.) In general, thermal equilibrium
gives P—1 independent relations among temperatures.

By the same reasoning, mechanical equilibrium involves P—1 independent relations among pressures, and transfer
equilibrium involves P—1 independent relations among chemical potentials.

The total number of independent relations for equilibrium is 3 (P—1), which we subtract from 3 P (the number of
independent variables in the absence of equilibrium) to obtain the number of independent variables in the equilibrium
system: 3 P -3 (P-1)=3. Thus, an open single-substance system with any number of phases has at equilibrium
three independent variables. For example, in equilibrium states of a two-phase system we may vary T, n°, and nP
independently, in which case p is a dependent variable; for a given value of T, the value of p is the one that allows
both phases to have the same chemical potential.

8.1.7 The Gibbs phase rule for a pure substance

The complete description of the state of a system must include the value of an extensive variable of each phase (e.g., the
volume, mass, or amount) in order to specify how much of the phase is present. For an equilibrium system of P phases
with a total of 3 independent variables, we may choose the remaining 3 — P variables to be intensive. The number of
these intensive independent variables is called the number of degrees of freedom or variance, F, of the system:

(8.1.17)

F=3-P (pure substance)

The application of the phase rule to multicomponent systems will be taken up in Sec. 13.1. Equation
8.1.17 is a special case, for C =1, of the more general Gibbs phase rule F=C-P +2.

We may interpret the variance F in either of two ways:

e F is the number of intensive variables needed to describe an equilibrium state, in addition to the amount of
each phase;

e Fis the maximum number of intensive properties that we may vary independently while the phases remain in
equilibrium.
A system with two degrees of freedom is called bivariant, one with one degree of freedom is univariant, and one with
no degrees of freedom is invariant. For a system of a pure substance, these three cases correspond to one, two, and
three phases respectively. For instance, a system of liquid and gaseous H,O (and no other substances) is univariant
(F=3-P=3-2=1); we are able to independently vary only one intensive property, such as 7', while the liquid and
gas remain in equilibrium.

8.2 Phase Diagrams of Pure Substances

A phase diagram is a two-dimensional map showing which phase or phases are able to exist in an equilibrium state
under given conditions. This chapter describes pressure—volume and pressure—temperature phase diagrams for a single
substance, and Chap. 13 will describe numerous types of phase diagrams for multicomponent systems.
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Figure 8.2.1. Relations among p, V /n, and T for carbon dioxide.82-! Areas are labeled with the stable phase or phases (scf stands for
supercritical fluid). The open circle indicates the critical point.

(a) Three-dimensional p—(V /n)-T surface. The dashed curve is the critical isotherm at 7'=304.21 K, and the dotted curve is a
portion of the critical isobar at p =73.8 bar.

(b) Pressure—volume phase diagram (projection of the surface onto the p—(V /n) plane).

(c) Pressure—temperature phase diagram (projection of the surface onto the p—T plane).

8.2.1. Based on data in Refs. [134] and [3].

8.2.1 Features of phase diagrams

Two-dimensional phase diagrams for a single-substance system can be generated as projections of a three-dimen-
sional surface in a coordinate system with Cartesian axes p, V /n, and T. A point on the three-dimensional surface
corresponds to a physically-realizable combination of values, for an equilibrium state of the system containing a total
amount n of the substance, of the variables p, V /n, and T.
The concepts needed to interpret single-substance phase diagrams will be illustrated with carbon dioxide.
Three-dimensional surfaces for carbon dioxide are shown at two different scales in Fig. 8.2.1 on page 169
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=

Figure 8.2.2. Three-dimensional p—(V /n)-T surface for CO,, magnified along the V /n axis compared to Fig. 8.2.1. The open circle is
the critical point, the dashed curve is the critical isotherm, and the dotted curve is a portion of the critical isobar.

and in Fig. 8.2.2 on page 170.

In these figures, some areas of the surface are labeled with a single physical state: solid, liquid, gas, or supercritical
fluid. A point in one of these areas corresponds to an equilibrium state of the system containing a single phase of the
labeled physical state. The shape of the surface in this one-phase area gives the equation of state of the phase (i.e., the
dependence of one of the variables on the other two). A point in an area labeled with two physical states corresponds
to two coexisting phases. The triple line is the locus of points for all possible equilibrium systems of three coexisting
phases, which in this case are solid, liquid, and gas. A point on the triple line can also correspond to just one or two
phases (see the discussion on page 171).

The two-dimensional projections shown in Figs. 8.2.1(b) and 8.2.1(c) are pressure—volume and pressure—tem-
perature phase diagrams. Because all phases of a multiphase equilibrium system have the same temperature and
pressure,322 the projection of each two-phase area onto the pressure—temperature diagram is a curve, called a coexis-
tence curve or phase boundary, and the projection of the triple line is a point, called a triple point.

How may we use a phase diagram? The two axes represent values of two independent variables, such as pand V /n
or p and T. For given values of these variables, we place a point on the diagram at the intersection of the corresponding
coordinates; this is the system point. Then depending on whether the system point falls in an area or on a coexistence
curve, the diagram tells us the number and kinds of phases that can be present in the equilibrium system.

If the system point falls within an area labeled with the physical state of a single phase, only that one kind of phase
can be present in the equilibrium system. A system containing a pure substance in a single phase is bivariant (F =
3-1=2), so we may vary two intensive properties independently. That is, the system point may move independently
along two coordinates (p and V /n, or p and T) and still remain in the one-phase area of the phase diagram. When V
and n refer to a single phase, the variable V /n is the molar volume V;, in the phase.

If the system point falls in an area of the pressure—volume phase diagram labeled with symbols for two phases,
these two phases coexist in equilibrium. The phases have the same pressure and different molar volumes. To find
the molar volumes of the individual phases, we draw a horizontal line of constant pressure, called a tie line, through
the system point and extending from one edge of the area to the other. The horizontal position of each end of the tie

8.2.2. This statement assumes there are no constraints such as internal adiabatic partitions.
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Figure 8.2.3. High-pressure pressure--temperature phase diagram of H,O.8-24 The roman numerals designate seven forms of ice.

8.2.4. Based on data in Refs. [51], Table 3.5, and [141].

line, where it terminates at the boundary with a one-phase area, gives the molar volume in that phase in the two-phase
system. For an example of a tie line, see Fig. 8.2.8 on page 175.

The triple line on the pressure—volume diagram represents the range of values of V /n in which three phases (solid,
liquid, and gas) can coexist at equilibrium.®23 A three-phase one-component system is invariant (F = 3 —3 =0); there
is only one temperature (the triple-point temperature 7y,) and one pressure (the triple-point pressure pyp) at which the
three phases can coexist. The values of Ti, and py, are unique to each substance, and are shown by the position of the
triple point on the pressure—temperature phase diagram. The molar volumes in the three coexisting phases are given by
the values of V /n at the three points on the pressure—volume diagram where the triple line touches a one-phase area.
These points are at the two ends and an intermediate position of the triple line. Ifthe system point is at either end of
the triple line, only the one phase of corresponding molar volume at temperature 7, and pressure py, can be present.
When the system point is on the triple line anywhere between the two ends, either two or three phases can be present.
If the system point is at the position on the triple line corresponding to the phase of intermediate molar volume, there
might be only that one phase present.

At high pressures, a substance may have additional triple points for two solid phases and the liquid, or for three
solid phases. This is illustrated by the pressure—temperature phase diagram of H,O in Fig. 8.2.3 on page 171, which
extends to pressures up to 30kbar. (On this scale, the liquid—gas coexistence curve lies too close to the horizontal axis
to be visible.) The diagram shows seven different solid phases of H,O differing in crystal structure and designated ice
I, ice II, and so on. Ice I is the ordinary form of ice, stable below 2bar. On the diagram are four triple points for two
solids and the liquid and three triple points for three solids. Each triple point is invariant. Note how H,O can exist as
solid ice VI or ice VII above its standard melting point of 273 K if the pressure is high enough (“hot ice”).

8.2.2 Two-phase equilibrium

A system containing two phases of a pure substance in equilibrium is univariant. Both phases have the same values
of T and of p, but these values are not independent because of the requirement that the phases have equal chemical
potentials. We may vary only one intensive variable of a pure substance (such as T or p) independently while two
phases coexist in equilibrium.

8.2.3. Helium is the only substance lacking a solid-liquid—gas triple line. When a system containing the coexisting liquid and gas of *He is
cooled to 2.17K, a triple point is reached in which the third phase is a liquid called He-II, which has the unique property of superfluidity. It is only
at high pressures (10bar or greater) that solid helium can exist.
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bath

Figure 8.2.4. An isoteniscope. The liquid to be investigated is placed in the vessel and U-tube, as indicated by shading, and maintained
at a fixed temperature in the bath. The pressure in the side tube is reduced until the liquid boils gently and its vapor sweeps out the air.
The pressure is adjusted until the liquid level is the same in both limbs of the U-tube; the vapor pressure of the liquid is then equal to the

pressure in the side tube, which can be measured with a manometer.

At a given temperature, the pressure at which solid and gas or liquid and gas are in equilibrium is called the vapor
pressure or saturation vapor pressure of the solid or liquid.®>> The vapor pressure of a solid is sometimes called
the sublimation pressure. We may measure the vapor pressure of a liquid at a fixed temperature with a simple device
called an isoteniscope (Fig. 8.2.4 on page 172).

At a given pressure, the melting point or freezing point is the temperature at which solid and liquid are in equi-
librium, the boiling point or saturation temperature is the temperature at which liquid and gas are in equilibrium,
and the sublimation temperature or sublimation point is the temperature at which solid and gas are in equilibrium.

The relation between temperature and pressure in a system with two phases in equilibrium is shown by the coex-
istence curve separating the two one-phase areas on the pressure—temperature diagram (see Fig. 8.2.5 on page 172).

Consider the liquid—gas curve. If we think of T as the independent variable, the curve is a vapor-pressure curve
showing how the vapor pressure of the liquid varies with temperature. If, however, p is the independent variable, then
the curve is a boiling-point curve showing the dependence of the boiling point on pressure.

The normal melting point or boiling point refers to a pressure of one atmosphere, and the standard melting point or
boiling point refers to the standard pressure. Thus, the normal boiling point of water (99.97 °C) is the boiling point at
1 atm; this temperature is also known as the steam point. The standard boiling point of water (99.61 °C) is the boiling
point at the slightly lower pressure of 1 bar.

1.2
1.0 - ¢ <— standard standard — -
melting point boiling point
0.8 - -
s 1 g
g
2 0.6 ]
S8
0.4 - b
0.2 b
triple point
0 1 |
250 300 350 400

T/K

Figure 8.2.5. Pressure--temperature phase diagram of H>O. (Based on data in Ref. [134].)

8.2.5. In a system of more than one substance, vapor pressure can refer to the partial pressure of a substance in a gas mixture equilibrated with
a solid or liquid of that substance. The effect of total pressure on vapor pressure will be discussed in Sec. 12.8.1. This book refers to the saturation
vapor pressure of a liquid when it is necessary to indicate that it is the pure liquid and pure gas phases that are in equilibrium at the same pressure.
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Figure 8.2.6. Glass bulb filled with CO, at a value of V /n close to the critical value, viewed at four different temperatures. The three
balls have densities less than, approximately equal to, and greater than the critical density.52-¢

(a) Supercritical fluid at a temperature above the critical temperature.

(b) Intense opalescence just above the critical temperature.

(c) Meniscus formation slightly below the critical temperature; liquid and gas of nearly the same density.

(d) Temperature well below the critical temperature; liquid and gas of greatly different densities.

8.2.6. Ref. [163].

Coexistence curves will be discussed further in Sec. 8.4.

8.2.3 The critical point

Every substance has a certain temperature, the critical temperature, above which only one fluid phase can exist at
any volume and pressure (Sec. 2.2.3). The critical point is the point on a phase diagram corresponding to liquid—gas
coexistence at the critical temperature, and the critical pressure is the pressure at this point.

To observe the critical point of a substance experimentally, we can evacuate a glass vessel, introduce an amount of
the substance such that V' /n is approximately equal to the molar volume at the critical point, seal the vessel, and raise
the temperature above the critical temperature. The vessel now contains a single fluid phase. When the substance is
slowly cooled to a temperature slightly above the critical temperature, it exhibits a cloudy appearance, a phenomenon
called critical opalescence (Fig. 8.2.6 on page 173).

The opalescence is the scattering of light caused by large local density fluctuations. At the critical temperature, a
meniscus forms between liquid and gas phases of practically the same density. With further cooling, the density of the
liquid increases and the density of the gas decreases.

At temperatures above the critical temperature and pressures above the critical pressure, the one existing fluid
phase is called a supercritical fluid. Thus, a supercritical fluid of a pure substance is a fluid that does not undergo a
phase transition to a different fluid phase when we change the pressure at constant temperature or change the temper-
ature at constant pressure. 327

8.2.7. If, however, we increase p at constant 7', the supercritical fluid will change to a solid. In the phase diagram of H»O, the coexistence
curve for ice VII and liquid shown in Fig. 8.2.3 extends to a higher temperature than the critical temperature of 647 K. Thus, supercritical water
can be converted to ice VII by isothermal compression.
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Figure 8.2.7. Densities of coexisting gas and liquid phases close to the critical point as functions of temperature for (a) CO,;528 (b)
SFe.829 Experimental gas densities are shown by open squares and experimental liquid densities by open triangles. The mean density at
each experimental temperature is shown by an open circle. The open diamond is at the critical temperature and critical density.

8.2.8. Based on data in Ref. [124].
8.2.9. Data of Ref. [138], Table VII.

A fluid in the supercritical region can have a density comparable to that of the liquid, and can be more compressible
than the liquid. Under supercritical conditions, a substance is often an excellent solvent for solids and liquids. By
varying the pressure or temperature, the solvating power can be changed; by reducing the pressure isothermally, the
substance can be easily removed as a gas from dissolved solutes. These properties make supercritical fluids useful for
chromatography and solvent extraction.

The critical temperature of a substance can be measured quite accurately by observing the appearance or disap-
pearance of a liquid—gas meniscus, and the critical pressure can be measured at this temperature with a high-pressure
manometer. To evaluate the density at the critical point, it is best to extrapolate the mean density of the coexisting
liquid and gas phases, (p'+ p®) /2, to the critical temperature as illustrated in Fig. 8.2.7 on page 174.

The observation that the mean density closely approximates a linear function of temperature, as shown in the
figure, is known as the law of rectilinear diameters, or the law of Cailletet and Matthias. This law is an approxima-
tion, as can be seen by the small deviation of the mean density of SFg from a linear relation very close to the critical
point in Fig. 8.2.7(b). This failure of the law of rectilinear diameters is predicted by recent theoretical treatments. 3210

8.2.4 The lever rule

Consider a single-substance system whose system point is in a two-phase area of a pressure—volume phase diagram.
How can we determine the amounts in the two phases?

As an example, let the system contain a fixed amount 7z of a pure substance divided into liquid and gas phases, at
a temperature and pressure at which these phases can coexist in equilibrium. When heat is transferred into the system
at this 7" and p, some of the liquid vaporizes by a liquid—gas phase transition and V increases; withdrawal of heat
at this 7" and p causes gas to condense and V to decrease. The molar volumes and other intensive properties of the
individual liquid and gas phases remain constant during these changes at constant 7 and p. On the pressure—volume

8.2.10. Refs. [178] and [10].
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V/n

Figure 8.2.8. Tie line (dashed) at constant 7" and p in the liquid—gas area of a pressure—volume phase diagram. Points A and B are at the
ends of the tie line, and point S is a system point on the tie line. L' and L# are the lengths AS and SB, respectively.

phase diagram of Fig. 8.2.8 on page 175, the volume changes correspond to movement of the system point to the right
or left along the tie line AB.

When enough heat is transferred into the system to vaporize all of the liquid at the given T and p, the system point
moves to point B at the right end of the tie line. V /n at this point must be the same as the molar volume of the gas,
V&, We can see this because the system point could have moved from within the one-phase gas area to this position
on the boundary without undergoing a phase transition.

When, on the other hand, enough heat is transferred out of the system to condense all of the gas, the system point
moves to point A at the left end of the tie line. V /n at this point is the molar volume of the liquid, V..

When the system point is at position S on the tie line, both liquid and gas are present. Their amounts must be such
that the total volume is the sum of the volumes of the individual phases, and the total amount is the sum of the amounts
in the two phases:

V=V+ve=n'V]+nev§ (8.2.1)
n=n'+nt (8.2.2)

The value of V /n at the system point is then given by the equation

V_n'Va+ntVa

- S (8.2.3)
which can be rearranged to
nl(V,L—X) =ng(X-v,§) (8.2.4)
n n

The quantities V..~V /n and V /n— V% are the lengths L' and L&, respectively, defined in the figure and measured in
units of V /n. This gives us the lever rule for liquid—gas equilibrium:8-21!

(8.2.5)
(coexisting liquid and gas
phases of a pure substance)

n'L'=n®L® or Z_?:LL;
In Fig. 8.2.8 the system point S is positioned on the tie line two thirds of the way from the left end, making length L'
twice as long as L&. The lever rule then gives the ratio of amounts: n8 /n'=L'/ L8 =2. One-third of the total amount is
liquid and two-thirds is gas.

We cannot apply the lever rule to a point on the triple line, because we need more than the value of V/n to
determine the relative amounts present in three phases.

We can derive a more general form of the lever rule that will be needed in Chap. 13 for phase dia-
grams of multicomponent systems. This general form can be applied to any two-phase area of a two-

8.2.11. The relation is called the lever rule by analogy to a stationary mechanical lever, each end of which has the same value of the product
of applied force and distance from the fulcrum.
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Figure 8.2.9. Isotherms for the fluid phases of H,0.8212 The open circle indicates the critical point, the dashed curve is the critical

isotherm at 373.95 °C, and the dotted curve encloses the two-phase area of the pressure—volume phase diagram. The triple line lies too
close to the bottom of the diagram to be visible on this scale.

8.2.12. Based on data in Ref. [134].

dimensional phase diagram in which a tie-line construction is valid, with the position of the system
point along the tie line given by the variable
def ¢

Fe e (8.2.6)

where a and b are extensive state functions. (In the pressure--volume phase diagram of Fig. 8.2.8, these
functions are a=V and b =n and the system point position is given by F' =V /n.) We repeat the steps of
the derivation above, labeling the two phases by superscripts « and 8 instead of / and g. The relation
corresponding to Eq. 8.2.4 is

b F“—F)=bP(F-FP) (8.2.7)

If L% and LP are lengths measured along the tie line from the system point to the ends of the tie line at
single phases a and f3, respectively, Eq. 8.2.7 is equivalent to the general lever rule

pP L

ara_ BB - =
bL*=DbPL or b7 = 7P

(8.2.8)

8.2.5 Volume properties

Figure 8.2.9 on page 176 is a pressure—volume phase diagram for H,O. On the diagram are drawn isotherms (curves
of constant 7'). These isotherms define the shape of the three-dimensional p—(V /n)-T surface. The area containing
the horizontal isotherm segments is the two-phase area for coexisting liquid and gas phases. The boundary of this area
is defined by the dotted curve drawn through the ends of the horizontal segments. The one-phase liquid area lies to
the left of this curve, the one-phase gas area lies to the right, and the critical point lies at the top.
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Figure 8.2.10. Isobars for the fluid phases of HyO.5-2:13 The open circle indicates the critical point, the dashed curve is the critical isobar
at 220.64 bar, and the dotted curve encloses the two-phase area of the temperature—volume phase diagram.
Solid curves: a, p=200bar; b, p=210bar; ¢, p =230bar; d, p =240bar.

8.2.13. Based on data in Ref. [134].

The diagram contains the information needed to evaluate the molar volume at any temperature and pressure in the
one-phase region and the derivatives of the molar volume with respect to temperature and pressure. At a system point
in the one-phase region, the slope of the isotherm passing through the point is the partial derivative (0 p/d Vi) 7. Since
the isothermal compressibility is given by x7=—-(1/Vy) (0 Vin/ 0 p)r, we have

1
Vi x (slope of isotherm)

Kr= (8.2.9)
We see from Fig. 8.2.9 that the slopes of the isotherms are large and negative in the liquid region, smaller and neg-
ative in the gas and supercritical fluid regions, and approach zero at the critical point. Accordingly, the isothermal
compressibility of the gas and the supercritical fluid is much greater than that of the liquid, approaching infinity at the
critical point. The critical opalescence seen in Fig. 8.2.6 is caused by local density fluctuations, which are large when
icr is large.

Figure 8.2.10 on page 177 shows isobars for H,O instead of isotherms. At a system point in the one-phase region,
the slope of the isobar passing through the point is the partial derivative (07 /0 Vy,),. The cubic expansion coefficient
a isequal to (1/Vy)(0Vn/03T),, so we have

1
@= Vin x (slope of isobar)

(8.2.10)

The figure shows that the slopes of the isobars are large and positive in the liquid region, smaller and negative in the
gas and supercritical fluid regions, and approach zero at the critical point. Thus the gas and the supercritical fluid
have much larger cubic expansion coefficients than the liquid. The value of & approaches infinity at the critical point,
meaning that in the critical region the density distribution is greatly affected by temperature gradients. This may
account for the low position of the middle ball in Fig. 8.2.6(b).

8.3 Phase Transitions

Recall (Sec. 2.2.2) that an equilibrium phase transition of a pure substance is a process in which some or all of the
substance is transferred from one coexisting phase to another at constant temperature and pressure.
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178 PHASE TRANSITIONS AND EQUILIBRIA OF PURE SUBSTANCES

8.3.1 Molar transition quantities

The quantity Ay,, H is the molar enthalpy change for the reversible process in which liquid changes to gas at a
temperature and pressure at which the two phases coexist at equilibrium. This quantity is called the molar enthalpy
of vaporization.®*>! Since the pressure is constant during the process, Ay, H is equal to the heat per amount of
vaporization (Eq. 5.3.8). Hence, Ay, H is also called the molar heat of vaporization.

The first edition of this book used the notation A,, Hpp, with subscript m, in order to make it clear that
it refers to a molar enthalpy of vaporization. The most recent edition of the [UPAC Green Book®32
recommends that Aj, be interpreted as an operator symbol: A, =9 /0 &p, where “p” is the abbreviation
for a process at constant 7" and p (in this case “vap”) and &}, is its advancement. Thus A,, H is the same

as (0 H /0 &yap)T,p Where &£y, is the amount of liquid changed to gas.
Here is a list of symbols for the molar enthalpy changes of various equilibrium phase transitions:

AyapH molar enthalpy of vaporization (liquid—gas)

AgpH molar enthalpy of sublimation (solid—gas)

AqsH molar enthalpy of fusion (solid—liquid)

AysH molar enthalpy of a transition between any two phases in general

Molar enthalpies of vaporization, sublimation, and fusion are positive. The reverse processes of condensation
(gas—liquid), condensation or deposition (gas—solid), and freezing (liquid—solid) have negative enthalpy changes.

The subscripts in the list above are also used for other molar transition quantities. Thus, there is the molar entropy
of vaporization A, S, the molar internal energy of sublimation Ay, U, and so on.

A molar transition quantity of a pure substance is the change of an extensive property divided by the amount
transferred between the phases. For example, when an amount # in a liquid phase is allowed to vaporize to gas at
constant 7 and p, the enthalpy change is A H = n HS —n H}, and the molar enthalpy of vaporization is

_AH

8.3.1
AvpH=——==H}~Hi, (8.3.1)

(pure substance)

In other words, A,,, H is the enthalpy change per amount vaporized and is also the difference between the molar
enthalpies of the two phases.

A molar property of a phase, being intensive, usually depends on two independent intensive variables such as T
and p. Despite the fact that A, H is the difference of the two molar properties H$ and HL,, its value depends on only
one intensive variable, because the two phases are in transfer equilibrium and the system is univariant. Thus, we may
treat A, H as a function of T only. The same is true of any other molar transition quantity.

The molar Gibbs energy of an equilibrium phase transition, Ay G, is a special case. For the phase transition o —f3,
we may write an equation analogous to Eq. 8.3.1 and equate the molar Gibbs energy in each phase to a chemical
potential (see Eq. 7.8.1):

—P_cu— (8.3.2)
A G=GCn=Cn=p"-p (pure substance)
But the transition is between two phases at equilibrium, requiring both phases to have the same chemical potential:
1P — u*=0. Therefore, the molar Gibbs energy of any equilibrium phase transition is zero:

(8.3.3)

ArsG=0 (pure substance)

8.3.1. Because Ay,pH is an enthalpy change per amount of vaporization, it would be more accurate to call it the “molar enthalpy change of
vaporization.”

8.3.2. Ref. [36], p. 58.
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8.3 PHASE TRANSITIONS 179

Since the Gibbs energy is defined by G=H —T'S, in phase a we have G,=G“/n“=Hg—TSy. Similarly, in phase 8
we have Gi:Hg— TSET When we substitute these expressions in Ay G = G?n— Gq (Eq. 8.3.2) and set T equal to the
transition temperature T;s, we obtain

AuwsG = (HE—HE) - T (S5 -5%)
= AgeH = TisAy S (8.3.4)

Then, by setting A G equal to zero, we find the molar entropy and molar enthalpy of the equilibrium phase transition

are related by
AuwsH (8.3.5)
T (pure substance)

Ay S=

where Ay S and Ay H are evaluated at the transition temperature Tis.

We may obtain Eq. 8.3.5 directly from the second law. With the phases in equilibrium, the transition
process is reversible. The second law gives A S =¢q/Tis= A H / Tyys. Dividing by the amount transferred
between the phases gives Eq. 8.3.5.

8.3.2 Calorimetric measurement of transition enthalpies

The most precise measurement of the molar enthalpy of an equilibrium phase transition uses electrical work. A known
quantity of electrical work is performed on a system containing coexisting phases, in a constant-pressure adiabatic
calorimeter, and the resulting amount of substance transferred between the phases is measured. The first law shows
that the electrical work 72 Ry A t equals the heat that would be needed to cause the same change of state. This heat, at
constant p, is the enthalpy change of the process.

The method is similar to that used to measure the heat capacity of a phase at constant pressure (Sec. 7.3.2), except
that now the temperature remains constant and there is no need to make a correction for the heat capacity of the
calorimeter.

8.3.3 Standard molar transition quantities

The standard molar enthalpy of vaporization, Ay,, H°, is the enthalpy change when pure liquid in its standard state at
a specified temperature changes to gas in its standard state at the same temperature, divided by the amount changed.

Note that the initial state of this process is a real one (the pure liquid at pressure p°), but the final state (the gas
behaving ideally at pressure p°) is hypothetical. The liquid and gas are not necessarily in equilibrium with one another
at pressure p° and the temperature of interest, and we cannot evaluate Ay, H° from a calorimetric measurement with
electrical work without further corrections. The same difficulty applies to the evaluation of Agy, H®. In contrast,
AvapH and Agy, H (without the ° symbol), as well as Ags H°, all refer to reversible transitions between two real phases
coexisting in equilibrium.

Let X represent one of the thermodynamic potentials or the entropy of a phase. The standard molar transition
quantities Ay,pX°=Xp (g) —Xm(l) and Agp X°=Xp, (g) —Xm(s) are functions only of 7. To evaluate Ay X° or Agy, X°
at a given temperature, we must calculate the change of X, for a path that connects the standard state of the liquid or
solid with that of the gas. The simplest choice of path is one of constant temperature 7 with the following steps:

1. Isothermal change of the pressure of the liquid or solid, starting with the standard state at pressure p° and
ending with the pressure equal to the vapor pressure py,, of the condensed phase at temperature 7. The value
of A Xy, in this step can be obtained from an expression in the second column of Table 7.6.1, or from an
approximation in the last column of the table.

2. Reversible vaporization or sublimation to form the real gas at T and py,,. The change of X, in this step is
either Ayap X or Agyp X, which can be evaluated experimentally.

3. Isothermal change of the real gas at pressure pyq, to the hypothetical ideal gas at pressure p°. Table 7.9.1 has
the relevant formulas relating molar quantities of a real gas to the corresponding standard molar quantities.
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180 PHASE TRANSITIONS AND EQUILIBRIA OF PURE SUBSTANCES

Figure 8.4.1. Top: chemical potential surfaces of the liquid and gas phases of H>O; the two phases are at equilibrium along the intersection
(heavy curve). (The vertical scale for p has an arbitrary zero.) Bottom: projection of the intersection onto the p--T plane, generating the
coexistence curve. (Based on data in Ref. [75].)

The sum of A X, for these three steps is the desired quantity Ay,, X° or Ag, X°.

8.4 Coexistence Curves

A coexistence curve on a pressure—temperature phase diagram shows the conditions under which two phases can
coexist in equilibrium, as explained in Sec. 8.2.2.

8.4.1 Chemical potential surfaces

We may treat the chemical potential y of a pure substance in a single phase as a function of the independent variables
T and p, and represent the function by a three-dimensional surface. Since the condition for equilibrium between two
phases of a pure substance is that both phases have the same 7', p, and pu, equilibrium in a two-phase system can exist
only along the intersection of the surfaces of the two phases as illustrated in Fig. 8.4.1 on page 180.

The shape of the surface for each phase is determined by the partial derivatives of the chemical potential with
respect to temperature and pressure as given by Eqs. 7.8.3 and 7.8.4:

Let us explore how p varies with T at constant p for the different physical states of a substance. The stable phase at
each temperature is the one of lowest p, since transfer of a substance from a higher to a lower y at constant 7" and p
is spontaneous.

From the relation (0 1/ 07T),=-Sy,, we see that at constant p the slope of u versus T is negative since molar
entropy is always positive. Furthermore, the magnitude of the slope increases on going from solid to liquid and from
liquid to gas, because the molar entropies of sublimation and vaporization are positive. This difference in slope is
illustrated by the curves for H,O in Fig. 8.4.2(a) on page 181.
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Figure 8.4.2. Phase stability of HyO.84!

(a) Chemical potentials of different physical states as functions of temperature. (The scale for p has an arbitrary zero.) Chemical
potentials of the gas are shown at 0.03 bar and 0.003 bar. The effect of pressure on the curves for the solid and liquid is negligible. At
p =0.03bar, solid and liquid coexist at 7' =273.16 K (point A) and liquid and gas coexist at 7' =297.23K (point B). At p =0.003 bar, solid
and gas coexist at T =264.77 K (point C).

(b) Pressure--temperature phase diagram with points corresponding to those in (a).

8.4.1. Based on data in Refs. [75] and [95].

The triple-point pressure of H,O is 0.0062 bar. At a pressure of 0.03 bar, greater than the triple-point pressure, the
curves for solid and liquid intersect at a melting point (point A) and the curves for liquid and gas intersect at a boiling
point (point B).

From (0 ¢/ 0 p)r = Vi, we see that a pressure reduction at constant temperature lowers the chemical potential of
a phase. The result of a pressure reduction from 0.03 bar to 0.003 bar (below the triple-point pressure of H,O) is a
downward shift of each of the curves of Fig. 8.4.2(a) by a distance proportional to the molar volume of the phase. The
shifts of the solid and liquid curves are too small to see (A y is only —=0.002kJ-mol~!). Because the gas has a large
molar volume, the gas curve shifts substantially to a position where it intersects with the solid curve at a sublimation
point (point C). At 0.003 bar, or any other pressure below the triple-point pressure, only a solid—gas equilibrium
is possible for HO. The liquid phase is not stable at any pressure below the triple-point pressure, as shown by the
pressure—temperature phase diagram of H,O in Fig. 8.4.2(b).

8.4.2 The Clapeyron equation

If we start with two coexisting phases, a and 3, of a pure substance and change the temperature of both phases equally
without changing the pressure, the phases will no longer be in equilibrium, because their chemical potentials change
unequally. In order for the phases to remain in equilibrium during the temperature change d7" of both phases, there
must be a certain simultaneous change dp in the pressure of both phases. The changes d7 and dp must be such that
the chemical potentials of both phases change equally so as to remain equal to one another: du® =d zf.

The infinitesimal change of p in a phase is given by dp =—-S,dT + V,dp (Eq. 7.8.2). Thus, the two phases remain
in equilibrium if d7 and dp satisfy the relation

-S&dT +Vddp=-SPdr + vldp (8.4.2)
which we rearrange to
dp SP_sg
&L - Sm=om (8.4.3)
T vo-va
or
AT~ AV (pure substance)
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182 PHASE TRANSITIONS AND EQUILIBRIA OF PURE SUBSTANCES

Equation 8.4.4 is one form of the Clapeyron equation, which contains no approximations. We find an alternative
form by substituting Ay S = Ay H / Tirs (Eq. 8.3.5):

dp  AwH (8.4.5)

dT~ TAyV (pure substance)

Equations 8.4.4 and 8.4.5 give the slope of the coexistence curve, dp/dT, as a function of quantities that can be mea-
sured. For the sublimation and vaporization processes, both Ay H and AV are positive. Therefore, according to Eq.
8.4.5, the solid—gas and liquid—gas coexistence curves have positive slopes. For the fusion process, however, AgsH
is positive, but Ag, V may be positive or negative depending on the substance, so that the slope of the solid-liquid
coexistence curve may be either positive or negative. The absolute value of Ay V is small, causing the solid—liquid
coexistence curve to be relatively steep; see Fig. 8.4.2(b) for an example.

Most substances expand on melting, making the slope of the solid--liquid coexistence curve positive.

This is true of carbon dioxide, although in Fig. 8.2.1(c) the curve is so steep that it is difficult to see
the slope is positive. Exceptions at ordinary pressures, substances that contract on melting, are H,O,
rubidium nitrate, and the elements antimony, bismuth, and gallium.

The phase diagram for H,O in Fig. 8.2.3 on page 171 clearly shows that the coexistence curve for ice I
and liquid has a negative slope due to ordinary ice being less dense than liquid water. The high-pressure
forms of ice are more dense than the liquid, causing the slopes of the other solid--liquid coexistence
curves to be positive. The ice VII--ice VIII coexistence curve is vertical, because these two forms of
ice have identical crystal structures, except for the orientations of the H,O molecule; therefore, within
experimental uncertainty, the two forms have equal molar volumes.

We may rearrange Eq. 8.4.5 to give the variation of p with T along the coexistence curve:

_AwH dT
P=ReV' T

(8.4.6)

Consider the transition from solid to liquid (fusion). Because of the fact that the cubic expansion coefficient and
isothermal compressibility of a condensed phase are relatively small, Ag V is approximately constant for small
changes of T and p. If AgsH is also practically constant, integration of Eq. 8.4.6 yields the relation

A fus H T2

pP2—pi1 zmlnﬁ (8.4.7)

or
B Ans V (p2—p1) (8.4.8)
L=Tiexp AwH (pure substance)

from which we may estimate the dependence of the melting point on pressure.

8.4.3 The Clausius—Clapeyron equation

When the gas phase of a substance coexists in equilibrium with the liquid or solid phase, and provided T and p are
not close to the critical point, the molar volume of the gas is much greater than that of the condensed phase. Thus, we
may write for the processes of vaporization and sublimation

AvpV=VE-Vh=VE  AuwV=V5-Vs=zV§E (8.4.9)
The further approximation that the gas behaves as an ideal gas, V.5~ RT / p, then changes Eq. 8.4.5 to

ip phnH (8.4.10)

T R (pure substance,

vaporization or sublimation)

Equation 8.4.10 is the Clausius--Clapeyron equation. It gives an approximate expression for the slope of a liquid—gas
or solid—gas coexistence curve. The expression is not valid for coexisting solid and liquid phases, or for coexisting
liquid and gas phases close to the critical point.
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At the temperature and pressure of the triple point, it is possible to carry out all three equilibrium phase transitions
of fusion, vaporization, and sublimation. When fusion is followed by vaporization, the net change is sublimation.
Therefore, the molar transition enthalpies at the triple point are related by

AgsH + AvapH: Asn H (8.4.11)

Since all three of these transition enthalpies are positive, it follows that Agy, H is greater than Ay,, H at the triple point.
Therefore, according to Eq. 8.4.10, the slope of the solid—gas coexistence curve at the triple point is slightly greater
than the slope of the liquid—gas coexistence curve.

We divide both sides of Eq. 8.4.10 by p° and rearrange to the form

d ° ArsH dT
g?//lﬁ ) . tR = (8.4.12)

Then, using the mathematical identitiesd(p/p°)/(p/p°) =dln(p/p°) and AT/ T?=-d(1/T), we can write Eq. 8.4.12
in three alternative forms:

8.4.13
din (p/p°) - AuwsH ( )

T ~ 7 (pure substance,

vaporization or sublimation)

Awe H (8.4.14)
din(p/p°) = —HTsd(l /T) (pure substance,

vaporization or sublimation)

8.4.15
din (p/p°) - AwsH ( )

d(1/T) = R (pure substance,

vaporization or sublimation)

Equation 8.4.15 shows that the curve of a plot of In (p/p°) versus 1 /T (where p is the vapor pressure of a pure liquid
or solid) has a slope at each temperature equal, usually to a high degree of accuracy, to —=Ay,, H /R or —Ag, H /R at that
temperature. This kind of plot provides an alternative to calorimetry for evaluating molar enthalpies of vaporization
and sublimation.

If we use the recommended standard pressure of 1 bar, the ratio p/p° appearing in these equations
becomes p/bar. Thatis, p/p° is simply the numerical value of p when p is expressed in bars. For the
purpose of using Eq. 8.4.15 to evaluate Ay H, we can replace p° by any convenient value. Thus, the
curves of plots of In (p/bar) versus 1/7, In(p/Pa) versus 1 /T, and In (p/Torr) versus 1/T using the
same temperature and pressure data all have the same slope (but different intercepts) and yield the same
value of Ay H.

If we assume A,,, H or Ay, H is essentially constant in a temperature range, we may integrate Eq. 8.4.14 from an
initial to a final state along the coexistence curve to obtain

(8.4.16)
b2 _ AuwsH (i_i) (pure substance,

In=—=
P R LT vaporization or sublimation)

Equation 8.4.16 allows us to estimate any one of the quantities pi, p», T1, T2, or AysH, given values of the other four.
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BIOGRAPHICAL SKETCH
BENOIT PAUL EMILE CLAPEYRON (1799-1864)

Clapeyron was a French civil and railroad engineer who made
important contributions to thermodynamic theory. He was born
in Paris, the son of a merchant.

He graduated from the Ecole Polytechnique in 1818, four
years after Sadi Carnot's graduation from the same school, and
then trained as an engineer at the Ecole de Mines. At this time, the
Russian czar asked the French government for engineers to help
create a program of civil and military engineering. Clapeyron and
his classmate Gabriel Lamé were offered this assignment. They
lived in Russia for ten years, teaching pure and applied math-
ematics in Saint Petersburg and jointly publishing engineering
and mathematical papers. In 1831 they returned to France; their
liberal political views and the oppression of foreigners by the
new czar, Nicholas I, made it impossible for them to remain in
Russia.

Back in France, Clapeyron became involved in the construc-
tion of the first French passenger railroads and in the design of
steam locomotives and metal bridges. He was married with a
daughter.

In a paper published in 1834 in the journal of the Ecole
Polytechnique, Clapeyron brought attention to the work of Sadi
Carnot (page 91), who had died two years before:$2

Among studies which have appeared on the
theory of heat I will mention finally a work by S.
Carnot, published in 1824, with the title Reflec-
tions on the Motive Power of Fire. The idea
which serves as a basis of his researches seems
to me to be both fertile and beyond question;
his demonstrations are founded on the absurdity

8.4.2. Ref. [30].

of the possibility of creating motive power [i.e.,
work] or heat out of nothing. ... This new method
of demonstration seems to me worthy of the atten-
tion of theoreticians; it seems to me to be free
of all objection ...

Clapeyron's paper used indicator diagrams and calculus for
a rigorous proof of Carnot's conclusion that the efficiency of a
reversible heat engine depends only on the temperatures of the
hot and cold heat reservoirs. However, it retained the erroneous
caloric theory of heat. It was not until the appearance of English
and German translations of this paper that Clapeyron's analysis
enabled Kelvin to define a thermodynamic temperature scale and
Clausius to introduce entropy and write the mathematical state-
ment of the second law.

Clapeyron's 1834 paper also derived an expression for the
temperature dependence of the vapor pressure of a liquid equiv-
alent to what is now called the Clapeyron equation (Eq. 8.4.5).
The paper used a reversible cycle with vaporization at one tem-
perature followed by condensation at an infinitesimally-lower
temperature and pressure, and equated the efficiency of this cycle
to that of a gas between the same two temperatures. Although
the thermodynamic temperature 7 does not appear as such, it is
represented by a temperature-dependent function whose relation
to the Celsius scale had to be determined experimentally.®#3

Beginning in 1844, Clapeyron taught the course on steam
engines at the Ecole Nationale des Ponts et Chaussées near Paris,
the oldest French engineering school. In this course, surpris-
ingly, he seldom mentioned his theory of heat engines based on
Carnot's work.>#* He eventually embraced the equivalence of
heat and work established by Joule's experiments.®+3

At the time of Clapeyron's death, the railroad entrepreneur
Emile Péreire wrote:346

We were together since 1832. I've never done
important business without consulting him, I've
never found a judgment more reliable and more
honest. His modesty was so great and his char-
acter so good that I never knew him to have an
enemy.

8.4.3. Ref. [185].
8.4.4. Ref. [98].
8.4.5. Ref. [87].
8.4.6. Ref. [87].
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8.5 Problems

Problem 8.5.1. Consider the system described in Sec. 8.1.5 containing a spherical liquid droplet of radius » surrounded by pure vapor. Starting
with Eq. 8.1.15, find an expression for the total differential of U. Then impose conditions of isolation and show that the equilibrium conditions
are T¢=T', y= 4!, and p'=p&+2y /r, where ¥ is the surface tension.
Problem 8.5.2. This problem concerns diethyl ether at 7 =298.15K. At this temperature, the standard molar entropy of the gas calculated
from spectroscopic data is S, (g) = 342.2J-K~!-mol~!. The saturation vapor pressure of the liquid at this temperature is 0.6691 bar, and
the molar enthalpy of vaporization is Ay, H =27.10 kJ-mol~!. The second virial coefficient of the gas at this temperature has the value
B=-1.227x10">m3-mol"!, and its variation with temperature is given by dB/dT =1.50x 10~ m3-K~!.mol~..

a) Use these data to calculate the standard molar entropy of liquid diethyl ether at 298.15 K. A small pressure change has a negligible

effect on the molar entropy of a liquid, so that it is a good approximation to equate Sy, (1) to Sy (1) at the saturation vapor pressure.

b) Calculate the standard molar entropy of vaporization and the standard molar enthalpy of vaporization of diethyl ether at 298.15K. It
is a good approximation to equate Hy, (1) to Hy, (1) at the saturation vapor pressure.

Problem 8.5.3. Explain why the chemical potential surfaces shown in Fig. 8.4.1 are concave downward; that is, why (0 /0 T), becomes
more negative with increasing 7" and (9 x /0 p)r becomes less positive with increasing p.

Problem 8.5.4. Potassium has a standard boiling point of 773 °C and a molar enthalpy of vaporization Ay,, H =84.9kJ -mol~!. Estimate the
saturation vapor pressure of liquid potassium at 400. °C.

Problem 8.5.5. Naphthalene has a melting point of 78.2 °C at 1 bar and 81.7 °C at 100bar. The molar volume change on melting is Ags V =
0.019cm?3-mol~!. Calculate the molar enthalpy of fusion to two significant figures.

Problem 8.5.6. The dependence of the vapor pressure of a liquid on temperature, over a limited temperature range, is often represented by the
Antoine equation, logio(p/Torr) =A—B/ (t+ C), where ¢ is the Celsius temperature and A, B, and C are constants determined by experiment.
A variation of this equation, using a natural logarithm and the thermodynamic temperature, is

In(p/bar) =a

"T+c

The vapor pressure of liquid benzene at temperatures close to 298 K is adequately represented by the preceding equation with the following
values of the constants:

a=9.25092  b=2771.233K  ¢=-53.262K
a) Find the standard boiling point of benzene.
b) Use the Clausius—Clapeyron equation to evaluate the molar enthalpy of vaporization of benzene at 298.15K.

Problem 8.5.7. At a pressure of one atmosphere, water and steam are in equilibrium at 99.97 °C (the normal boiling point of water). At this
pressure and temperature, the water density is 0.958 g-cm =, the steam density is 5.98 x 10™*g-cm~3, and the molar enthalpy of vaporization is
40.66kJ-mol .

a) Use the Clapeyron equation to calculate the slope dp /dT of the liquid--gas coexistence curve at this point.
b) Repeat the calculation using the Clausius--Clapeyron equation.
¢) Use your results to estimate the standard boiling point of water. (Note: The experimental value is 99.61 °C.)
Problem 8.5.8. At the standard pressure of 1 bar, liquid and gaseous H,O coexist in equilibrium at 372.76 K, the standard boiling point of water.

a) Do you expect the standard molar enthalpy of vaporization to have the same value as the molar enthalpy of vaporization at this
temperature? Explain.

b) The molar enthalpy of vaporization at 372.76K has the value Ayap H =40.67kJ -mol~!. Estimate the value of AyapH° at this temperature
with the help of Table 7.9.1 and the following data for the second virial coefficient of gaseous H>O at 372.76K:

B=-4.60x10"*m3mol~!  dB/dT =3.4x10"%m3K~!-mol™!

¢) Would you expect the values of Ag,sH and AgysH° to be equal at the standard freezing point of water? Explain.

Problem 8.5.9. The standard boiling point of H>O is 99.61 °C. The molar enthalpy of vaporization at this temperature is Ayap H = 40.67kJ-mol .
The molar heat capacity of the liquid at temperatures close to this value is given by

Com=a+b(t-c)
where ¢ is the Celsius temperature and the constants have the values
a=75941K 'mol~!  5=0.022] K 2mol~!  ¢=99.61°C
Suppose 100.00mol of liquid H»O is placed in a container maintained at a constant pressure of 1bar, and is carefully heated to a temperature
5.00 °C above the standard boiling point, resulting in an unstable phase of superheated water. If the container is enclosed with an adiabatic

boundary and the system subsequently changes spontaneously to an equilibrium state, what amount of water will vaporize? (Hint: The tem-
perature will drop to the standard boiling point, and the enthalpy change will be zero.)
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Chapter 9
Mixtures

A homogeneous mixture is a phase containing more than one substance. This chapter discusses composition variables
and partial molar quantities of mixtures in which no chemical reaction is occurring. The ideal mixture is defined.
Chemical potentials, activity coefficients, and activities of individual substances in both ideal and nonideal mixtures
are discussed.

Except for the use of fugacities to determine activity coefficients in condensed phases, a discussion of phase equi-
libria involving mixtures will be postponed to Chap. 13.

9.1 Composition Variables

A composition variable is an intensive property that indicates the relative amount of a particular species or substance
in a phase.

9.1.1 Species and substances

We sometimes need to make a distinction between a species and a substance. A species is any entity of definite
elemental composition and charge and can be described by a chemical formula, such as HO, H30", NaCl, or Na*. A
substance is a species that can be prepared in a pure state (e.g., N, and NaCl). Since we cannot prepare a macroscopic
amount of a single kind of ion by itself, a charged species such as H3O* or Na* is not a substance. Chap. 10 will
discuss the special features of mixtures containing charged species.

9.1.2 Mixtures in general
The mole fraction of species i is defined by

N def  p; or y def  p; 9.1.1)
i = i = =

2 i 2 i (P=1
where n; is the amount of species i and the sum is taken over all species in the mixture. The symbol x; is used for a
mixture in general, and y; is used when the mixture is a gas.

The mass fraction, or weight fraction, of species i is defined by

def m(i) M 9.1.2)

RTINS N (P=1)

where m (i) is the mass of species i and m is the total mass.
The concentration, or molarity, of species i in a mixture is defined by

def i 9.1.3)

7 (P=1)

The symbol M is often used to stand for units of mol-L™!, or moldm™3. Thus, a concentration of 0.5M is 0.5 moles
per liter, or 0.5 molar.

Concentration is sometimes called “amount concentration” or “molar concentration” to avoid confu-
sion with number concentration (the number of particles per unit volume). An alternative notation for
ca is [A]
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188 MIXTURES

A binary mixture is a mixture of two substances.

9.1.3 Solutions

A solution, strictly speaking, is a mixture in which one substance, the solvent, is treated in a special way. Each of the
other species comprising the mixture is then a solute. The solvent is denoted by A and the solute species by B, C, and
so on.”!'I Although in principle a solution can be a gas mixture, in this section we will consider only liquid and solid
solutions.

We can prepare a solution of varying composition by gradually mixing one or more solutes with the solvent so as
to continuously increase the solute mole fractions. During this mixing process, the physical state (liquid or solid) of
the solution remains the same as that of the pure solvent. When the sum of the solute mole fractions is small compared
to xa (i.e., xa is close to unity), the solution is called dilute. As the solute mole fractions increase, we say the solution
becomes more concentrated.

Mole fraction, mass fraction, and concentration can be used as composition variables for both solvent and solute,
just as they are for mixtures in general. A fourth composition variable, molality, is often used for a solute. The

molality of solute species B is defined by
def _np (9.1.4)
"B = m(A) (solution)
where m(A) =na My is the mass of solvent. The symbol m is sometimes used to stand for units of mol-kg‘l, although
this should be discouraged because m is also the symbol for meter. For example, a solute molality of 0.6m is 0.6 moles

of solute per kilogram of solvent, or 0.6 molal.

9.1.4 Binary solutions

We may write simplified equations for a binary solution of two substances, solvent A and solute B. Equations
9.1.1-9.1.4 become

_ nB (9.1.5)

B=Y A+1B (binary solution)

_ ngMp (9.1.6)
WB=Y AMa +ngMp (binary solution)
n _ npp 9.1.7)
By T naMa + ngMgy (binary solution)
_ nB (9.1.8)

MB=5 AM (binary solution)

The right sides of Eqs. 9.1.5-9.1.8 express the solute composition variables in terms of the amounts and molar masses
of the solvent and solute and the density p of the solution.

To be able to relate the values of these composition variables to one another, we solve each equation for ng and
divide by n4 to obtain an expression for the mole ratio ng/na:

from Eq. 9.1.5 Z—i =7 )_CiB (binary( gcﬁl'lgti)on)

from Eq. 9.1.6 Z—i = % (binafézgi&g())n)

from Eq. 9.1.7 Z—i = % (binargigi&tliz)n)

from Eq. 9.1.8 Z—i = Mamg (binargzzgi&tzi())n)
9.1.1. Some chemists denote the solvent by subscript 1 and use 2, 3, and so on for solutes.
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9.2 PARTIAL MOLAR QUANTITIES 189

These expressions for ng/na allow us to find one composition variable as a function of another. For example, to find
molality as a function of concentration, we equate the expressions for ng/na on the right sides of Eqs. 9.1.11 and
9.1.12 and solve for mp to obtain

CB

mp=————
B p—Mgcp

9.1.13)

A binary solution becomes more dilute as any of the solute composition variables becomes smaller. In the limit of
infinite dilution, the expressions for ng/ns become:

np -y
na B

= —-Wp

*
= —-cg=Vma-CB

9.1.14)
= Mu-mp (binary solution at
infinite dilution)

where a superscript asterisk (*) denotes a pure phase. We see that, in the limit of infinite dilution, the composition
variables xg, wg, ¢, and mp are proportional to one another. These expressions are also valid for solute B in a
multisolute solution in which each solute is very dilute; that is, in the limit x5 — 1.

The rule of thumb that the molarity and molality values of a dilute aqueous solution are approximately
equal is explained by the relation M cg/ pax = Mamp (from Eq. 9.1.14), or cg/ pix = mp, and the fact
that the density px of water is approximately 1kg-L=!. Hence, if the solvent is water and the solution
is dilute, the numerical value of cg expressed in mol-L™! is approximately equal to the numerical value
of mp expressed in mol-kg~'.

9.1.5 The composition of a mixture

We can describe the composition of a phase with the amounts of each species, or with any of the composition variables
defined earlier: mole fraction, mass fraction, concentration, or molality. If we use mole fractions or mass fractions to
describe the composition, we need the values for all but one of the species, since the sum of all fractions is unity.

Other composition variables are sometimes used, such as volume fraction, mole ratio, and mole percent. To
describe the composition of a gas mixture, partial pressures can be used (Sec. 9.3.1).

When the composition of a mixture is said to be fixed or constant during changes of temperature, pressure, or
volume, this means there is no change in the relative amounts or masses of the various species. A mixture of fixed
composition has fixed values of mole fractions, mass fractions, and molalities, but not necessarily of concentrations
and partial pressures. Concentrations will change if the volume changes, and partial pressures in a gas mixture will
change if the pressure changes.

9.2 Partial Molar Quantities

The symbol X;, where X is an extensive property of a homogeneous mixture and the subscript i identifies a constituent
species of the mixture, denotes the partial molar quantity of species i defined by

X, def QX 9.2.1)
N 1 (mixture)

This is the rate at which property X changes with the amount of species i added to the mixture as the temperature, the
pressure, and the amounts of all other species are kept constant. A partial molar quantity is an intensive state function.
Its value depends on the temperature, pressure, and composition of the mixture.
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(a) (b)
Figure 9.2.1. Addition of pure methanol (substance B) to a water--methanol mixture at constant 7" and p.

a) 40.75cm? (one mole) of methanol is placed in a narrow tube above a much greater volume of a mixture (shaded) of composition
xg=0.307. The dashed line indicates the level of the upper meniscus.

b) After the two liquid phases have mixed by diffusion, the volume of the mixture has increased by only 38.8cm?.

Keep in mind that as a practical matter, a macroscopic amount of a charged species (i.e., an ion) cannot be added
by itself to a phase because of the huge electric charge that would result. Thus if species i is charged, X; as defined by
Eq. 9.2.1 is a theoretical concept whose value cannot be determined experimentally.

An older notation for a partial molar quantity uses an overbar: X;. The notation X/ was suggested in
the first edition of the IUPAC Green Book,”>! but is not mentioned in later editions.

9.2.1 Partial molar volume

In order to gain insight into the significance of a partial molar quantity as defined by Eq. 9.2.1, let us first apply
the concept to the volume of an open single-phase system. Volume has the advantage for our example of being an
extensive property that is easily visualized. Let the system be a binary mixture of water (substance A) and methanol
(substance B), two liquids that mix in all proportions. The partial molar volume of the methanol, then, is the rate at
which the system volume changes with the amount of methanol added to the mixture at constant temperature and
pressure: Vg=(0V /0ng)1,p -

At 25°C and 1 bar, the molar volume of pure water is Viz o = 18.07 cm®-mol~! and that of pure methanol is V55 =
40.75 cm3-mol~!. If we mix 100.0cm? of water at 25 °C with 100.0cm? of methanol at 25 °C, we find the volume of
the resulting mixture at 25 °C is not the sum of the separate volumes, 200.0 cm?, but rather the slightly smaller value
193.1cm?.The difference is due to new intermolecular interactions in the mixture compared to the pure liquids.

Let us calculate the mole fraction composition of this mixture:

V& 100.0cm?
= ] o 1 2.2
na Vnikl,A 18.07 cm3-mol-! 5.53mo (9 )
Ve 100.0cm®
ng= Vm,B - 40.75 cm3-mol-! =2.45mol (923)
xp=— 2.45mol =0.307 024

“na+ng  5.53mol+2.45mol
Now suppose we prepare a large volume of a mixture of this composition (xg =0.307) and add an additional 40.75cm?
(one mole) of pure methanol, as shown in Fig. 9.2.1(a). If the initial volume of the mixture at 25 °C was 10,000.0cm?,
we find the volume of the new mixture at the same temperature is 10,038.8 cm?, an increase of 38.8 cm°—see Fig.
9.2.1(b). The amount of methanol added is not infinitesimal, but it is small enough compared to the amount of initial
mixture to cause very little change in the mixture composition: xp increases by only 0.5%. Treating the mixture as an
open system, we see that the addition of one mole of methanol to the system at constant 7', p, and n causes the system
volume to increase by 38.8cm?. To a good approximation, then, the partial molar volume of methanol in the mixture,
V= (0V/0ng)T,pny is given by AV /Ang=38.8cm>mol~".

The volume of the mixture to which we add the methanol does not matter as long as it is large. We would
have observed practically the same volume increase, 38.8 cm?, if we had mixed one mole of pure methanol with
100,000.0 cm? of the mixture instead of only 10,000.0 cm?.

9.2.1. Ref. [127], p. 44.
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9.2 PARTIAL MOLAR QUANTITIES 191

Thus, we may interpret the partial molar volume of B as the volume change per amount of B added at constant 7'
and p when B is mixed with such a large volume of mixture that the composition is not appreciably affected. We may
also interpret the partial molar volume as the volume change per amount when an infinitesimal amount is mixed with
a finite volume of mixture.

The partial molar volume of B is an intensive property that is a function of the composition of the mixture, as well
as of T and p. The limiting value of V3 as xp approaches 1 (pure B) is V;; 5, the molar volume of pure B. We can see
this by writing V =ngVp, g for pure B, giving us Vg(xgl) = (dng Vin g/ 01B)7,p.ns = Vim -

If the mixture is a binary mixture of A and B, and xp is small, we may treat the mixture as a dilute solution of
solvent A and solute B. As xp approaches O in this solution, V5 approaches a certain limiting value that is the volume
increase per amount of B mixed with a large amount of pure A. In the resulting mixture, each solute molecule is
surrounded only by solvent molecules. We denote this limiting value of Vg by V5°, the partial molar volume of solute
B at infinite dilution.

It is possible for a partial molar volume to be negative. Magnesium sulfate, in aqueous solutions
of molality less than 0.07 mol-kg™', has a negative partial molar volume. Physically, this means that
when a small amount of crystalline MgSO, dissolves at constant temperature in water, the liquid phase
contracts. This unusual behavior is due to strong attractive water--ion interactions.

9.2.2 The total differential of the volume in an open system

Consider an open single-phase system consisting of a mixture of nonreacting substances. How many independent
variables does this system have?

We can prepare the mixture with various amounts of each substance, and we are able to adjust the temperature and
pressure to whatever values we wish (within certain limits that prevent the formation of a second phase). Each choice
of temperature, pressure, and amounts results in a definite value of every other property, such as volume, density, and
mole fraction composition. Thus, an open single-phase system of C substances has 2 + C independent variables.®>2

For a binary mixture (C =2), the number of independent variables is four. We may choose these variables to be
T, p, na, and np, and write the total differential of V in the general form

oV oV
wo () are(@Y)
a T PsNANB ap T .,na,ng P
aVv (9.2.5)
* ( a na )T,p,nB dnA * ( a ng )T,p,nA dnB (blnaIy mixture)

We know the first two partial derivatives on the right side are given by®23

0 V) ( 0 V)
= =aV -— =—x7V 9.2.6
( or psnanp ap T,na.np ! ( )

We identify the last two partial derivatives on the right side of Eq. 9.2.5 as the partial molar volumes V, and V. Thus,
we may write the total differential of V for this open system in the compact form

9.2.7)

dV=aqVdT - KTVdp + Vadna + Vgdng (binary mixture)

If we compare this equation with the total differential of V for a one-component closed system, dV =a VdT -x7V dp
(Eq. 7.1.6), we see that an additional term is required for each constituent of the mixture to allow the system to be
open and the composition to vary.

9.2.2. C in this kind of system is actually the number of components. The number of components is usually the same as the number of
substances, but is less if certain constraints exist, such as reaction equilibrium or a fixed mixture composition. The general meaning of C will be
discussed in Sec. 13.1.

9.2.3. See Egs. 7.1.1 and 7.1.2, which are for closed systems.
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------

z N ¥ N
A mixture of B
A and B

Figure 9.2.2. Mixing of water (A) and methanol (B) in a 2:1 ratio of volumes to form a mixture of increasing volume and constant
composition. The system is the mixture.

When T and p are held constant, Eq. 9.2.7 becomes

(9.2.8)
dV =Vadna + Vgdng (binary mixture,
constant 7 and p)

We obtain an important relation between the mixture volume and the partial molar volumes by imagining the fol-
lowing process. Suppose we continuously pour pure water and pure methanol at constant but not necessarily equal
volume rates into a stirred, thermostatted container to form a mixture of increasing volume and constant composition,
as shown schematically in Fig. 9.2.2 on page 192. If this mixture remains at constant 7" and p as it is formed, none of
its intensive properties change during the process, and the partial molar volumes V, and V remain constant. Under
these conditions, we can integrate Eq. 9.2.8 to obtain the additivity rule for volume:?2#

9.2.9)

V=Vana+Vgng (binary mixture)

This equation allows us to calculate the mixture volume from the amounts of the constituents and the appropriate
partial molar volumes for the particular temperature, pressure, and composition.

For example, given that the partial molar volumes in a water—-methanol mixture of composition xg =0.307 are
Va=17.74cm3mol~! and Vi =38.76cm>mol~!, we calculate the volume of the water—methanol mixture described at
the beginning of Sec. 9.2.1 as follows:

V=(17.74cm>*mol~") (5.53mol) + (38.76 cm3 -mol~') (2.45mol)

=193.1cm? 9.2.10)
We can differentiate Eq. 9.2.9 to obtain a general expression for dV under conditions of constant 7 and p:
dV =Vadna+ Vgdng + npdVpy + ngdVp 9.2.11)

But this expression for dV is consistent with Eq. 9.2.8 only if the sum of the last two terms on the right is zero:

9.2.12)
nadVay+ngdVeg=0 (binary mixture,
constant 7 and p)

Equation 9.2.12 is the Gibbs—-Duhem equation for a binary mixture, applied to partial molar volumes. (Section 9.2.4
will give a general version of this equation.) Dividing both sides of the equation by n + np gives the equivalent form

(9.2.13)
xadVp +xpdVg=0 (binary mixture,
constant 7" and p)

Equation 9.2.12 shows that changes in the values of Vj and V3 are related when the composition changes at constant
T and p. If we rearrange the equation to the form

9.2.14)
dVia= —Z—B dVg (binary mixture,
A constant 7" and p)

9.2.4. The equation is an example of the result of applying Euler's theorem on homogeneous functions to V' treated as a function of na and ng.
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Figure 9.2.3. Mixtures of water (A) and methanol (B) at 25 °C and 1 bar. 9-2
a) Mean molar volume as a function of xg. The dashed line is the tangent to the curve at xg =0.307.
b) Molar volume of mixing as a function of xg. The dashed line is the tangent to the curve at xg =0.307.

¢) Partial molar volumes as functions of xg. The points at xg = 0.307 (open circles) are obtained from the intercepts of the dashed
line in either (a) or (b).

9.2.5. Based on data in Ref. [12].

we see that a composition change that increases Vg (so that dVj is positive) must make Vy decrease.

9.2.3 Evaluation of partial molar volumes in binary mixtures

The partial molar volumes V4 and V3 in a binary mixture can be evaluated by the method of intercepts. To use this
method, we plot experimental values of the quantity V /n (where n is na + ng) versus the mole fraction xg. V /n is
called the mean molar volume.

See Fig. 9.2.3(a) on page 193 for an example. In this figure, the tangent to the curve drawn at the point on the curve
at the composition of interest (the composition used as an illustration in Sec. 9.2.1) intercepts the vertical line where xp
equals O at V/n=V,=17.7cm3mol~!, and intercepts the vertical line where xp equals 1 at V /n= Vg =38.8cm*-mol .

To derive this property of a tangent line for the plot of V /n versus xg, we use Eq. 9.2.9 to write

Vana+ Venp

(V/n) =Vaxa+ Vexp

n
VA(l—xB)+VB.XB=(VB—VA).XB+VA (9215)

When we differentiate this expression for V /n with respect to xp, keeping in mind that V4 and V3 are
functions of xg, we obtain
d(V/n) _ d[(VB—Va)xp+ Val
de - de
dVs dVA) dVa
B+

VB—VA+ (E—m X d_.XB
dVA dVB
VB— VA+ (m) (1 —XB) + (m) XB

dVa dvs
VB—VA+ (E) XA+ (E) XB (9216)
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The differentials dV and dVj are related to one another by the Gibbs—Duhem equation (Eq. 9.2.13):
xAdVa +xpdVp =0. We divide both sides of this equation by dxp to obtain

dVa dVs _
(d—xB)XA'F(FB)XB—O 9.2.17)
and substitute in Eq. 9.2.16 to obtain
d(c‘l;; N Y-V (9.2.18)

Let the partial molar volumes of the constituents of a binary mixture of arbitrary composition xg be Vi
and Vg§. Equation 9.2.15 shows that the value of V /n at the point on the curve of V /n versus xg where
the composition is xp is (Vg — Vi) xg + Va. Equation 9.2.18 shows that the tangent to the curve at this
point has a slope of Vi —Vx. The equation of the line that passes through this point and has this slope,
and thus is the tangent to the curve at this point, is y = (Vg — Vx) xg + Va, where y is the vertical ordinate

on the plot of (V /n) versus xg. The line has intercepts y = VJ at xg0 and y= Vg at xgl.
A variant of the method of interceptsis to plot the molar integral volume of mixing given by

A Vip(mix) = 8 VE/LmIX) — V—na Vm,;/LA_nB Vm,B

(9.2.19)

versus xg, as illustrated in Fig. 9.2.3(b). A V(mix) is the integral volume of mixing—the volume change at constant
T and p when solvent and solute are mixed to form a mixture of volume V and total amount n (see Sec. 11.1.1). The

tangent to the curve at the composition of interest has intercepts Va — Vi A at x50 and Vg — Vi 5 at xpl.

To see this, we write

AVi(mix) = (V/n)=xaViaa—x Vs

We make the substitution (V /n) = (Vg —Va) xg + Va from Eq. 9.2.15 and rearrange:

(V/n) = (1-xp) Vit a—x8 Vit 9.2.20)

A Vin(mix) = [(Vg=Vinp) = (Va=Vina) 1xg+ (Vo= Vina) 9.2.21)

Differentiation with respect to xp yields

QL) — (Vo= Viw) = (Va= Vi) + (o= T s+ T2
= (Vg=Viip) = (VA= Vi) + (3—)‘:‘;) (1-xg) + (3—)‘:];))63
= (Ve=Vip)— (Va=Via) + (3—)‘:‘;) XA+ (3—)‘2:))63 (9.2.22)
With a substitution from Eq. 9.2.17, this becomes
dA ‘Zln;(;lix) = (Vg=Viig) = (VA= Viin) (9.2.23)

Equations 9.2.21 and 9.2.23 are analogous to Egs. 9.2.15 and 9.2.18, with V /n replaced by A V;,(mix),
Va by (Va—=Vma), and Vg by (Vg—Vin ). Using the same reasoning as for a plot of V /n versus xg, we
find the intercepts of the tangent to a point on the curve of A V;,(mix) versus xp are at V5 —Vp; o and

V= Vng.

Figure 9.2.3 shows smoothed experimental data for water—methanol mixtures plotted in both kinds of graphs, and
the resulting partial molar volumes as functions of composition. Note in Fig. 9.2.3(c) how the V, curve mirrors the
VB curve as xp varies, as predicted by the Gibbs—Duhem equation. The minimum in V3 at xg = 0.09 is mirrored by
a maximum in Vj in agreement with Eq. 9.2.14; the maximum is much attenuated because np/n, is much less than

unity.
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Macroscopic measurements are unable to provide unambiguous information about molecular structure.
Nevertheless, it is interesting to speculate on the implications of the minimum observed for the partial
molar volume of methanol. One interpretation is that in a mostly aqueous environment, there is asso-
ciation of methanol molecules, perhaps involving the formation of dimers.

9.2.4 General relations

The discussion above of partial molar volumes used the notation Vi A and Vi g for the molar volumes of pure A and
B. The partial molar volume of a pure substance is the same as the molar volume, so we can simplify the notation by
using Vi and Vg instead. Hereafter, this book will denote molar quantities of pure substances by such symbols as V4,
Hg, and S;.

The relations derived above for the volume of a binary mixture may be generalized for any extensive property X
of a mixture of any number of constituents. The partial molar quantity of species i, defined by

an;

x, & ( 0X ) (9.2.24)
T,pnjzi

is an intensive property that depends on 7', p, and the composition of the mixture. The additivity rule for property X is

_ X (9.2.25)
X= Z niXi (mixture)

and the Gibbs—Duhem equation applied to X can be written in the equivalent forms

o (9.2.26)
Z,»“ ndX;=0 (constant T and p)

and
) (9.2.27)
Z xdX;=0 (constant T and p)

These relations can be applied to a mixture in which each species i is a nonelectrolyte substance, an electrolyte sub-
stance that is dissociated into ions, or an individual ionic species. In Eq. 9.2.27, the mole fraction x; must be based
on the different species considered to be present in the mixture. For example, an aqueous solution of NaCl could be
treated as a mixture of components A=H,0 and B=NaCl, with xg equal to ng/ (na +ng); or the constituents could be
taken as H,O, Na™*, and Cl1~, in which case the mole fraction of Na* would be x, =n_/ (na+n,+n_).

A general method to evaluate the partial molar quantities X5 and Xp in a binary mixture is based on the variant of
the method of intercepts described in Sec. (uninit). The molar mixing quantity A X (mix) /n is plotted versus xg, where
A X (mix) is (X —na Xiz —ngXg).On this plot, the tangent to the curve at the composition of interest has intercepts equal
to X Xa at xg0 and Xg X3 at xgl.

We can obtain experimental values of such partial molar quantities of an uncharged species as V;, C,;, and §;. Itis
not possible, however, to evaluate the partial molar quantities U;, H;, A;, and G; because these quantities involve the
internal energy brought into the system by the species, and we cannot evaluate the absolute value of internal energy
(Sec. 2.6.2). For example, while we can evaluate the difference H;— H;" from calorimetric measurements of enthalpies
of mixing, we cannot evaluate the partial molar enthalpy H; itself. We can, however, include such quantities as H; in
useful theoretical relations.

As mentioned on page 190, a partial molar quantity of a charged species is something else we cannot
evaluate. It is possible, however, to obtain values relative to a reference ion. Consider an aqueous
solution of a fully-dissociated electrolyte solute with the formula M, X, _, where v, and v_ are the
numbers of cations and anions per solute formula unit. The partial molar volume Vg of the solute,
which can be determined experimentally, is related to the (unmeasurable) partial molar volumes V, and
V_ of the constituent ions by

Ve=v,.V,+v_V_ (9.2.28)
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For aqueous solutions, the usual reference ion is H*, and the partial molar volume of this ion at infinite
dilution is arbitrarily set equal to zero: Vi3> =0.

For example, given the value (at 298.15K and 1 bar) of the partial molar volume at infinite dilution of
aqueous hydrogen chloride

Viier = 17.82cm*-mol~! (9.2.29)
we can find the so-called “conventional” partial molar volume of CI~ ion:
V&= Viser— Vit = 17.82 cm®-mol ™! (9.2.30)

Going one step further, the measured value Vj;c;=16.61 cm3-mol™! gives, for Na™ ion, the conven-
tional value

Vo = Viea1 = V& = (16.61 = 17.82) cm®-mol~'=-1.21 cm3-mol ™! (9.2.31)

9.2.5 Partial specific quantities

A partial specific quantity of a substance is the partial molar quantity divided by the molar mass, and has dimensions
of volume divided by mass. For example, the partial specific volume vg of solute B in a binary solution is given by

VB ov

_ Vs _ 9.2.32
VB Mg am(B) ]T,p,M(A) ( :

where m(A) and m(B) are the masses of solvent and solute.

Although this book makes little use of specific quantities and partial specific quantities, in some applications they
have an advantage over molar quantities and partial molar quantities because they can be evaluated without knowledge
of the molar mass. For instance, the value of a solute's partial specific volume is used to determine its molar mass by
the method of sedimentation equilibrium (Sec. 9.8.2).

The general relations in Sec. 9.2.4 involving partial molar quantities may be turned into relations involving partial
specific quantities by replacing amounts by masses, mole fractions by mass fractions, and partial molar quantities
by partial specific quantities. Using volume as an example, we can write an additivity relation V =)’ .m(i) v;, and
Gibbs-Duhem relations ), m(i) dv;=0 and )", w;dv;=0. For a binary mixture of A and B, we can plot the specific
volume v versus the mass fraction wg; then the tangent to the curve at a given composition has intercepts equal to va
at wg0 and vg at wgl. A variant of this plot is (v—wa v —wgVg) versus wg; the intercepts are then equal to vy —vx and
VB—VB.

9.2.6 The chemical potential of a species in a mixture

Just as the molar Gibbs energy of a pure substance is called the chemical potential and given the special symbol g,
the partial molar Gibbs energy G; of species i in a mixture is called the chemical potential of species i, defined by

def (3G (9.2.33)
Hi = 0ni ) 1 pn (mixture)

If there are work coordinates for nonexpansion work, the partial derivative is taken at constant values of these coor-
dinates.

The chemical potential of a species in a phase plays a crucial role in equilibrium problems, because it is a measure
of the escaping tendency of the species from the phase. Although we cannot determine the absolute value of y; for a
given state of the system, we are usually able to evaluate the difference between the value in this state and the value
in a defined reference state.
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In an open single-phase system containing a mixture of s different nonreacting species, we may in principle inde-
pendently vary 7', p, and the amount of each species. This is a total of 2 + s independent variables. The total differential
of the Gibbs energy of this system is given by Eq. 5.5.9 on page 121, often called the Gibbs fundamental equation:

(9.2.34)

dG=-SdT+Vdp+ Zl pidn; (mixture)

Consider the special case of a mixture containing charged species, for example an aqueous solution of the electrolyte
KCl. We could consider the constituents to be either the substances H,O and KClI, or else H,O and the species K* and
CI". Any mixture we can prepare in the laboratory must remain electrically neutral, or virtually so. Thus, while we are
able to independently vary the amounts of H,O and KCI, we cannot in practice independently vary the amounts of K*
and CI~ in the mixture. The chemical potential of the K* ion is defined as the rate at which the Gibbs energy changes
with the amount of K* added at constant T and p while the amount of C1~ is kept constant. This is a hypothetical
process in which the net charge of the mixture increases. The chemical potential of a ion is therefore a valid but purely
theoretical concept. Let A stand for H,O, B for KCI, + for K*, and — for CI™. Then it is theoretically valid to write
the total differential of G for the KC1 solution either as

dGZ—SdT+Vdp+ﬂAdnA+ ﬂBdI’LB (9235)
or as
dG=-SdT+Vdp+ padna+ p dn, + pu_dn_ (9.2.36)

9.2.7 Equilibrium conditions in a multiphase, multicomponent system

This section extends the derivation described in Sec. 8.1.2, which was for equilibrium conditions in a multiphase
system containing a single substance, to a more general kind of system: one with two or more homogeneous phases
containing mixtures of nonreacting species. The derivation assumes there are no internal partitions that could prevent
transfer of species and energy between the phases, and that effects of gravity and other external force fields are negli-
gible.

The system consists of a reference phase, a’, and other phases labeled by aa”. Species are labeled by subscript i.
Following the procedure of Sec. 8.1.1, we write for the total differential of the internal energy

dU = dU“'+ )" dU°®
ata’

Tdse - p«'dve’ + Y p¢ dnf
i

+y (T"‘dS“—p“dV"‘+ > ufdng (9.2.37)
ata’ i
The conditions of isolation are
dU=0 (constant internal energy) (9.2.38)
ave’ + Z dve=0 (no expansion work) (9.2.39)
ata’
For each species i:
dnf'+ ) dnf'=0 (closed system) (9.2.40)
ata’

We use these relations to substitute for dU, dV“/, and dn,‘»’, in Eq. 9.2.37. After making the further substitution
ds* =ds- 2 azq 45* and solving for dS, we obtain

as =Y T g Y P =% gy

ata’ T« afa’ T«
e -
i i a
+Z Z T dn; 9.2.41)
i a#a’
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This equation is like Eq. 8.1.6 on page 164 with provision for more than one species.

In the equilibrium state of the isolated system, S has the maximum possible value, dS is equal to zero for an
infinitesimal change of any of the independent variables, and the coefficient of each term on the right side of Eq. 9.2.41
is zero. We find that in this state each phase has the same temperature and the same pressure, and for each species the
chemical potential is the same in each phase.

Suppose the system contains a species i’ that is effectively excluded from a particular phase, a’’. For instance,
sucrose molecules dissolved in an aqueous phase are not accommodated in the crystal structure of an ice phase, and
a nonpolar substance may be essentially insoluble in an aqueous phase. We can treat this kind of situation by setting
dn?f equal to zero. Consequently there is no equilibrium condition involving the chemical potential of this species in
phase a”’.

To summarize these conclusions: In an equilibrium state of a multiphase, multicomponent system without internal
partitions, the temperature and pressure are uniform throughout the system, and each species has a uniform chemical
potential except in phases where it is excluded.

This statement regarding the uniform chemical potential of a species applies to both a substance and
an ion, as the following argument explains. The derivation in this section begins with Eq. 9.2.37, an
expression for the total differential of U. Because it is a total differential, the expression requires the
amount »; of each species 7 in each phase to be an independent variable. Suppose one of the phases is
the aqueous solution of KCI used as an example at the end of the preceding section. In principle (but
not in practice), the amounts of the species H,O, K, and CI~ can be varied independently, so that it
is valid to include these three species in the sums over i in Eq. 9.2.37. The derivation then leads to
the conclusion that K* has the same chemical potential in phases that are in transfer equilibrium with
respect to K*, and likewise for C1™. This kind of situation arises when we consider a Donnan membrane
equilibrium (Sec. 12.7.3) in which transfer equilibrium of ions exists between solutions of electrolytes
separated by a semipermeable membrane.

9.2.8 Relations involving partial molar quantities

Here we derive several useful relations involving partial molar quantities in a single-phase system that is a mixture.
The independent variables are T, p, and the amount n; of each constituent species i.

From Eqgs. 9.2.26 and 9.2.27, the Gibbs—Duhem equation applied to the chemical potentials can be written in the
equivalent forms

Ay = (9.2.42)
Z nidpi=0 (constant T and p)

and

du:= (9.2.43)
Zi: xdpi=0 (constant T and p)
These equations show that the chemical potentials of different species cannot be varied independently at constant T
and p.
A more general version of the Gibbs—Duhem equation, without the restriction of constant T and p, is

SAT-Vdp+) ndu;=0 (9.2.44)

This version is derived by comparing the expression for dG given by Eq. 9.2.34 with the differential dG=}_; pdn; +
Y ;nidp; obtained from the additivity rule G=3", u;n;.
The Gibbs energy is defined by G=H —TS. Taking the partial derivatives of both sides of this equation with
respect to n; at constant 7', p, and n;; gives us
(ﬁ) - (a—H) - T(ﬂ) (9.2.45)
6 n; T,p,n#,’ a n; T,p,n#,’ 6 n; T,p,n/#i
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We recognize each partial derivative as a partial molar quantity and rewrite the equation as
#izHi_TSi (9246)

This is analogous to the relation =G /n=Hy,—TS,, for a pure substance.
From the total differential of the Gibbs energy, dG=-SdT + Vdp+ >, p1;dn; (Eq. 9.2.34), we obtain the following

reciprocity relations:
a;u) (GS) (a;u) (GV)
el nd == el ad =|=— 9.2.47
( or p{ni} on; T,p.njsi 0 P )T n) on; T,p.nj4i ( )

The symbol {n;} stands for the set of amounts of all species, and subscript {n;} on a partial derivative means the amount
of each species is constant—that is, the derivative is taken at constant composition of a closed system. Again we
recognize partial derivatives as partial molar quantities and rewrite these relations as follows:

0 /u)
-_S; (9.2.48)
( or p.{ni}
0 ,Lli)
i adl =V 9.2.49
( 0p )7,y ( )

These equations are the equivalent for a mixture of the relations (0 p/97T),=-Sy and (0 p2/0 p)r = Vi, for a pure
phase (Eqgs. 7.8.3 and 7.8.4).
Taking the partial derivatives of both sides of U =H —p V with respect to n; at constant T, p, and n;4; gives

UiZHi—pV,' (9250)

Finally, we can obtain a formula for C, ;, the partial molar heat capacity at constant pressure of species 7, by writing
the total differential of H in the form

0oH oH 0H
dH = (—) dT+(—) dp+ (—) dn,
or piini} op T,{n;} P Zl: on; T.p.njzi

0H
C dT+(—) dp+ ) H;dn; 9.2.51
» 57 )0, 9P Z n (9.2.51)

from which we have the reciprocity relation (0 C,/0n)7 pn,; = (0H;/0T)p (ny, OF

dH;
Cpu= (W)m) (9.2.52)

9.3 Gas Mixtures

The gas mixtures described in this chapter are assumed to be mixtures of nonreacting gaseous substances.

9.3.1 Partial pressure

The partial pressure p; of substance 7 in a gas mixture is defined as the product of its mole fraction in the gas phase

and the pressure of the phase:
def 9.3.1)
pi = yiP (gas mixture)

The sum of the partial pressures of all substances in a gas mixtureis Y .p;=),y;p=p Y .: Since the sum of the mole
fractions of all substances in a mixture is 1, this sum becomes

Z = 9.3.2)
_Pi=p (gas mixture)
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Al® 1 (A+B)g
p=p 1 pa=7
iD= pa+ Py

Figure 9.3.1. System with two gas phases, pure A and a mixture of A and B, separated by a semipermeable membrane through which
only A can pass. Both phases are ideal gases at the same temperature.

Thus, the sum of the partial pressures equals the pressure of the gas phase. This statement is known as Dalton's Law.
It is valid for any gas mixture, regardless of whether or not the gas obeys the ideal gas equation.

9.3.2 The ideal gas mixture

As discussed in Sec. 3.5.1, an ideal gas (whether pure or a mixture) is a gas with negligible intermolecular interactions.
It obeys the ideal gas equation p=nRT /V (where n in a mixture is the sum ). n;) and its internal energy in a closed
system is a function only of temperature. The partial pressure of substance i in an ideal gas mixture is p;=y;p =
yinRT /V;but y;nequals n;, giving
_mRT 9.3.3)
v (ideal gas mixture)

Equation 9.3.3 is the ideal gas equation with the partial pressure of a constituent substance replacing the total pressure,
and the amount of the substance replacing the total amount. The equation shows that the partial pressure of a substance
in an ideal gas mixture is the pressure the substance by itself, with all others removed from the system, would have at
the same 7 and V as the mixture. Note that this statement is only true for an ideal gas mixture. The partial pressure
of a substance in a real gas mixture is in general different from the pressure of the pure substance at the same 7 and
V, because the intermolecular interactions are different.

9.3.3 Partial molar quantities in an ideal gas mixture

We need to relate the chemical potential of a constituent of a gas mixture to its partial pressure. We cannot measure
the absolute value of a chemical potential, but we can evaluate its value relative to the chemical potential in a particular
reference state called the standard state.

The standard state of substance i in a gas mixture is the same as the standard state of the pure gas described in
Sec. 7.7: It is the hypothetical state in which pure gaseous i has the same temperature as the mixture, is at the standard
pressure p°, and behaves as an ideal gas. The standard chemical potential uj (g) of gaseous i is the chemical potential
of i in this gas standard state, and is a function of temperature.

To derive an expression for y; in an ideal gas mixture relative to u; (g), we make an assumption based on the
following argument. Suppose we place pure A, an ideal gas, in a rigid box at pressure p’. We then slide a rigid
membrane into the box so as to divide the box into two compartments. The membrane is permeable to A; that is,
molecules of A pass freely through its pores. There is no reason to expect the membrane to affect the pressures on
either side,®3! which remain equal to p’. Finally, without changing the volume of either compartment, we add a
second gaseous substance, B, to one side of the membrane to form an ideal gas mixture, as shown in Fig. 9.3.1 on
page 200. The membrane is impermeable to B, so the molecules of B stay in one compartment and cause a pressure
increase there. Since the mixture is an ideal gas, the molecules of A and B do not interact, and the addition of gas B
causes no change in the amounts of A on either side of the membrane. Thus, the pressure of A in the pure phase and
the partial pressure of A in the mixture are both equal to p’.

Our assumption, then, is that the partial pressure pa of gas A in an ideal gas mixture in equilibrium with pure ideal
gas A is equal to the pressure of the pure gas.

9.3.1. We assume the gas is not adsorbed to a significant extent on the surface of the membrane or in its pores.
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Because the system shown in Fig. 9.3.1 is in an equilibrium state, gas A must have the same chemical potential in
both phases. This is true even though the phases have different pressures (see Sec. 9.2.7). Since the chemical potential
of the pure ideal gas is given by u=p°(g) + RTIn(p/p°), and we assume that p, in the mixture is equal to p in the
pure gas, the chemical potential of A in the mixture is given by

fa= 1t (g) +RT1nI;—f (9.3.4)

In general, for each substance i in an ideal gas mixture, we have the relation

pi (9.3.5)

wi=p3(g)+RTIn - (ideal gas mixture)

where u; (g) is the chemical potential of i in the gas standard state at the same temperature as the mixture.

Equation 9.3.5 shows that if the partial pressure of a constituent of an ideal gas mixture is equal
to p°, so that In (p;/ p°) is zero, the chemical potential is equal to the standard chemical potential.
Conceptually, a standard state should be a well-defined state of the system, which in the case of a gas is
the pure ideal gas at p=p°. Thus, although a constituent of an ideal gas mixture with a partial pressure
of 1bar is not in its standard state, it has the same chemical potential as in its standard state.

Equation 9.3.5 will be taken as the thermodynamic definition of an ideal gas mixture. Any gas mixture in which
each constituent 7 obeys this relation between u; and p; at all compositions is by definition an ideal gas mixture. The
nonrigorous nature of the assumption used to obtain Eq. 9.3.5 presents no difficulty if we consider the equation to be
the basic definition.

By substituting the expression for p; into (0 ;/0T) p (n,y =S (Eq. 9.2.48), we obtain an expression for the partial
molar entropy of substance i in an ideal gas mixture:

aui(g) ] Di
S; = — —RIn=
or p-{ni} p
R (9.3.6)
= §/-RIn PR (ideal gas mixture)

The quantity S7=—[0 p7 (g) /0 T],in, is the standard molar entropy of constituent i. It is the molar entropy of i in
its standard state of pure ideal gas at pressure p°.

Substitution of the expression for y; from Eq. 9.3.5 and the expression for S; from Eq. 9.3.6 into H;= py; +TS;
(from Eq. 9.2.46) yields H;= p; (g) + T'S7, which is equivalent to

(9.3.7)

H;=H; (ideal gas mixture)

This tells us that the partial molar enthalpy of a constituent of an ideal gas mixture at a given temperature is indepen-
dent of the partial pressure or mixture composition; it is a function only of 7.
From (0 p:/ 0 p)1.(ny = Vi (Eq. 9.2.49), the partial molar volume of i in an ideal gas mixture is given by

Vi 0 1 (g)] +RT[aln (pilp )] (9.3.8)
0p 7.0y ap T.{n;}

The first partial derivative on the right is zero because p; (g) is a function only of T. For the second partial derivative,
we write p;/ p°=y;p/p°. The mole fraction y; is constant when the amount of each substance is constant, so we have
[0In(yip/p°) /0 plr,in;y=1/p. The partial molar volume is therefore given by

_RT (9.3.9)

v 14 (ideal gas mixture)

which is what we would expect simply from the ideal gas equation. The partial molar volume is not necessarily equal
to the standard molar volume, which is V;’=RT / p° for an ideal gas.
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From Egs. 9.2.50, 9.2.52, 9.3.7, and 9.3.9 we obtain the relations

o (9.3.10)
Ui=U; (ideal gas mixture)

and
Cpi=Cis 9.3.11)

(ideal gas mixture)

Thus, in an ideal gas mixture the partial molar internal energy and the partial molar heat capacity at constant pressure,
like the partial molar enthalpy, are functions only of 7.

The definition of an ideal gas mixture given by Eq. 9.3.5 is consistent with the criteria for an ideal
gas listed at the beginning of Sec. 3.5.1, as the following derivation shows. From Eq. 9.3.9 and the
additivity rule, we find the volume is given by V = Zi n;Vi= Zl. n;RT /p=nRT/p, which is the ideal
gas equation. From Eq. 9.3.10 we have U= .n;U;= ) ,n; U, showing that U is a function only of
T in a closed system. These properties apply to any gas mixture obeying Eq. 9.3.5, and they are the
properties that define an ideal gas according to Sec. 3.5.1.

9.3.4 Real gas mixtures

9.3.4.1 Fugacity
The fugacity f of a pure gas is defined by u=p°(g) +RTIn(f/p°) (Eq. 7.8.7 on page 155). By analogy with this

equation, the fugacity f; of substance i in a real gas mixture is defined by the relation

e fi def [ pi (@) (9.3.12)
= H (g)+RT1nF or fi= prexp ~ RT (gas mixture)

Just as the fugacity of a pure gas is a kind of effective pressure, the fugacity of a constituent of a gas mixture is a kind of
effective partial pressure. That is, f; is the partial pressure substance i would have in an ideal gas mixture that is at the
same temperature as the real gas mixture and in which the chemical potential of i is the same as in the real gas mixture.

To derive a relation allowing us to evaluate f; from the pressure—volume properties of the gaseous mixture, we
follow the steps described for a pure gas in Sec. 7.8.1. The temperature and composition are constant. From Eq.
9.3.12, the difference between the chemical potentials of substance i in the mixture at pressures p” and p”’ is

pf—yf’:RTln]% (9.3.13)

Integration of dyu; = Vidp (from Eq. 9.2.49) between these pressures yields
-yl = f” Vidp (9.3.14)
P

When we equate these two expressions for u; — p;’, divide both sides by R T, subtract the identity

p ' dp
HTZ —_— 9315
z fp,, E (9.3.15)

and take the ideal-gas behavior limits p”’ — 0 and /" = y;p’" = (p; /p’) p’’, we obtain

(Vi1 (9.3.16)
lnﬁ - I 0 (ﬁ_;) dp (gas mixture, constant T°)

The fugacity coefficient ¢; of constituent i is defined by

def (9.3.17)
fi = bipi (gas mixture)
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Equation of state®-32

Difference General expression at pressure p’ V=nRT/p+nB
peni@  RTwE [T (v-ED )y "

Si=S7 () —Rln”i—fop (57) -5 e ~Rin - p 90!
metiie) [ [ (SF) p(mi-14)
Ui-Us (2) fo" [W—T(a‘/‘) ]dp+RT Vi —pT(ii—l;{
Cu-Ciute) [T (%)pdp -p T%

Table 9.3.1. Gas mixture: expressions for differences between partial molar and standard molar quantities of constituent i

9.3.2. B and B; are defined by Egs. 9.3.24 and 9.3.26

Accordingly, the fugacity coefficient at pressure p’ is given by

v 93.18)
Ing;(p’) = fo (ﬁ‘;) dp (gas mixture, constant 7))

As p’ approaches zero, the integral in Eqs. 9.3.16 and 9.3.18 approaches zero, f; approaches p;/, and ¢;(p’) approaches
unity.

9.3.4.2 Partial molar quantities
By combining Egs. 9.3.12 and 9.3.16, we obtain

’ (9.3.19)

wilp") = pi (@) +RTInEL 4 [7 (V—ﬂ)dp (gas mixture,
4 p

constant 7")

which is the analogue for a gas mixture of Eq. 7.9.2 for a pure gas. Section 7.9 describes the procedure needed to
obtain formulas for various molar quantities of a pure gas from Eq. 7.9.2. By following a similar procedure with Eq.
9.3.19, we obtain the formulas for differences between partial molar and standard molar quantities of a constituent of
a gas mixture shown in the second column of Table 9.3.1 on page 203.

These formulas are obtained with the help of Egs. 9.2.46, 9.2.48, 9.2.50, and 9.2.52.

9.3.4.3 Equation of state
The equation of state of a real gas mixture can be written as the virial equation

B C

pV/n=RT 1+(V/n) —(V/n)2+

(9.3.20)

This equation is the same as Eq. 2.2.2 for a pure gas, except that the molar volume V;;, is replaced by the mean molar
volume V' /n, and the virial coefficients B, C, ... depend on composition as well as temperature.
At low to moderate pressures, the simple equation of state

vm:%w (9.321)

describes a gas mixture to a sufficiently high degree of accuracy (see Eq. 2.2.8 on page 27). This is equivalent to a

compression factor given by
def p \% B p
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From statistical mechanical theory, the dependence of the second virial coefficient B of a binary gas mixture on the
mole fraction composition is given by

(9.3.23)

B=yX Baa+2yaysBas + i Bep (binary gas mixture)

where Baa and Bpp are the second virial coefficients of pure A and B, and Bag is a mixed second virial coefficient. Baa,
Bgg, and Bup are functions of T only. For a gas mixture with any number of constituents, the composition dependence
of Bis given by

B (9.3.24)
B= Z Z YiYjBy (gas mixture, B;; = Bj;
i

Here Bj; is the second virial of i if i and j are the same, or a mixed second virial coefficient if i and j are different.
If a gas mixture obeys the equation of state of Eq. 9.3.21, the partial molar volume of constituent i is given by

_RT

Vi +B/ (9.3.25)

where the quantity B/, in order to be consistent with V;=(dV /9 )T, p.ny. 18 found to be given by

B/=2Y) y;By-B (9.3.26)
J

For the constituents of a binary mixture of A and B, Eq. 9.3.26 becomes

(9.3.27)

BA=Baa+ (~Baa+2Bas—Bgs) Vi (binary gas mixture)

(9.3.28)

Bi=Bgg + (~Baa+ 2 Bag— Bgp) yA (binary gas mixture)

When we substitute the expression of Eq. 9.3.25 for V; in Eq. 9.3.18, we obtain a relation between the fugacity
coefficient of constituent i and the function B;/:

In ;=8 (9.3.29)

The third column of Table 9.3.1 gives formulas for various partial molar quantities of constituent i in terms of B; and
its temperature derivative. The formulas are the same as the approximate formulas in the third column of Table 7.9.1
for molar quantities of a pure gas, with B/ replacing the second virial coefficient B.

9.4 Liquid and Solid Mixtures of Nonelectrolytes

Homogeneous liquid and solid mixtures are condensed phases of variable composition. Most of the discussion of
condensed-phase mixtures in this section focuses on liquids. The same principles, however, apply to homogeneous
solid mixtures, often called solid solutions. These solid mixtures include most metal alloys, many gemstones, and
doped semiconductors.

The relations derived in this section apply to mixtures of nonelectrolytes—substances that do not dissociate into
charged species. Solutions of electrolytes behave quite differently in many ways, and will be discussed in the next
chapter.

9.4.1 Raoult's law

In 1888, the French physical chemist Francois Raoult published his finding that when a dilute liquid solution of a
volatile solvent and a nonelectrolyte solute is equilibrated with a gas phase, the partial pressure p of the solvent in
the gas phase is proportional to the mole fraction x, of the solvent in the solution:

PA=XAPA 9.4.1)
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(A+B+C)(g) (A+O)(®)
Pa> fA PZ, fA*
P=patpetpc P =pa+rc
(A+B)(1) A)
XA
system 1 system 2

Figure 9.4.1. Two systems with equilibrated liquid and gas phases.

Here pj is the saturation vapor pressure of the pure solvent (the pressure at which the pure liquid and pure gas phases
are in equilibrium).

In order to place Raoult's law in a rigorous thermodynamic framework, consider the two systems depicted in Fig.
9.4.1 on page 205. The liquid phase of system 1 is a binary solution of solvent A and solute B, whereas the liquid
in system 2 is the pure solvent. In system 1, the partial pressure p, in the equilibrated gas phase depends on the
temperature and the solution composition. In system 2, px depends on the temperature. Both pa and pj have a mild
dependence on the total pressure p, which can be varied with an inert gas constituent C of negligible solubility in the
liquid.

Suppose that we vary the composition of the solution in system 1 at constant temperature, while adjusting the
partial pressure of C so as to keep p constant. If we find that the partial pressure of the solvent over a range of
composition is given by pa =xa pa, where pj is the partial pressure of A in system 2 at the same 7 and p, we will say
that the solvent obeys Raoult's law for partial pressure in this range. This is the same as the original Raoult's law,
except that pi is now the vapor pressure of pure liquid A at the pressure p of the liquid mixture. Section 12.8.1 will
show that unless p is much greater than pj, pa is practically the same as the saturation vapor pressure of pure liquid
A, in which case Raoult's law for partial pressure becomes identical to the original law.

A form of Raoult's law with fugacities in place of partial pressures is often more useful: fa =xa fa, where fx is the
fugacity of A in the gas phase of system 2 at the same 7" and p as the solution. If this relation is found to hold over a
given composition range, we will say the solvent in this range obeys Raoult's law for fugacity.

We can generalize the two forms of Raoult's law for any constituent i of a liquid mixture:

et 9.4.2)
pi=Xipi (Raoult's law for partial pressure)
fi=xif 9.4.3)

(Raoult's law for fugacity)

Here x; is the mole fraction of i in the liquid mixture, and p; and f;* are the partial pressure and fugacity in a gas phase
equilibrated with pure liquid i at the same T and p as the liquid mixture. Both px and f;* are functions of T and p.

These two forms of Raoult's law are equivalent when the gas phases are ideal gas mixtures. When it is necessary
to make a distinction between the two forms, this book will refer specifically to Raoult's law for partial pressure or
Raoult's law for fugacity.

Raoult's law for fugacity can be recast in terms of chemical potential. Section 9.2.7 showed that if substance i
has transfer equilibrium between a liquid and a gas phase, its chemical potential y; is the same in both equilibrated
phases. The chemical potential in the gas phase is given by p;= u;i (g) + RT Inf;/ p° (Eq. 9.3.12). Replacing f; by x,f;*
according to Raoult's law, and rearranging, we obtain

wi=| pi (g)+RTln% +RTInx; 9.4.4)
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The expression in brackets is independent of the mixture composition. We replace this expression by a quantity y;, a
function of T and p, and write

Hi= ,u}“+RT1nxi (945)

Equation 9.4.5 is an expression for the chemical potential in the liquid phase when Raoult's law for fugacity is obeyed.
By setting x; equal to 1, we see that p] represents the chemical potential of pure liquid 7 at the temperature and pressure
of the mixture. Because Eq. 9.4.5 is valid for any constituent whose fugacity obeys Eq. 9.4.3, it is equivalent to
Raoult's law for fugacity for that constituent.

9.4.2 Ideal mixtures

Depending on the temperature, pressure, and identity of the constituents of a liquid mixture, Raoult's law for fugacity
may hold for constituent i at all liquid compositions, or over only a limited composition range when x; is close to unity.
An ideal liquid mixture is defined as a liquid mixture in which, at a given temperature and pressure, each con-
stituent obeys Raoult's law for fugacity (Eq. 9.4.3 or 9.4.5) over the entire range of composition. Equation 9.4.3
applies only to a volatile constituent, whereas Eq. 9.4.5 applies regardless of whether the constituent is volatile.

Few liquid mixtures are found to approximate the behavior of an ideal liquid mixture. In order to do so, the
constituents must have similar molecular size and structure, and the pure liquids must be miscible in all proportions.
Benzene and toluene, for instance, satisfy these requirements, and liquid mixtures of benzene and toluene are found
to obey Raoult's law quite closely. In contrast, water and methanol, although miscible in all proportions, form liquid
mixtures that deviate considerably from Raoult's law. The most commonly encountered situation for mixtures of
organic liquids is that each constituent deviates from Raoult's law behavior by having a higher fugacity than predicted
by Eq. 9.4.3—a positive deviation from Raoult's law.

Similar statements apply to ideal solid mixtures. In addition, a relation with the same form as Eq. 9.4.5 describes
the chemical potential of each constituent of an ideal gas mixture, as the following derivation shows. In an ideal gas
mixture at a given T and p, the chemical potential of substance i is given by Eq. 9.3.5:

Di

i= 5 +RTIn
=i (g) »

:yf(g)+RTln);;{7 (9.4.6)
Here y; is the mole fraction of i in the gas. The chemical potential of the pure ideal gas (y;=1) is
pif:,u}’(g)+RTln% (9.4.7)

By eliminating p; (g) between these equations and rearranging, we obtain Eq. 9.4.5 with x; replaced by y;.
Thus, an ideal mixture, whether solid, liquid, or gas, is a mixture in which the chemical potential of each con-
stituent at a given T and p is a linear function of the logarithm of the mole fraction:

(9.4.8)

pi= i+ RTInx; (ideal mixture)

9.4.3 Partial molar quantities in ideal mixtures

With the help of Eq. 9.4.8 for the chemical potential of a constituent of an ideal mixture, we will now be able to find
expressions for partial molar quantities. These expressions find their greatest use for ideal liquid and solid mixtures.

For the partial molar entropy of substance i, we have S;=—(0 p;/07T), (,, (from Eq. 9.2.48) or, for the ideal
mixture,

9.4.9)
(ideal mixture)

_(0mi g )
Si—_( aT)p—Rlnxl—S, Rlnx,

Since Inx; is negative in a mixture, the partial molar entropy of a constituent of an ideal mixture is greater than the
molar entropy of the pure substance at the same 7" and p.
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gas mixture  f;

liquid mixture X;

Figure 9.4.2. Equilibrated liquid and gas mixtures. Substance i is present in both phases.

For the partial molar enthalpy, we have H;= u;+ T'S; (from Eq. 9.2.46). Using the expressions for u; and S; gives us

(9.4.10)

Hi=pi+ TS} =H; (ideal mixture)

Thus, H; in an ideal mixture is independent of the mixture composition and is equal to the molar enthalpy of pure i at
the same 7" and p as the mixture. In the case of an ideal gas mixture, H; is also independent of p, because the molar
enthalpy of an ideal gas depends only on 7.

The partial molar volume is given by V;=(0 p;/ 0 p)r.(ny (Eq. 9.2.49), so we have

(O s 9.4.11)
Vl_( op )T— K (ideal mixture)

Finally, from Eqgs. 9.2.50 and 9.2.52 and the expressions above for H; and V;, we obtain

9.4.12)

U=H-pV*=U; (ideal mixture)

and

(9.4.13)

Cpi=(@H!/OT)pny=Cpi (ideal mixture)

Note that in an ideal mixture held at constant T" and p, the partial molar quantities H,, V;, U;, and C,; do not vary with
the composition.

9.4.4 Henry's law

Consider the system shown in Fig. 9.4.2 on page 207, in which a liquid mixture is equilibrated with a gas phase.
Transfer equilibrium exists for substance 7, a constituent of both phases. Substance i is assumed to have the same
molecular form in both phases, and is not, for instance, an electrolyte. We can vary the mole fraction x; in the liquid
and evaluate the fugacity f; in the gas phase.

Suppose we allow x; to approach zero at constant 7 and p while the relative amounts of the other liquid con-
stituents remain constant. It is found experimentally that the fugacity f; becomes proportional to x;:

(9.4.14)

fi=knixi as x;—=0 (constant 7 and p)

This behavior is called Henry's law. The proportionality constant ky ; is the Henry's law constant of substance i. The
value of ky; depends on the temperature and the total pressure, and also on the relative amounts of the constituents
other than i in the liquid mixture.

If the liquid phase happens to be an ideal liquid mixture, then by definition constituent i obeys Raoult's law for
fugacity at all values of x;. In that case, ky; is equal to f;*, the fugacity when the gas phase is equilibrated with pure
liquid 7 at the same temperature and pressure as the liquid mixture.
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Figure 9.4.3. Liquid solutions of 2,3-dimethylbutane (B) in cyclooctane at 298.15K and 1 bar.%#!

a) Fugacity of B in an equilibrated gas phase as a function of solution composition. The dashed line, tangent to the curve at xg =0,
is Henry's law behavior, and its slope is ky B.

b) Fugacity divided by mole fraction as a function of composition; the limiting value at xg =0 is the Henry's law constant kg p.

9.4.1. Based on data in Ref. [117].

If we treat the liquid mixture as a binary solution in which solute B is a volatile nonelectrolyte, Henry's law
behavior occurs in the limit of infinite dilution:

(9.4.15)

Se—kupxg as xp—0 (constant 7 and p)

An example of this behavior is shown in Fig. 9.4.3(a) on page 208. The limiting slope of the plot of f5 versus xp is
finite, not zero or infinite. (The fugacity of a volatile electrolyte, such as HCI dissolved in water, displays a much
different behavior, as will be shown in Chap. 10.)

Equation 9.4.15 can be applied to a solution of more than one solute if the combination of constituents
other than B is treated as the solvent, and the relative amounts of these constituents remain constant as
xg is varied.

Since the mole fraction, concentration, and molality of a solute become proportional to one another in the limit
of infinite dilution (Eq. 9.1.14), in a very dilute solution the fugacity is proportional to all three of these composition
variables. This leads to three versions of Henry's law:

(9.4.16)

mole fraction basis fB = kupxs (nonelectrolyte solute
at infinite dilution)

(9.4.17)
kc,B CB (nonelectrolyte solute
at infinite dilution)

(9.4.18)

km,B mg (nonelectrolyte solute
at infinite dilution)

concentration basis /B

molality basis i

In these equations ky g, k., and k,, g are Henry's law constants defined by

. . def . (fp
mole fraction basis kyg = lim (—) 9.4.19)
xg—~0 \ XB
. . def . (fg
concentration basis keg = lim (—) (9.4.20)
cg—~0 \ CB
. . def /B
molality basis kny = lim (—) 9.4.21)
mg—0 \ N
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Note that the Henry's law constants are not dimensionless, and are functions of 7 and p. To evaluate one of these
constants, we can plot fg divided by the appropriate composition variable as a function of the composition variable
and extrapolate to infinite dilution. The evaluation of kg p by this procedure is illustrated in Fig. 9.4.3(b).

Relations between these Henry's law constants can be found with the use of Eqs. 9.1.14 and 9.4.16-9.4.18:

kep=Vikup  kmp=Makns (9.4.22)

9.4.5 The ideal-dilute solution

An ideal-dilute solution is a real solution that is dilute enough for each solute to obey Henry's law. On the microscopic
level, the requirement is that solute molecules be sufficiently separated to make solute—solute interactions negligible.

Note that an ideal-dilute solution is not necessarily an ideal mixture. Few liquid mixtures behave as ideal mixtures,
but a solution of any nonelectrolyte solute becomes an ideal-dilute solution when sufficiently dilute.

Within the composition range that a solution effectively behaves as an ideal-dilute solution, then, the fugacity
of solute B in a gas phase equilibrated with the solution is proportional to its mole fraction xp in the solution. The
chemical potential of B in the gas phase, which is equal to that of B in the liquid, is related to the fugacity by ug=
n(g)+RTIn(fs/p°) (Eq. 9.3.12). Substituting fg=ky gxpg (Henry's law) into this equation, we obtain

ku,BxB
—

s = pp(g) +RTIn

ku,B
o

1y (2) +RTIn +RTInxp (9.4.23)

where the composition variable xp is segregated in the last term on the right side.

The expression in brackets in Eq. 9.4.23 is a function of T and p, but not of xg, and represents the chemical
potential of B in a hypothetical solute reference state. This chemical potential will be denoted by pﬁfﬁ;, where the x in

the subscript reminds us that the reference state is based on mole fraction. The equation then becomes

(9.4.24)
us(T,p) = piSs(T, p) + RT Inxp (ideal—dilute solution,
of an electrolyte)

Here the notation emphasizes the fact that g and ;15?53 are functions of T and p.
Equation 9.4.24, derived using fugacity, is valid even if the solute has such low volatility that its
fugacity in an equilibrated gas phase is too low to measure. In principle, no solute is completely non-
volatile, and there is always a finite solute fugacity in the gas phase even if immeasurably small.

It is worthwhile to describe in detail the reference state to which pgfﬁg refers. The general concept is

also applicable to other solute reference states and solute standard states to be encountered presently.
Imagine a hypothetical solution with the same constituents as the real solution. This hypothetical solu-
tion has the magical property that it continues to exhibit the ideal-dilute behavior described by Eq.
9.4.24, even when xg increases beyond the ideal-dilute range of the real solution. The reference state
is the state of this hypothetical solution at xg1. It is a fictitious state in which the mole fraction of B is
unity and B behaves as in an ideal-dilute solution, and is sometimes called the ideal-dilute solution of
unit solute mole fraction.

By setting xg equal to unity in Eq. 9.4.24, so that Inxg is zero, we see that ufﬁ{g is the chemical potential

of B in the reference state. In a gas phase equilibrated with the hypothetical solution, the solute fugacity
/B increases as a linear function of xp all the way to xg1, unlike the behavior of the real solution (unless
it happens to be an ideal mixture). In the reference state, fg is equal to the Henry's law constant ky p;
an example is indicated by the filled circle in Fig. 9.4.3(a).
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By similar steps, combining Henry's law based on concentration or molality (Eqs. 9.4.17 and 9.4.18) with the
relation ug= pup(g) +RTIn(fg/p°), we obtain for the solute chemical potential in the ideal-dilute range the equations

keBCB C°>
U8 —

i (2) +RTIn <

= [ﬂi’g(g)+RTlnk‘})Lf]+RTln

CB

: (9.4.25)

. kmpmp m°
uB(g)+RTIn (Tm_)

ko,
p

Note how in each equation the argument of a logarithm is multiplied and divided by a constant, ¢* or m°, in order to

make the arguments of the resulting logarithms dimensionless. These constants are called standard compositions with

HB

o

[,ui’g(g)+RTln il ]+RTln% (9.4.26)

the following values:
standard concentration. ¢°=1mol-dm~3 (equal to one mole per liter, or one molar)
standard molality. m°=1mol-kg~' (equal to one molal)

Again in each of these equations, we replace the expression in brackets, which depends on 7" and p but not on com-
position, with the chemical potential of a solute reference state:

9.4.27)
(ideal—dolute solution

of a nonelectrolyte)

C
us(T.p) = wSh(T.p) + RTIn =2

(9.4.28)
(ideal—dilute solution

of a nonelectrolyte)

ref m

us(T,p)=pnp(T,p)+RTIn m‘j‘

The quantities p{f}fg and ,uff;,fB are the chemical potentials of the solute in hypothetical reference states that are solutions
of standard concentration and standard molality, respectively, in which B behaves as in an ideal-dilute solution. Sec-
tion 9.7.1 will show that when the pressure is the standard pressure, these reference states are solute standard states.

For consistency with Eqs. 9.4.27 and 9.4.28, we can rewrite Eq. 9.4.24 in the form

X

p(T,p) = fs5(T,p) +RTIn x‘f

(9.4.29)

with x°, the standard mole fraction, given by x°=1.

9.4.6 Solvent behavior in the ideal-dilute solution

We now use the Gibbs—Duhem equation to investigate the behavior of the solvent in an ideal-dilute solution of one or
more nonelectrolyte solutes. The Gibbs—Duhem equation applied to chemical potentials at constant 7" and p can be
written Zl.xid,ui =0 (Eq. 9.2.43). We use subscript A for the solvent, rewrite the equation as xad pa + Z#A xidu;=0,

and rearrange to
(9.4.30)

1
d‘uA_—K;\xidlli (constant T and p)

This equation shows how changes in the solute chemical potentials, due to a composition change at constant 7 and p,
affect the chemical potential of the solvent.

In an ideal-dilute solution, the chemical potential of each solute is given by u;= pﬁfj + R T Inx; and the differential
of u; at constant 7 and p is

du,:Rlenxi:Rde,»/xi (9431)
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Figure 9.4.4. Fugacity of ethanol in a gas phase equilibrated with a binary liquid mixture of ethanol (A) and H,O at 25°C and 1bar. Open
circles: experimental measurements. °4-3 The dashed lines show Henry's law behavior and Raoult's law behavior.

(Here the fact has been used that ,ufff is a constant at a given T and p.) When we substitute this expression for du; in
Eq. 9.4.30, we obtain

dpA=—EZ dx; (9.4.32)
XA

i#A
Now since the sum of all mole fractions is 1, we have the relation ), sAXi= 1-x4 whose differential is ), 4A dx;=—dxx.
Making this substitution in Eq. 9.4.32 gives us

RT (9.4.33)
dpua=——dxa=RT dlnx, (ideal—dilute solution
“ of nonelectrolyte)

Consider a process in an open system in which we start with a fixed amount of pure solvent and continuously add the
solute or solutes at constant 7 and p. The solvent mole fraction decreases from unity to a value x4, and the solvent
chemical potential changes from pj to p. We assume the solution formed in this process is in the ideal-dilute solution
range, and integrate Eq. 9.4.33 over the path of the process:

HA

XA=XA
dua=R TI dIn (9.4.34)
Xp=

HA
The result is pa— pA =R T Inxj, or in general

ta= pa+RTInxa (9.4.35)

Comparison with Eq. 9.4.5 on page 206 shows that Eq. 9.4.35 is equivalent to Raoult's law for fugacity.

Thus, in an ideal-dilute solution of nonelectrolytes each solute obeys Henry's law and the solvent obeys Raoult's
law.

An equivalent statement is that a nonelectrolyte constituent of a liquid mixture approaches Henry's law behavior
as its mole fraction approaches zero, and approaches Raoult's law behavior as its mole fraction approaches unity. This
is illustrated in Fig. 9.4.4 on page 211, which shows the behavior of ethanol in ethanol-water mixtures. The ethanol
exhibits positive deviations from Raoult's law and negative deviations from Henry's law.

9.4.7 Partial molar quantities in the ideal-dilute solution

Consider the solvent, A, of a solution that is dilute enough to be in the ideal-dilute range. In this range, the solvent
fugacity obeys Raoult's law, and the partial molar quantities of the solvent are the same as those in an ideal mixture.
Formulas for these quantities were given in Eqs. 9.4.8-9.4.13 and are collected in the first column of Table 9.4.1 on
page 212.

211



212 MIXTURES

Solvent Solute

ref

pa=pA+RTInxy  pp=pyp+RTInxg
=u+RTIn(cp/c”)
= g + RTIn (mg /m*)
Sa=Si—Rlnxu Sp=S 5 -RInxp
=St —RIn (cp/c*)

=Sils—R1n (mg /m°)

Hx=H} Hg=HY
Va= Vi Vg = Vg°
Up=Uj Up=Usg’
Coa= C;,A C=CpB

Table 9.4.1. Partial molar quantities of solvent and nonelectrolyte solute in an ideal-dilute solution

The formulas show that the chemical potential and partial molar entropy of the solvent, at constant 7 and p,
vary with the solution composition and, in the limit of infinite dilution (x4 — 1), approach the values for the pure
solvent. The partial molar enthalpy, volume, internal energy, and heat capacity, on the other hand, are independent of
composition in the ideal-dilute region and are equal to the corresponding molar quantities for the pure solvent.

Next consider a solute, B, of a binary ideal-dilute solution. The solute obeys Henry's law, and its chemical poten-

ref

tial is given by pg= py p+RT Inxg (Eq. 9.4.24) where pfg is a function of T and p, but not of composition. ug varies
with the composition and goes to —co as the solution becomes infinitely dilute (x4 - 1 and xg — 0).

For the partial molar entropy of the solute, we use Sg=—(0 ug/07), (n; (Eq. 9.2.48) and obtain

ref
Sp= _( 9 5‘;3) —Rlnxg (9.4.36)
p

The term —(0 ,u§f§3 /0 T), represents the partial molar entropy S ff]g of B in the fictitious reference state of unit solute
mole fraction. Thus, we can write Eq. 9.4.36 in the form

(9.4.37)
Sp=SrL~RInxg (ideal—dilute solution
of a nonelectrolyte)

This equation shows that the partial molar entropy varies with composition and goes to +oc in the limit of infinite
dilution. From the expressions of Eqgs. 9.4.27 and 9.4.28, we can derive similar expressions for Sg in terms of the
solute reference states on a concentration or molality basis.

The relation Hg = pg + T'Sg (from Eq. 9.2.46), combined with Eqs. 9.4.24 and 9.4.37, yields
Hy=ph+ TSSh=Hih (9.4.38)

showing that at constant 7" and p, the partial molar enthalpy of the solute is constant throughout the ideal-dilute
solution range. Therefore, we can write

(9.4.39)
Hy=HY (ideal—dilute solution
of a nonelectrolyte)

where Hg is the partial molar enthalpy at infinite dilution. By similar reasoning, using Eqs. 9.2.49-9.2.52, we find
that the partial molar volume, internal energy, and heat capacity of the solute are constant in the ideal-dilute range and
equal to the values at infinite dilution. The expressions are listed in the second column of Table 9.4.1.

When the pressure is equal to the standard pressure p°, the quantities Hg°, Vg°, Ug®, and C,3 are the same as the
standard values Hg, Vg, Ug, and C, .
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BIOGRAPHICAL SKETCH

WILLIAM HENRY (1774-1836)

William Henry was a British chemist, trained as a physician,
who is best known for his formulation of what is now called
Henry's law.

Henry was born in Manchester, England. His father was an
apothecary and industrial chemist who established a profitable
business manufacturing such products as magnesium carbonate
(used as an antacid) and carbonated water. At the age of ten,
Henry was severely injured by a falling beam and was plagued
by pain and ill health for the rest of his life.

Henry began medical studies at the University of Edinburgh
in 1795. He interrupted these studies to do chemical research,
to assist his father in general medical practice, and to help run
the family chemical business. He finally received his diploma
of Doctor in Medicine in 1807. In 1809, in recognition of his
research papers, he was elected a Fellow of the Royal Society.

In 1801 the first edition of his influential chemistry textbook
appeared, originally called An Epitome of Chemistry and in later
editions Elements of Experimental Chemistry. The book went
through eleven editions over a period of 28 years.

Henry investigated the relation between the pressure of a gas
and the volume of the gas, measured at that pressure, that was
absorbed into a given volume of water. He used a simple appa-
ratus in which the water and gas were confined over mercury
in a graduated glass vessel, and the contents agitated to allow
a portion of the gas to dissolve in the water. His findings were
presented to the Royal Society of London in 1802 and published
the following year:*+4

9.4.4. Ref. [83].

The results of a series of at least fifty exper-
iments, on carbonic acid, sulphuretted hydrogen
gas, nitrous oxide, oxygenous and azotic
gases,”*> with the above apparatus, establish the
following general law: that, under equal circum-
stances of temperature, water takes up, in all
cases, the same volume of condensed gas as of
gas under ordinary pressure. But, as the spaces
occupied by every gas are inversely as the com-
pressing force, it follows, that water takes up, of
gas condensed by one, two, or more additional
atmospheres, a quantity which, ordinarily com-
pressed, would be equal to twice, thrice, &c. the
volume absorbed under the common pressure of
the atmosphere.

Henry later confirmed a suggestion made by his close friend
John Dalton, that the amount of a constituent of a gaseous mix-
ture that is absorbed is proportional to its partial pressure.”*°

Henry carried out other important work, chiefly on gases,
including the elemental compositions of hydrogen chloride,
ammonia, and methane.

Because of his poor health and unsuccessful surgery on his
hands, Henry was unable to continue working in the lab after
1824. Twelve years later, suffering from pain and depression, he
committed suicide.

In a biography published the year after Henry's death, his
son William Charles Henry wrote:*+7

In the general intercourse of society, Dr.
Henry was distinguished by a polished courtesy,
by an intuitive propriety, and by a considerate
forethought and respect for the feelings and
opinions of others...His comprehensive range of
thought and knowledge, his proneness to gen-
eral speculation in contradistinction to detail, his
ready command of the refinements of language
and the liveliness of his feelings and imagina-
tion rendered him a most instructive and engaging
companion.

9.4.5. These gases are respectively CO,, H»S, N>O, O3, and N».
9.4.6. Ref. [82].
9.4.7. Quoted in Ref. [169].

213



214 MIXTURES

9.5 Activity Coefficients in Mixtures of Nonelectrolytes

An activity coefficient of a species is a kind of adjustment factor that relates the actual behavior to ideal behavior at
the same temperature and pressure. The ideal behavior is based on a reference state for the species.

We begin by describing reference states for nonelectrolytes. The thermodynamic behavior of an electrolyte solu-
tion is more complicated than that of a mixture of nonelectrolytes, and will be discussed in the next chapter.

9.5.1 Reference states and standard states

A reference state of a constituent of a mixture has the same temperature and pressure as the mixture. When species i
is in its reference state, its chemical potential " depends only on the temperature and pressure of the mixture.

If the pressure is the standard pressure p°, the reference state of species i becomes its standard state. In the
standard state, the chemical potential is the standard chemical potential u;, which is a function only of temperature.

Reference states are useful for derivations involving processes taking place at constant 7" and p when the pressure
is not necessarily the standard pressure.

Table 9.5.1 on page 214 describes the reference states of nonelectrolytes used in this book, and lists symbols for
chemical potentials of substances in these states. The symbols for solutes include x, ¢, or m in the subscript to indicate
the basis of the reference state.

9.5.2 Ideal mixtures

Since the activity coefficient of a species relates its actual behavior to its ideal behavior at the same T and p, let us
begin by examining behavior in ideal mixtures.

Consider first an ideal gas mixture at pressure p. The chemical potential of substance i in this ideal gas mixture is
given by Eq. 9.3.5 (the superscript “id” stands for ideal):

i (g) = 15 (g) +RT1n% 9.5.1)

The reference state of gaseous substance i is pure i acting as an ideal gas at pressure p. Its chemical potential is given
by

w (@)= i (2) + RTIn 2 9.5.2)
Subtracting Eq. 9.5.2 from Eq. 9.5.1, we obtain
pi(@) - i (2) =RTIn 9.5.3)
Chemical

Constituent Reference state potential
Substance i in a gas mixture Pure i behaving as an ideal gas® ref (g)
Substance i in a liquid or solid mixture Pure i in the same physical state as the mixture i
Solvent A of a solution Pure A in the same physical state as the solution LA

. . B at mole fraction 1, behavior extrapolated from
Solute B, mole fraction basis . . . . o rof
infinite dilution on a mole fraction basis HxB
. . B at concentration c¢°, behavior extrapolated from
Solute B, concentration basis ] . o ) 4 rof
infinite dilution on a concentration basis HeB
B at molality m°, behavior extrapolated from infinite
ref

lute B lality basi
Solute B, molality basis dilution on a molality basis® Hm,B

Table 9.5.1. Reference states for nonelectrolyte constituents of mixtures. In each reference state, the temperature and pressure are the
same as those of the mixture.

2A hypothetical state.
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Consider the following expressions for chemical potentials in ideal mixtures and ideal-dilute solutions of nonelec-
trolytes. The first equation is a rearrangement of Eq. 9.5.3, and the others are from earlier sections of this chapter.”-!

Constituent of an ideal gas mixture ni(g) = s (g)+R Tln% 9.5.4)

Constituent of an ideal liquid or solid mixture Wi = ui+RTInx; 9.5.5)

Solvent of an ideal-dilute solution ta = HA+RTInxy (9.5.6)

Solute, ideal—dilute solution, mole fraction basis up = P +RTInxg 9.5.7)

Solute, ideal—-dilute solution, concentration basis Up = p{f]g +R Tln% (9.5.8)

Solute, ideal-dilute solution, molality basis UB = pﬁifg +RTIn ’ZB (9.5.9)
Note that the equations for the condensed phases have the general form
_oref composition variable

pi= i+ RT I ( standard composition ©.5.10)

where ;*' is the chemical potential of component 7 in an appropriate reference state. (The standard composition on a

mole fraction basis is x°=1.)

9.5.3 Real mixtures

If a mixture is not ideal, we can write an expression for the chemical potential of each component that includes
an activity coefficient. The expression is like one of those for the ideal case (Eqgs. 9.5.4-9.5.9) with the activity
coefficient multiplying the quantity within the logarithm.
Consider constituent i of a gas mixture. If we eliminate y; (g) from Eqgs. 9.3.12 and 9.5.2, we obtain
pi = 1 Q) +RT1nJg
= prf (g)+RT1n% 9.5.11)
where f; is the fugacity of constituent i and ¢; is its fugacity coefficient. Here the activity coefficient is the fugacity
coefficient ¢;.
For components of a condensed-phase mixture, we write expressions for the chemical potential having a form
similar to that in Eq. 9.5.10, with the composition variable now multiplied by an activity coefficient:

composition variable )] 9.5.12)

= ref P . .
wi= 1 +RTIn| (activity coefficient of i) x (stan dard composition

The activity coefficient of a species is a dimensionless quantity whose value depends on the temperature, the pressure,
the mixture composition, and the choice of the reference state for the species. Under conditions in which the mixture
behaves ideally, the activity coeflicient is unity and the chemical potential is given by one of the expressions of Egs.
9.5.4-9.5.9; otherwise, the activity coefficient has the value that gives the actual chemical potential.

This book will use various symbols for activity coefficients, as indicated in the following list of expressions for the
chemical potentials of nonelectrolytes:

Constituent of a gas mixture wo= pcf (g)+RTIn (¢i%) (9.5.13)
Constituent of a liquid or solid mixture wi = pui+RTIn(y;x;) 9.5.14)
Solvent of a solution Ha = PA+RTIn (yaxa) (9.5.15)
Solute of a solution, mole fraction basis Up = u}f{g +RTIn(y,pxB) (9.5.16)
Solute of a solution, concentration basis U = uflfg +RTIn (;/L.,B%) (9.5.17)
Solute of a solution, molality basis g = uiﬁfB +RTIn (}/m,B %) (9.5.18)

Equation 9.5.14 refers to a component of a liquid or solid mixture of substances that mix in all proportions. Equation
9.5.15 refers to the solvent of a solution. The reference states of these components are the pure liquid or solid at the
temperature and pressure of the mixture. For the activity coefficients of these components, this book uses the symbols

9.5.1. In order of occurrence, Eqs. 9.4.8, 9.4.35, 9.4.24, 9.4.27, and 9.4.28.
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The IUPAC Green Book (Ref. [36], p. 59) recommends the symbol f; for the activity coefficient of
component { when the reference state is the pure liquid or solid. This book instead uses symbols such

as y; and ya, in order to avoid confusion with the symbol usually used for fugacity, f;.

In Egs. 9.5.16-9.5.18, the symbols y, s, 7.8, and y,, g for activity coefficients of a nonelectrolyte solute include x,
¢, or m in the subscript to indicate the choice of the solute reference state. Although three different expressions for ug

are shown, for a given solution composition they must all represent the same value of ug, equal to the rate at which
the Gibbs energy increases with the amount of substance B added to the solution at constant 7" and p. The value of a

solute activity coefficient, on the other hand, depends on the choice of the solute reference state.

You may find it helpful to interpret products appearing on the right sides of Eqs. 9.5.13-9.5.18 as follows.

e ¢;p;is an effective partial pressure.

*  ¥iX;, yaXa, and y, pxp are effective mole fractions.

* e

g cp is an effective concentration.

e yupmp is an effective molality.

In other words, the value of one of these products is the value of a partial pressure or composition variable that
would give the same chemical potential in an ideal mixture as the actual chemical potential in the real mixture. These
effective composition variables are an alternative way to express the escaping tendency of a substance from a phase;

they are related exponentially to the chemical potential, which is also a measure of escaping tendency.

A change in pressure or composition that causes a mixture to approach the behavior of an ideal mixture or ideal-

dilute solution must cause the activity coefficient of each mixture constituent to approach unity:

Constituent of a gas mixture ¢, = 1 as p-0 (9.5.19)
Constituent of a liquid or solid mixture yi—->1 a x-1 (9.5.20)
Solvent of a solution ya = 1 as xa—1 (9.5.21)
Solute of a solution, mole fraction basis yeB — 1 as xg—0 (9.5.22)
Solute of a solution, concentration basis YeB = 1 as cg—0 (9.5.23)
Solute of a solution, molality basis YmB = 1 as mp—0 (9.5.24)

9.5.4 Nonideal dilute solutions

How would we expect the activity coefficient of a nonelectrolyte solute to behave in a dilute solution as the solute mole

fraction increases beyond the range of ideal-dilute solution behavior?

The following argument is based on molecular properties at constant 7 and p.

We focus our attention on a single solute molecule. This molecule has interactions with nearby solute
molecules. Each interaction depends on the intermolecular distance and causes a change in the internal
energy compared to the interaction of the solute molecule with solvent at the same distance.”>> The
number of solute molecules in a volume element at a given distance from the solute molecule we are
focusing on is proportional to the local solute concentration. If the solution is dilute and the interactions
weak, we expect the local solute concentration to be proportional to the macroscopic solute mole frac-
tion. Thus, the partial molar quantities Ug and V3 of the solute should be approximately linear functions
of xp in a dilute solution at constant 7 and p.

From Egs. 9.2.46 and 9.2.50, the solute chemical potential is given by ug=Up+ p Vg—T Sp. In the
dilute solution, we assume Ug and Vp are linear functions of xp as explained above. We also assume
the dependence of Sg on xp is approximately the same as in an ideal mixture; this is a prediction from
statistical mechanics for a mixture in which all molecules have similar sizes and shapes. Thus we

expect the deviation of the chemical potential from ideal-dilute behavior, yg= pﬁﬁ% +RT Inxg, can be

9.5.2. In Sec. 11.1.5, it will be shown that roughly speaking the internal energy change is negative if the average of the attractive forces between

two solute molecules and two solvent molecules is greater than the attractive force between a solute molecule and a solvent molecule at the same

distance, and is positive for the opposite situation.
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described by adding a term proportional to xg: ug = pfg +RT Inxg + kyxg, where k, is a positive or
negative constant related to solute-solute interactions.

If we equate this expression for ppg with the one that defines the activity coefficient, ug = ,uffg +
RTIn (y,pxg) (Eq. 9.5.16), and solve for the activity coeflicient, we obtain the relation®>3 y, p =

exp (kyxg/RT). An expansion of the exponential in powers of xp converts this to
}’x,BZl +(ky/RT)xg+ - (9.5.25)

Thus we predict that at constant 7 and p, y,p is a linear function of xp at low xg. An ideal-dilute
solution, then, is one in which xp is much smaller than RT / k, so that y, g is approximately 1. An ideal
mixture requires the interaction constant k, to be zero.

By similar reasoning, we reach analogous conclusions for solute activity coefficients on a concentration
or molality basis. For instance, at low mg the chemical potential of B should be approximately pr,SfB +
RT1In (mg/m°) + k, mg, where k,, is a constant at a given T and p; then the activity coefficient at low
mp is given by

Ymp=exp (kymp/RT)=1+ (ky/RT)mg+--- (9.5.26)

The prediction from the theoretical argument above, that a solute activity coefficient in a dilute solution is a linear
function of the composition variable, is borne out experimentally as illustrated in Fig. 9.6.29.6.2 on page 219. This
prediction applies only to a nonelectrolyte solute; for an electrolyte, the slope of activity coefficient versus molality
approaches —oco at low molality (page 241).

9.6 Evaluation of Activity Coefficients

This section describes several methods by which activity coefficients of nonelectrolyte substances may be evaluated.
Section 9.6.3 describes an osmotic coefficient method that is also suitable for electrolyte solutes, as will be explained
in Sec. 10.6.

9.6.1 Activity coefficients from gas fugacities

Suppose we equilibrate a liquid mixture with a gas phase. If component i of the liquid mixture is a volatile nonelec-
trolyte, and we are able to evaluate its fugacity f; in the gas phase, we have a convenient way to evaluate the activity
coeflicient y; in the liquid. The relation between y; and f; will now be derived.

When component i is in transfer equilibrium between two phases, its chemical potential is the same in both phases.
Equating expressions for y; in the liquid mixture and the equilibrated gas phase (from Eqgs. 9.5.14 and 9.5.11, respec-
tively), and then solving for y;, we have

pi+RTIn(yx) = p (g) +RTn (fi/ p) (9.6.1)
tef (o) _ ot .
yi=exp % x% 9.6.2)

On the right side of Eq. 9.6.2, only f; and x; depend on the liquid composition. We can therefore write
YFQ% (9.6.3)

where C;is a factor whose value depends on 7" and p, but not on the liquid composition. Solving Eq. 9.6.3 for C; gives
Ci=vixi/ fi.
Now consider Eq. 9.5.20 on page 216. It says that as x; approaches 1 at constant 7" and p, y; also approaches 1.
We can use this limit to evaluate C;: |
. YiXi
Ci= ;11:11 T 9.6.4)
Here f* is the fugacity of i in a gas phase equilibrated with pure liquid i at the temperature and pressure of the mixture.
Then substitution of this value of C; (which is independent of x;) in Eq. 9.6.3 gives us an expression for y; at any liquid

9.5.3. This is essentially the result of the McMillan—-Mayer solution theory from statistical mechanics.
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Figure 9.6.1. Liquid mixtures of ethanol (A) and H>O at 25°C and 1 bar.

a) Ethanol fugacity as a function of mixture composition. The dashed line is Raoult's law behavior, and the filled circle is the pure-
liquid reference state.

b) Ethanol activity coefficient as a function of mixture composition.

composition:

_Ji
ri=es (9.6.5)

We can follow the same procedure for a solvent or solute of a liquid solution. We replace the left side of Eq. 9.6.1
with an expression from among Eqgs. 9.5.15-9.5.18, then derive an expression analogous to Eq. 9.6.3 for the activity
coefficient with a composition-independent factor, and finally apply the limiting conditions that cause the activity
coefficient to approach unity (Eqgs. 9.5.21-9.5.24) and allow us to evaluate the factor. When we take the limits that
cause the solute activity coefficients to approach unity, the ratios fg/xp, fg/cp, and fs/mp become Henry's law
constants (Egs. 9.4.19-9.4.21). The resulting expressions for activity coefficients as functions of fugacity are listed in
Table 9.6.19.6.1 on page 218.

9.6.1.1 Examples

Ethanol and water at 25 °C mix in all proportions, so we can treat the liquid phase as a liquid mixture rather than a
solution. A plot of ethanol fugacity versus mole fraction at fixed 7 and p, shown earlier in Fig. 9.4.4, is repeated in
Fig. 9.6.1(a) on page 218.

Ethanol is component A. In the figure, the filled circle is the pure-liquid reference state at xo1 where f4 is equal
to fx. The open circles at xp = 0.4 indicate fa, the actual fugacity in a gas phase equilibrated with a liquid mixture of

Substance Activity coefficient
Substance i in gas mixture ¢ F%
i
Substance i in a liquid or solid mixture Yi= xf}*
ii
. /A
Solvent A of a solution YA=——F
xafX
. . _ /B
Solute B, mole fraction basis YxB=
knpxp
. . /B
Solute B, concentration basis YeB=
kepcn
. . _fB
Solute B, molality basis YmB=T——
kg mp

Table 9.6.1. Activity coefficients as functions of fugacity. For a constituent of a condensed-phase mixture, fi, fa, and fg refer to the

fugacity in a gas phase equilib

rated with the condensed phase.
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Figure 9.6.2. Dilute aqueous solutions of 1-butanol (B) at 50.08 °C and 1 bar.%-¢-!

a) fpinan equilibrated gas phase as a function of xp, measured up to the solubility limit at xg =0.015. The dilute region is shown in
a magnified view. Dashed line: Henry's law behavior on a mole fraction basis. Filled circle: solute reference state based on mole
fraction.

b) fp as a function of mp, measured up to the solubility limit at ng =0.85mol-kg~!. Dashed line: Henry's law behavior on a molality
basis. Filled circle: solute reference state on this basis.

¢) Activity coefficient on a mole fraction basis as a function of xp.

d) Activity coeflicient on a molality basis as a function of mg.

9.6.1. Based on data in Ref. [61]

this composition, and x4 fa, the fugacity the ethanol would have if the mixture were ideal and component A obeyed
Raoult's law. The ratio of these two quantities is the activity coefficient ya.

Figure 9.6.1(b) shows how y, varies with composition. The open circle is at x4 =0.4 and y5 = fa/ (xa fz). Note
how y approaches 1 as x5 approaches 1, as it must according to Eq. 9.5.20.

Water and 1-butanol are two liquids that do not mix in all proportions; that is, 1-butanol has limited sol