
Usada Pekora BGM animation synchronization

by Steven �Baltakatei� Sandoval

Email: baltakatei@gmail.com
Web: reboil.com

2023-06-09

v0.0.2

1 Summary

Pekora Usada (ja: 兎田ぺこら; hep: usada pekora) is a VTuber who, as of 2020, frequently uses
a looping background audio loop titled 「たぬきちの冒険」 while broadcasting their livestream on
YouTube. On 2020-08-16, an animator publishing under the Twitter usename @kaynimatic,
published an animation showing a walk animation of Pekora's character set to the aforementioned
audio loop. Later, other versions of this video animation were uploaded to YouTube1 but which
did not attempt to synchronize the walking animation with the music tempo.

This paper documents such a synchronization attempt.

2 Background

2.1 Givens

The music clip of たぬきちの冒険 has a tempo of 132.0 bpm (b= 132.0 beats
min ).2

The Kaynimatic animation shows Pekora in a 10-frame walk cycle (cin0 = 10 frames
cycle ) padded in a

staggered fashion in the Twitter video into a 27-frame loop.3 During each walk cycle, Pekora
takes two steps, meaning two beats occur during each 10-frame cycle (i.e. b 0=2 beats

cycle ).

3 Methodology

3.1 Frame extraction

FFmpeg was used to extract the frames from the Twitter video (input.mp4).

$ ffmpeg -i input.mp4 ./frames/%04d.png

Then, the resulting image files (0001.png, 0002.png, . . . , 0432.png) were then manually pruned
to include only the 10 unique frames.

3.2 Synchronization strategy

Assuming the music is to be played as-is, in order to create a video animation set to the 132.0bpm
music in which each 10 frame walk cycle is mapped across two beats, two strategies may be used:

� Adjust the video framerate.

� Pad the video frames.

1. GKen. (2020-10-06). Youtube. �兎田ぺこら Usada Pekora BGM (1 HOUR) [60 FPS]�. ID: RYhKUKzD6IQ.
2. MAKOOTO. (2019-01-15). DOVA-SYNDROME. https://dova-s.jp/bgm/play10441.html .
3. Yu, Kay. (2020-08-16). Twitter. https://twitter.com/kaynimatic/status/1294982862710611968 .

1

https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://www.youtube.com/watch?v=RYhKUKzD6IQ
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://dova-s.jp/bgm/play10441.html
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968
https://twitter.com/kaynimatic/status/1294982862710611968


The time required for two beats (one walk cycle) is:

t 0 = b 0

b

= (b 0) �
�
1
b

�
=
�
2beats
cycle

�
�
�

min
132 beats

�
�
��

60 sec
min

��
=
�
2 � 60
132

�
�
�

sec
cycle

�
t 0 =

�
10
11

�
sec
cycle

t 0 = 0:9090 sec
cycle

Where:

t 0 : time per animation cycle
�

sec
cycle

�
b0 : beats per cycle

�
beats
cycle

�
b : tempo

�
beats
min

�
If video framerate were completely adjustable, the minimum framerate (rmin) for a 10 frame looping
animation (cin0 = 10 frames

cycle ) would be:

rmin = c 0

t 0

= (cin0 ) �
�
1
t 0

�
=
�
10 frames
cycle

�
�
 

cycle
10
11 sec

!

= (10 frames)¡ 10
11 sec

� =
�
10 � 11
10

�
frames
sec

rmin = 11
frames
sec

Where:

cin
0 : input frames per cycle

�
frames
cycle

�
rmin : minimum framerate

�
frames
sec

�

If a more conventional output framerate such as 60 fps were to be used (i.e., rout= 60 frames
sec ), each

input frame could be displayed multiple times as duplicate frames. In order to calculate how many
times an input frame would need to be duplicated in the output video of a given frame rate (rout),
a first step would be calculating how many output frames (cout0 ) would be displayed during the
time (t 0) of a single animation cycle. The next step would involve dividing this output frame count
by the total number of available input frames (cin0 ), yielding the number of times each input frame
must be duplicated in the output.

2



The first step calculation of cout0 using the example is as follows:

cout
0 = t 0 � rout (1)

=
�
10
11

sec
cycle

�
�
�
60

frames
sec

�
(2)

cout
0 = 600

11
frames
cycle

(3)

cout
0 = 54:5454

frames
cycle

(4)

Where:

cout
0 : output frames per cycle

�
frames
cycle

�
The given values of t 0 and rout do not permit cout0 to take on an integer value. Therefore, if the
second step of dividing by 10 frames

cycle were executed here, the result would alos be a non-integer
value. Since output frames cannot be displayed for fractional amounts of time some approximation
or change to assumptions must be made; in order of decreasing severity, these changes may include:

� Change the number of input frames. Requires reanimating the original work.

� Change the given tempo. Requires adjusting music tempo.

� Dynamically duplicate input frames to output frames. Requires giving up perfect frame-to-
beat timing but preserves tempo and overall rhythm.

3.3 Procedure

In this example, dynamically adjusting the number of times each input frame is duplicated in the
output will be the method used. Therefore, the second step is of calculating the number of duplicate
frames becomes a dynamic procedure that varies depending upon a running sum of fractional
remainders of cout

0

cin
0 evaluations. This procedure can be described as follows:

� Calculate cout
0

cin
0 .

� Store the quotient and fractional remainder separately. (e.g. for 60
11 = 5 + 5

11 , �5� is the
quotient, � 511 � is the fractional remainder).

� Use the quotient as the integer number of duplicates of the current input frame to append
to the growing output set of frames.

� Add the remainder to a running sum.

� If the sum is greater than 1.0, then add an additional frame and decrement the sum by 1.0.

� Repeat for the next input frame.

In practice, some additional considerations make for cleaner output (i.e. loops cleanly).

� Assemble a set of output frames containing d cycles in which each input frame is duplicated,

on average, d � cout
0

cin
0 times.

� Adjust d(n), so that d � cout
0

cin
0 yields a value sufficiently near an integer value to an acceptable

margin.

3



Adjustments to d(n) may be calculated by varying n using equation 5:

d(n) = n � cout
0

cin
0 (5)

= (11 dupes) � cout0
cin
0 (6)

=
(11 dupes) �

¡ 600
11

� frames
cycle�

10 frames
cycle

�
d(n) = 60 dupes

Where:

d : number of times an input frame is duplicated in the output [dupes]
n : duplication factor

In this example, an appropriate value for n is 11 as shown in equation 6. This is because �11� since
it rests in the denominator of cout0 = 600

11
frames
cycle which is a clean fraction.

In practice, every input frame is not guaranteed to be duplicated the same number of times in the
output as each other input frame (i.e. when the remainder sum grows above 1.0 and an additional
frame is added). In this example, the minimum number of duplicates is cout

0

cin
0 = 5:4545=� 5 with

some input frames occasionally needing to be duplicated 6 times to cover the remainder in order
to maintain synchronization of the animation to the music tempo.

In the example, 11 full cycles requires precisely 600 output frames. Therefore, a clean loop will

last (11 cycles) � t0=
h¡ 10

11

� sec
cycle

i
� (11 cycles)= 10 seconds. Using a different output video framerate

will result in a different selection of n that may change the clean loop length, especially with non-
integer frame rates such as 59.94 frames

sec .

3.4 Program implementation

A Bash script was written to execute the procedure described earlier. A copy of the program may
be found at ./exec/assemble_frames.sh in the repository containing this document.

The script is basically a function defined to take the following parameters into account in order
to transform cin sequential input image files into a set of the minimum count of looping sequential
image files (cout) that could be used to construct a video in which music rhythm matches the
animation rhythm. The script output is a set of png files within a specified output directory.

b : tempo
�
beats
min

�
rout : output video framerate

�
frames
sec

�
cin
0 : total input frame count [frames]

b 0 : beats per cycle
�
beats
cycle

�
Rcycle : input frames per beat

�
frames
beat

�
pin : path to directory containing input frame files
pout : path to directory for output frame files
n : duplication factor

4



Executing the program in a Bash shell with arguments relevant to the example looks like:

$ mkdir ./data/oframes

$ /bin/bash ./exec/assemble_frames.sh 132.0 60 10 2 5 \

./WKRM/iframes/ ./WKRM/oframes/ 11; ls ./oframes/

Arguments are:

� 132.0 : tempo
h

beats
minute

i
� 60 : output video framerate

h
frames
sec

i
� 10 : total input frame count [frames]

� 2 : beats per animation cycle
h
beats
cycle

i
� 5 : input frames per beat

h
frames
beat

i
� ./WKRM/iframes/ : path to directory containing input frame files

� ./WKRM/oframes/ : path to directory for output frame flies

� 11 : duplication factor (how many animation loops to output)

Once the output directory has been populated with the output frames (in this example, 11 loops
produce 600 output frames), video editing software such as Kdenlive4 may be used to import the
png files as an image sequence in a video configured for 60 frames

sec . The 132.0 beats
min looping audio

track may also be added at this stage.

Figure 1. A screenshot of the editing GUI in Kdenlive v23.04.1.

4. �Kdenlive Free and Open Source Video Editor�. kdenlive.org https://kdenlive.org/ .

5

https://kdenlive.org/
https://kdenlive.org/
https://kdenlive.org/
https://kdenlive.org/
https://kdenlive.org/
https://kdenlive.org/
https://kdenlive.org/
https://kdenlive.org/

	1 Summary
	2 Background
	2.1 Givens

	3 Methodology
	3.1 Frame extraction
	3.2 Synchronization strategy
	3.3 Procedure
	3.4 Program implementation


