bkshuf: A Shuf-Like Utility with Pre-Image Resis-
tance and Relative Order Preservation for Random
Sampling of Long Lists

BY STEVEN BALTAKATEI SANDOVAL

2023-02-14T13:56+00

CC BY-SA 4.0

1 Summary

bkshuf is a shuf-like utility designed to output randomly sized groups of lines with a group size
distribution centered around some characteristic value.

2 Objective

The author desires to create a shuf-like utility named bkshuf to mix line lists in order to produce
output line lists with the following somewhat conflicting properties:

Pre-image resistance (PIR). An output line’s position should not contain information about
its input line position.

Relative order preservation (ROP). Two neighboring lines in the input stream should
have a high probability of remaining neighbors in the output stream.

The objective is to improve the value of a short random scan of a small fraction of a potentially
large input list; output that demonstrates ROP as well as some degree of PIR may achieve this
objective. In contrast, the shuf utility provides PIR but no ROP: a line’s neighbor in the output
of shuf is equally likely to be any other random line from the input.

In other words, output produced by bkshuf should group together sequential segments of the
input lines in order to partially preserve relationships that may exist between sequential files. For
example, this could be done by jumping to a random position in the input lines, consuming (i.e.
reading, outputting, and marking a line not to be read again) some amount of sequential lines,
then repeating the process until every line is consumed. The amount of sequential lines to read
between jumps affects how well the above desired properties are satisfied.

The objective of bkshuf is not to completely prevent the possibility of reassembling the input given
the output. Additionally, a valuable property desired of bkshuf is output which demonstrates
sufficiently high PIR compared to ROP such that only a short (compared to the logarithm of the
input list size) sequential scan of the output list from a random starting position is required before
a jump to a new group is is encountered; this would permit the overal contents of very large input
line lists to be sampled.

3 Design

3.1 Definitions

[: number of lines
lin : input line count
lout : output line count
c : target group count
s : target group size
Dseq : probability to include next sequential line
s(lin,0) : target group size parameter

lin,0 : input line count parameter

3.2 Process
1. Acquire and count input lines (via /dev/stdin or positional arguments).
2. Calculate line count I, .
3. Calculate target group size s.
4. Select random unconsumed input line and consume it to output.

5. Consume the next sequential line with probability pseq. Otherwise if some input lines remain
unconsumed, go to step 4. Otherwise, exit.

3.3 Parameter analysis

3.3.1 Target group size calculation

The simultaneous presence of ROP and PIR properties in the output depends upon the amount of
sequential lines that are read before bkshuf jumps to a new random position in the input list. This
amount is the target group size, s; it is the “target” since s represents the average of a distribution
of group sizes that may be selected, not a single group size. In this analysis, the total number of
lines in the input list is lj,. For small input line counts, (e.g. l;, = 10) the target group size should
be nearly one (e.g. s~ 1) since group sizes any larger than this would have almost no PIR (e.g. a
group size of s=8 for l;;, =10 would be 80% identical to the input). For modest line input counts
(e.g. lin=100), the target group size may be allowed to be larger, such as a tenth of the input line

count (e.g. s 10); this would provide some PIR (approximately 10! permutations between the
approximately IT“ 2% 2~ 10 groups) while each line in groups around size 10 would have a low
probability of not being next to its neighbor (8 of the 10 lines would retain the same two neighbors
while the two ends would retain one each). For very large input line counts (e.g. li, 21000 000),
however, breaking up and randomizing the input into ten groups of 100 000 offers very little PIR;
the benefit of the very high ROP is also lost since sequential scanning of tens of thousands of lines
is required before a random jump to a new group may be encountered; therefore, the target group
size should be a much smaller fraction of liy, (e.g. s 20) while still increasing. The relationship
between a desireable target group size s and the input line count [, is non-linear. The author

believes a reasonable approach is to scale the group size to the logarithm of input line count.

Figure 1 shows an example plot of s(l;,) that is tuned to achieve a target group size of s(l;, =10°) =
25 for an input list length of [;, = 109 lines.

30

25

20

15

10

Figure 1. A plot of a possible function that relates target group size s and input lines [j, that provide

108 102 103 10%
1 2 3 4

some ROP and PIR. The function is tuned to achieve s(l;, = 105) = 25.

The following is a set of equations that are used to derive a definition for s(ly,) that satisfies the

plot in Figure 1.

10*
Zo

10%°

lin
In (lin,0)

log (lin,0) = T (10)

lin,O

= (kz)?+1

k%-(6)2+1
k%-(36) +1
(k‘ :Eo)2 +1

(5)

- (B e ()

s(lin) = (s(lin,0)—1)- (%) 1

n (lin,O

S(l- _ S(lin_ro)—l (L2
() = (3 (41 ©)

Equation 3 defines a quadratic equation for the linear range s and the logarithmic domain x. z is
defined in terms of [, via a domain transformation defined by Equation 1. The result is Equation 6
which defines s(lin) as a function of i, and parameters s(lin,0) and lin,0. The parameters define
how quickly or slowly the quadratic equation grows. In other words, if a user wishes for a 1 000 000
line input to be split into groups each containing, on average, 25 lines, then they should plug
in lin,0=1000000 and s(lin,0) =25 into Equation 6 as is done in Equation 7. This equation can
then be used to calculate target group sizes s as a function of other input line counts l;, besides
lin=1000000. For example, plugging l;, = 500 into Equation 7 yields Equation 8 which specifies
a target group size of 5.85629 X~ 6.

s(lm) = lin,o0)) [In(lm)]? +1

1n0

(Btear
stin) = (g taye) M) +1 ™)
(m
)

12806 (1)00]2> - [In(500)]% + 1 (8)

.85629

s(lin=500) =

$(lin=500) =

3.3.2 Jump from expected value
A method bkshuf may employ to decide when read the next sequential unconsumed input line is

to simply do so with probability pseq such that the expected value of the average group size trends
towards s.

DPseq = (1_pjump)

DPjump = 1_pseq
S o)
Pjump 1*pseq
. 1
5T 1 — Pseq
1
1= Pseq = S
pseq_1 = _Tl
1
Pseq = 173(lin) (10)
1

Pjump S(Zin)

S(Iin O) -1

) = 1= | (380 (41 (12)

3.3.3 Jump from random variate of inverse gaussian distribution

Another method bkshuf may employ to decide when to read the next sequential unconsumed input
line is to use an inverse gaussian distribution. This may be done by generating from the distribution
a float sampled from the inverse gaussian with range 0 to infinity with mean p whenever a new
random position in the input list is selected; the float is rounded to the nearest integer.! Then,
after consuming an input line, this integer is decremented by one and another sequential line is
consumed provided the integer does not become less than or equal to zero. The inverse gaussian
distribution requires specifying the mean g and the shape parameter \; a higher A results in a
greater spread. An upper bound may also be specified since the distribution has none except for
that imposed by its programming implementation.

The result of using an inverse gaussian distribution is an output with potentially much more
regular group sizes than using the previously mentioned expected value method. However, the
implementation of the inverse gaussian sampling operation described by (Michael, 1976) requires
several exponent calculations and a square root calculation in addition to various multiplication and
division operations. If sufficient processing power is available, this may not necessarily be an issue.

3.3.4 Output structure

Regardless of whether group sizes are determined by the expected value method or using variates
of an inverse gaussian distribution, mimicking the shuf property of all input lines being present
in the output, albeit rearranged, results in a side effect: the first output lines are more likely to
contain groups with uninterrupted sequence runs (high ROP) while groups in the last output lines
are almost certain to contain sequence jumps within a group (less ROP). The reason for this is that
bkshuf, when it encounters an input line that has already been consumed, will skip to the next
available input line. The decision could be made to skip to a new random line, but, it is simpler to
simply read the next available input line. The author’s original intention of sampling only a short
initial portion of the output is compatible with the behavior that ROP is preserved mostly at the
beginning of the output.

4 Version History

Version No. Date Path Description
0.0.1 2023-02-14 unitproc/bkshuf Initial draft implemented in BASH.

Table 1. A table listing versions of bkshuf.

v0.0.1. Initial implementation in bash 5.1.16 with bc 1.07.1 and GNU COREUTILS 8.32
and tested on Pop! OS 22.04 LTS. Saved to the author’s BK-2020-03 repository?.

1. See MicHAEL, JoHN R. "Generating Random Variates Using Transformations with Multiple Roots". 1976.
https://doi.org/10.2307/2683801 .

2. See commit 080eadc at https://gitlab.com/baltakatei/baltakatei-exdev .

https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://doi.org/10.2307/2683801
https://gitlab.com/baltakatei/baltakatei-exdev/-/blob/080ea4c0ff0d4e6b5ce86f664fa6645c1cb02bf0/unitproc/bkshuf
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev
https://gitlab.com/baltakatei/baltakatei-exdev

	1 Summary
	2 Objective
	3 Design
	3.1 Definitions
	3.2 Process
	3.3 Parameter analysis
	3.3.1 Target group size calculation
	3.3.2 Jump from expected value
	3.3.3 Jump from random variate of inverse gaussian distribution
	3.3.4 Output structure

	4 Version History

